File size: 6,603 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from decimal import Decimal

import numpy as np
import pytest

from pandas.compat.numpy import np_version_gte1p25

import pandas as pd
import pandas._testing as tm


class TestDataFrameUnaryOperators:
    # __pos__, __neg__, __invert__

    @pytest.mark.parametrize(
        "df,expected",
        [
            (pd.DataFrame({"a": [-1, 1]}), pd.DataFrame({"a": [1, -1]})),
            (pd.DataFrame({"a": [False, True]}), pd.DataFrame({"a": [True, False]})),
            (
                pd.DataFrame({"a": pd.Series(pd.to_timedelta([-1, 1]))}),
                pd.DataFrame({"a": pd.Series(pd.to_timedelta([1, -1]))}),
            ),
        ],
    )
    def test_neg_numeric(self, df, expected):
        tm.assert_frame_equal(-df, expected)
        tm.assert_series_equal(-df["a"], expected["a"])

    @pytest.mark.parametrize(
        "df, expected",
        [
            (np.array([1, 2], dtype=object), np.array([-1, -2], dtype=object)),
            ([Decimal("1.0"), Decimal("2.0")], [Decimal("-1.0"), Decimal("-2.0")]),
        ],
    )
    def test_neg_object(self, df, expected):
        # GH#21380
        df = pd.DataFrame({"a": df})
        expected = pd.DataFrame({"a": expected})
        tm.assert_frame_equal(-df, expected)
        tm.assert_series_equal(-df["a"], expected["a"])

    @pytest.mark.parametrize(
        "df",
        [
            pd.DataFrame({"a": ["a", "b"]}),
            pd.DataFrame({"a": pd.to_datetime(["2017-01-22", "1970-01-01"])}),
        ],
    )
    def test_neg_raises(self, df, using_infer_string):
        msg = (
            "bad operand type for unary -: 'str'|"
            r"bad operand type for unary -: 'DatetimeArray'"
        )
        if using_infer_string and df.dtypes.iloc[0] == "string":
            import pyarrow as pa

            msg = "has no kernel"
            with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg):
                (-df)
            with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg):
                (-df["a"])

        else:
            with pytest.raises(TypeError, match=msg):
                (-df)
            with pytest.raises(TypeError, match=msg):
                (-df["a"])

    def test_invert(self, float_frame):
        df = float_frame

        tm.assert_frame_equal(-(df < 0), ~(df < 0))

    def test_invert_mixed(self):
        shape = (10, 5)
        df = pd.concat(
            [
                pd.DataFrame(np.zeros(shape, dtype="bool")),
                pd.DataFrame(np.zeros(shape, dtype=int)),
            ],
            axis=1,
            ignore_index=True,
        )
        result = ~df
        expected = pd.concat(
            [
                pd.DataFrame(np.ones(shape, dtype="bool")),
                pd.DataFrame(-np.ones(shape, dtype=int)),
            ],
            axis=1,
            ignore_index=True,
        )
        tm.assert_frame_equal(result, expected)

    def test_invert_empty_not_input(self):
        # GH#51032
        df = pd.DataFrame()
        result = ~df
        tm.assert_frame_equal(df, result)
        assert df is not result

    @pytest.mark.parametrize(
        "df",
        [
            pd.DataFrame({"a": [-1, 1]}),
            pd.DataFrame({"a": [False, True]}),
            pd.DataFrame({"a": pd.Series(pd.to_timedelta([-1, 1]))}),
        ],
    )
    def test_pos_numeric(self, df):
        # GH#16073
        tm.assert_frame_equal(+df, df)
        tm.assert_series_equal(+df["a"], df["a"])

    @pytest.mark.parametrize(
        "df",
        [
            pd.DataFrame({"a": np.array([-1, 2], dtype=object)}),
            pd.DataFrame({"a": [Decimal("-1.0"), Decimal("2.0")]}),
        ],
    )
    def test_pos_object(self, df):
        # GH#21380
        tm.assert_frame_equal(+df, df)
        tm.assert_series_equal(+df["a"], df["a"])

    @pytest.mark.parametrize(
        "df",
        [
            pytest.param(
                pd.DataFrame({"a": ["a", "b"]}),
                # filterwarnings removable once min numpy version is 1.25
                marks=[
                    pytest.mark.filterwarnings("ignore:Applying:DeprecationWarning")
                ],
            ),
        ],
    )
    def test_pos_object_raises(self, df):
        # GH#21380
        if np_version_gte1p25:
            with pytest.raises(
                TypeError, match=r"^bad operand type for unary \+: \'str\'$"
            ):
                tm.assert_frame_equal(+df, df)
        else:
            tm.assert_series_equal(+df["a"], df["a"])

    @pytest.mark.parametrize(
        "df", [pd.DataFrame({"a": pd.to_datetime(["2017-01-22", "1970-01-01"])})]
    )
    def test_pos_raises(self, df):
        msg = r"bad operand type for unary \+: 'DatetimeArray'"
        with pytest.raises(TypeError, match=msg):
            (+df)
        with pytest.raises(TypeError, match=msg):
            (+df["a"])

    def test_unary_nullable(self):
        df = pd.DataFrame(
            {
                "a": pd.array([1, -2, 3, pd.NA], dtype="Int64"),
                "b": pd.array([4.0, -5.0, 6.0, pd.NA], dtype="Float32"),
                "c": pd.array([True, False, False, pd.NA], dtype="boolean"),
                # include numpy bool to make sure bool-vs-boolean behavior
                #  is consistent in non-NA locations
                "d": np.array([True, False, False, True]),
            }
        )

        result = +df
        res_ufunc = np.positive(df)
        expected = df
        # TODO: assert that we have copies?
        tm.assert_frame_equal(result, expected)
        tm.assert_frame_equal(res_ufunc, expected)

        result = -df
        res_ufunc = np.negative(df)
        expected = pd.DataFrame(
            {
                "a": pd.array([-1, 2, -3, pd.NA], dtype="Int64"),
                "b": pd.array([-4.0, 5.0, -6.0, pd.NA], dtype="Float32"),
                "c": pd.array([False, True, True, pd.NA], dtype="boolean"),
                "d": np.array([False, True, True, False]),
            }
        )
        tm.assert_frame_equal(result, expected)
        tm.assert_frame_equal(res_ufunc, expected)

        result = abs(df)
        res_ufunc = np.abs(df)
        expected = pd.DataFrame(
            {
                "a": pd.array([1, 2, 3, pd.NA], dtype="Int64"),
                "b": pd.array([4.0, 5.0, 6.0, pd.NA], dtype="Float32"),
                "c": pd.array([True, False, False, pd.NA], dtype="boolean"),
                "d": np.array([True, False, False, True]),
            }
        )
        tm.assert_frame_equal(result, expected)
        tm.assert_frame_equal(res_ufunc, expected)