File size: 5,077 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import datetime

import numpy as np
import pytest

from pandas.compat import (
    IS64,
    is_platform_windows,
)

from pandas import (
    Categorical,
    DataFrame,
    Series,
    date_range,
)
import pandas._testing as tm


class TestIteration:
    def test_keys(self, float_frame):
        assert float_frame.keys() is float_frame.columns

    def test_iteritems(self):
        df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"])
        for k, v in df.items():
            assert isinstance(v, DataFrame._constructor_sliced)

    def test_items(self):
        # GH#17213, GH#13918
        cols = ["a", "b", "c"]
        df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=cols)
        for c, (k, v) in zip(cols, df.items()):
            assert c == k
            assert isinstance(v, Series)
            assert (df[k] == v).all()

    def test_items_names(self, float_string_frame):
        for k, v in float_string_frame.items():
            assert v.name == k

    def test_iter(self, float_frame):
        assert list(float_frame) == list(float_frame.columns)

    def test_iterrows(self, float_frame, float_string_frame):
        for k, v in float_frame.iterrows():
            exp = float_frame.loc[k]
            tm.assert_series_equal(v, exp)

        for k, v in float_string_frame.iterrows():
            exp = float_string_frame.loc[k]
            tm.assert_series_equal(v, exp)

    def test_iterrows_iso8601(self):
        # GH#19671
        s = DataFrame(
            {
                "non_iso8601": ["M1701", "M1802", "M1903", "M2004"],
                "iso8601": date_range("2000-01-01", periods=4, freq="ME"),
            }
        )
        for k, v in s.iterrows():
            exp = s.loc[k]
            tm.assert_series_equal(v, exp)

    def test_iterrows_corner(self):
        # GH#12222
        df = DataFrame(
            {
                "a": [datetime.datetime(2015, 1, 1)],
                "b": [None],
                "c": [None],
                "d": [""],
                "e": [[]],
                "f": [set()],
                "g": [{}],
            }
        )
        expected = Series(
            [datetime.datetime(2015, 1, 1), None, None, "", [], set(), {}],
            index=list("abcdefg"),
            name=0,
            dtype="object",
        )
        _, result = next(df.iterrows())
        tm.assert_series_equal(result, expected)

    def test_itertuples(self, float_frame):
        for i, tup in enumerate(float_frame.itertuples()):
            ser = DataFrame._constructor_sliced(tup[1:])
            ser.name = tup[0]
            expected = float_frame.iloc[i, :].reset_index(drop=True)
            tm.assert_series_equal(ser, expected)

    def test_itertuples_index_false(self):
        df = DataFrame(
            {"floats": np.random.default_rng(2).standard_normal(5), "ints": range(5)},
            columns=["floats", "ints"],
        )

        for tup in df.itertuples(index=False):
            assert isinstance(tup[1], int)

    def test_itertuples_duplicate_cols(self):
        df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]})
        dfaa = df[["a", "a"]]

        assert list(dfaa.itertuples()) == [(0, 1, 1), (1, 2, 2), (2, 3, 3)]

        # repr with int on 32-bit/windows
        if not (is_platform_windows() or not IS64):
            assert (
                repr(list(df.itertuples(name=None)))
                == "[(0, 1, 4), (1, 2, 5), (2, 3, 6)]"
            )

    def test_itertuples_tuple_name(self):
        df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]})
        tup = next(df.itertuples(name="TestName"))
        assert tup._fields == ("Index", "a", "b")
        assert (tup.Index, tup.a, tup.b) == tup
        assert type(tup).__name__ == "TestName"

    def test_itertuples_disallowed_col_labels(self):
        df = DataFrame(data={"def": [1, 2, 3], "return": [4, 5, 6]})
        tup2 = next(df.itertuples(name="TestName"))
        assert tup2 == (0, 1, 4)
        assert tup2._fields == ("Index", "_1", "_2")

    @pytest.mark.parametrize("limit", [254, 255, 1024])
    @pytest.mark.parametrize("index", [True, False])
    def test_itertuples_py2_3_field_limit_namedtuple(self, limit, index):
        # GH#28282
        df = DataFrame([{f"foo_{i}": f"bar_{i}" for i in range(limit)}])
        result = next(df.itertuples(index=index))
        assert isinstance(result, tuple)
        assert hasattr(result, "_fields")

    def test_sequence_like_with_categorical(self):
        # GH#7839
        # make sure can iterate
        df = DataFrame(
            {"id": [1, 2, 3, 4, 5, 6], "raw_grade": ["a", "b", "b", "a", "a", "e"]}
        )
        df["grade"] = Categorical(df["raw_grade"])

        # basic sequencing testing
        result = list(df.grade.values)
        expected = np.array(df.grade.values).tolist()
        tm.assert_almost_equal(result, expected)

        # iteration
        for t in df.itertuples(index=False):
            str(t)

        for row, s in df.iterrows():
            str(s)

        for c, col in df.items():
            str(col)