File size: 15,075 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import numpy as np
import pytest

import pandas as pd
import pandas._testing as tm


class BaseSetitemTests:
    @pytest.fixture(
        params=[
            lambda x: x.index,
            lambda x: list(x.index),
            lambda x: slice(None),
            lambda x: slice(0, len(x)),
            lambda x: range(len(x)),
            lambda x: list(range(len(x))),
            lambda x: np.ones(len(x), dtype=bool),
        ],
        ids=[
            "index",
            "list[index]",
            "null_slice",
            "full_slice",
            "range",
            "list(range)",
            "mask",
        ],
    )
    def full_indexer(self, request):
        """
        Fixture for an indexer to pass to obj.loc to get/set the full length of the
        object.

        In some cases, assumes that obj.index is the default RangeIndex.
        """
        return request.param

    @pytest.fixture(autouse=True)
    def skip_if_immutable(self, dtype, request):
        if dtype._is_immutable:
            node = request.node
            if node.name.split("[")[0] == "test_is_immutable":
                # This fixture is auto-used, but we want to not-skip
                # test_is_immutable.
                return

            # When BaseSetitemTests is mixed into ExtensionTests, we only
            #  want this fixture to operate on the tests defined in this
            #  class/file.
            defined_in = node.function.__qualname__.split(".")[0]
            if defined_in == "BaseSetitemTests":
                pytest.skip("__setitem__ test not applicable with immutable dtype")

    def test_is_immutable(self, data):
        if data.dtype._is_immutable:
            with pytest.raises(TypeError):
                data[0] = data[0]
        else:
            data[0] = data[1]
            assert data[0] == data[1]

    def test_setitem_scalar_series(self, data, box_in_series):
        if box_in_series:
            data = pd.Series(data)
        data[0] = data[1]
        assert data[0] == data[1]

    def test_setitem_sequence(self, data, box_in_series):
        if box_in_series:
            data = pd.Series(data)
        original = data.copy()

        data[[0, 1]] = [data[1], data[0]]
        assert data[0] == original[1]
        assert data[1] == original[0]

    def test_setitem_sequence_mismatched_length_raises(self, data, as_array):
        ser = pd.Series(data)
        original = ser.copy()
        value = [data[0]]
        if as_array:
            value = data._from_sequence(value, dtype=data.dtype)

        xpr = "cannot set using a {} indexer with a different length"
        with pytest.raises(ValueError, match=xpr.format("list-like")):
            ser[[0, 1]] = value
        # Ensure no modifications made before the exception
        tm.assert_series_equal(ser, original)

        with pytest.raises(ValueError, match=xpr.format("slice")):
            ser[slice(3)] = value
        tm.assert_series_equal(ser, original)

    def test_setitem_empty_indexer(self, data, box_in_series):
        if box_in_series:
            data = pd.Series(data)
        original = data.copy()
        data[np.array([], dtype=int)] = []
        tm.assert_equal(data, original)

    def test_setitem_sequence_broadcasts(self, data, box_in_series):
        if box_in_series:
            data = pd.Series(data)
        data[[0, 1]] = data[2]
        assert data[0] == data[2]
        assert data[1] == data[2]

    @pytest.mark.parametrize("setter", ["loc", "iloc"])
    def test_setitem_scalar(self, data, setter):
        arr = pd.Series(data)
        setter = getattr(arr, setter)
        setter[0] = data[1]
        assert arr[0] == data[1]

    def test_setitem_loc_scalar_mixed(self, data):
        df = pd.DataFrame({"A": np.arange(len(data)), "B": data})
        df.loc[0, "B"] = data[1]
        assert df.loc[0, "B"] == data[1]

    def test_setitem_loc_scalar_single(self, data):
        df = pd.DataFrame({"B": data})
        df.loc[10, "B"] = data[1]
        assert df.loc[10, "B"] == data[1]

    def test_setitem_loc_scalar_multiple_homogoneous(self, data):
        df = pd.DataFrame({"A": data, "B": data})
        df.loc[10, "B"] = data[1]
        assert df.loc[10, "B"] == data[1]

    def test_setitem_iloc_scalar_mixed(self, data):
        df = pd.DataFrame({"A": np.arange(len(data)), "B": data})
        df.iloc[0, 1] = data[1]
        assert df.loc[0, "B"] == data[1]

    def test_setitem_iloc_scalar_single(self, data):
        df = pd.DataFrame({"B": data})
        df.iloc[10, 0] = data[1]
        assert df.loc[10, "B"] == data[1]

    def test_setitem_iloc_scalar_multiple_homogoneous(self, data):
        df = pd.DataFrame({"A": data, "B": data})
        df.iloc[10, 1] = data[1]
        assert df.loc[10, "B"] == data[1]

    @pytest.mark.parametrize(
        "mask",
        [
            np.array([True, True, True, False, False]),
            pd.array([True, True, True, False, False], dtype="boolean"),
            pd.array([True, True, True, pd.NA, pd.NA], dtype="boolean"),
        ],
        ids=["numpy-array", "boolean-array", "boolean-array-na"],
    )
    def test_setitem_mask(self, data, mask, box_in_series):
        arr = data[:5].copy()
        expected = arr.take([0, 0, 0, 3, 4])
        if box_in_series:
            arr = pd.Series(arr)
            expected = pd.Series(expected)
        arr[mask] = data[0]
        tm.assert_equal(expected, arr)

    def test_setitem_mask_raises(self, data, box_in_series):
        # wrong length
        mask = np.array([True, False])

        if box_in_series:
            data = pd.Series(data)

        with pytest.raises(IndexError, match="wrong length"):
            data[mask] = data[0]

        mask = pd.array(mask, dtype="boolean")
        with pytest.raises(IndexError, match="wrong length"):
            data[mask] = data[0]

    def test_setitem_mask_boolean_array_with_na(self, data, box_in_series):
        mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
        mask[:3] = True
        mask[3:5] = pd.NA

        if box_in_series:
            data = pd.Series(data)

        data[mask] = data[0]

        assert (data[:3] == data[0]).all()

    @pytest.mark.parametrize(
        "idx",
        [[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
        ids=["list", "integer-array", "numpy-array"],
    )
    def test_setitem_integer_array(self, data, idx, box_in_series):
        arr = data[:5].copy()
        expected = data.take([0, 0, 0, 3, 4])

        if box_in_series:
            arr = pd.Series(arr)
            expected = pd.Series(expected)

        arr[idx] = arr[0]
        tm.assert_equal(arr, expected)

    @pytest.mark.parametrize(
        "idx, box_in_series",
        [
            ([0, 1, 2, pd.NA], False),
            pytest.param(
                [0, 1, 2, pd.NA], True, marks=pytest.mark.xfail(reason="GH-31948")
            ),
            (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
            (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
        ],
        ids=["list-False", "list-True", "integer-array-False", "integer-array-True"],
    )
    def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series):
        arr = data.copy()

        # TODO(xfail) this raises KeyError about labels not found (it tries label-based)
        # for list of labels with Series
        if box_in_series:
            arr = pd.Series(data, index=[chr(100 + i) for i in range(len(data))])

        msg = "Cannot index with an integer indexer containing NA values"
        with pytest.raises(ValueError, match=msg):
            arr[idx] = arr[0]

    @pytest.mark.parametrize("as_callable", [True, False])
    @pytest.mark.parametrize("setter", ["loc", None])
    def test_setitem_mask_aligned(self, data, as_callable, setter):
        ser = pd.Series(data)
        mask = np.zeros(len(data), dtype=bool)
        mask[:2] = True

        if as_callable:
            mask2 = lambda x: mask
        else:
            mask2 = mask

        if setter:
            # loc
            target = getattr(ser, setter)
        else:
            # Series.__setitem__
            target = ser

        target[mask2] = data[5:7]

        ser[mask2] = data[5:7]
        assert ser[0] == data[5]
        assert ser[1] == data[6]

    @pytest.mark.parametrize("setter", ["loc", None])
    def test_setitem_mask_broadcast(self, data, setter):
        ser = pd.Series(data)
        mask = np.zeros(len(data), dtype=bool)
        mask[:2] = True

        if setter:  # loc
            target = getattr(ser, setter)
        else:  # __setitem__
            target = ser

        target[mask] = data[10]
        assert ser[0] == data[10]
        assert ser[1] == data[10]

    def test_setitem_expand_columns(self, data):
        df = pd.DataFrame({"A": data})
        result = df.copy()
        result["B"] = 1
        expected = pd.DataFrame({"A": data, "B": [1] * len(data)})
        tm.assert_frame_equal(result, expected)

        result = df.copy()
        result.loc[:, "B"] = 1
        tm.assert_frame_equal(result, expected)

        # overwrite with new type
        result["B"] = data
        expected = pd.DataFrame({"A": data, "B": data})
        tm.assert_frame_equal(result, expected)

    def test_setitem_expand_with_extension(self, data):
        df = pd.DataFrame({"A": [1] * len(data)})
        result = df.copy()
        result["B"] = data
        expected = pd.DataFrame({"A": [1] * len(data), "B": data})
        tm.assert_frame_equal(result, expected)

        result = df.copy()
        result.loc[:, "B"] = data
        tm.assert_frame_equal(result, expected)

    def test_setitem_frame_invalid_length(self, data):
        df = pd.DataFrame({"A": [1] * len(data)})
        xpr = (
            rf"Length of values \({len(data[:5])}\) "
            rf"does not match length of index \({len(df)}\)"
        )
        with pytest.raises(ValueError, match=xpr):
            df["B"] = data[:5]

    def test_setitem_tuple_index(self, data):
        ser = pd.Series(data[:2], index=[(0, 0), (0, 1)])
        expected = pd.Series(data.take([1, 1]), index=ser.index)
        ser[(0, 0)] = data[1]
        tm.assert_series_equal(ser, expected)

    def test_setitem_slice(self, data, box_in_series):
        arr = data[:5].copy()
        expected = data.take([0, 0, 0, 3, 4])
        if box_in_series:
            arr = pd.Series(arr)
            expected = pd.Series(expected)

        arr[:3] = data[0]
        tm.assert_equal(arr, expected)

    def test_setitem_loc_iloc_slice(self, data):
        arr = data[:5].copy()
        s = pd.Series(arr, index=["a", "b", "c", "d", "e"])
        expected = pd.Series(data.take([0, 0, 0, 3, 4]), index=s.index)

        result = s.copy()
        result.iloc[:3] = data[0]
        tm.assert_equal(result, expected)

        result = s.copy()
        result.loc[:"c"] = data[0]
        tm.assert_equal(result, expected)

    def test_setitem_slice_mismatch_length_raises(self, data):
        arr = data[:5]
        with pytest.raises(ValueError):
            arr[:1] = arr[:2]

    def test_setitem_slice_array(self, data):
        arr = data[:5].copy()
        arr[:5] = data[-5:]
        tm.assert_extension_array_equal(arr, data[-5:])

    def test_setitem_scalar_key_sequence_raise(self, data):
        arr = data[:5].copy()
        with pytest.raises(ValueError):
            arr[0] = arr[[0, 1]]

    def test_setitem_preserves_views(self, data):
        # GH#28150 setitem shouldn't swap the underlying data
        view1 = data.view()
        view2 = data[:]

        data[0] = data[1]
        assert view1[0] == data[1]
        assert view2[0] == data[1]

    def test_setitem_with_expansion_dataframe_column(self, data, full_indexer):
        # https://github.com/pandas-dev/pandas/issues/32395
        df = expected = pd.DataFrame({0: pd.Series(data)})
        result = pd.DataFrame(index=df.index)

        key = full_indexer(df)
        result.loc[key, 0] = df[0]

        tm.assert_frame_equal(result, expected)

    def test_setitem_with_expansion_row(self, data, na_value):
        df = pd.DataFrame({"data": data[:1]})

        df.loc[1, "data"] = data[1]
        expected = pd.DataFrame({"data": data[:2]})
        tm.assert_frame_equal(df, expected)

        # https://github.com/pandas-dev/pandas/issues/47284
        df.loc[2, "data"] = na_value
        expected = pd.DataFrame(
            {"data": pd.Series([data[0], data[1], na_value], dtype=data.dtype)}
        )
        tm.assert_frame_equal(df, expected)

    def test_setitem_series(self, data, full_indexer):
        # https://github.com/pandas-dev/pandas/issues/32395
        ser = pd.Series(data, name="data")
        result = pd.Series(index=ser.index, dtype=object, name="data")

        # because result has object dtype, the attempt to do setting inplace
        #  is successful, and object dtype is retained
        key = full_indexer(ser)
        result.loc[key] = ser

        expected = pd.Series(
            data.astype(object), index=ser.index, name="data", dtype=object
        )
        tm.assert_series_equal(result, expected)

    def test_setitem_frame_2d_values(self, data):
        # GH#44514
        df = pd.DataFrame({"A": data})

        # Avoiding using_array_manager fixture
        #  https://github.com/pandas-dev/pandas/pull/44514#discussion_r754002410
        using_array_manager = isinstance(df._mgr, pd.core.internals.ArrayManager)
        using_copy_on_write = pd.options.mode.copy_on_write

        blk_data = df._mgr.arrays[0]

        orig = df.copy()

        df.iloc[:] = df.copy()
        tm.assert_frame_equal(df, orig)

        df.iloc[:-1] = df.iloc[:-1].copy()
        tm.assert_frame_equal(df, orig)

        df.iloc[:] = df.values
        tm.assert_frame_equal(df, orig)
        if not using_array_manager and not using_copy_on_write:
            # GH#33457 Check that this setting occurred in-place
            # FIXME(ArrayManager): this should work there too
            assert df._mgr.arrays[0] is blk_data

        df.iloc[:-1] = df.values[:-1]
        tm.assert_frame_equal(df, orig)

    def test_delitem_series(self, data):
        # GH#40763
        ser = pd.Series(data, name="data")

        taker = np.arange(len(ser))
        taker = np.delete(taker, 1)

        expected = ser[taker]
        del ser[1]
        tm.assert_series_equal(ser, expected)

    def test_setitem_invalid(self, data, invalid_scalar):
        msg = ""  # messages vary by subclass, so we do not test it
        with pytest.raises((ValueError, TypeError), match=msg):
            data[0] = invalid_scalar

        with pytest.raises((ValueError, TypeError), match=msg):
            data[:] = invalid_scalar

    def test_setitem_2d_values(self, data):
        # GH50085
        original = data.copy()
        df = pd.DataFrame({"a": data, "b": data})
        df.loc[[0, 1], :] = df.loc[[1, 0], :].values
        assert (df.loc[0, :] == original[1]).all()
        assert (df.loc[1, :] == original[0]).all()