File size: 20,929 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
from __future__ import annotations
from contextlib import contextmanager
from typing import (
TYPE_CHECKING,
Any,
)
from pandas.plotting._core import _get_plot_backend
if TYPE_CHECKING:
from collections.abc import (
Generator,
Mapping,
)
from matplotlib.axes import Axes
from matplotlib.colors import Colormap
from matplotlib.figure import Figure
from matplotlib.table import Table
import numpy as np
from pandas import (
DataFrame,
Series,
)
def table(ax: Axes, data: DataFrame | Series, **kwargs) -> Table:
"""
Helper function to convert DataFrame and Series to matplotlib.table.
Parameters
----------
ax : Matplotlib axes object
data : DataFrame or Series
Data for table contents.
**kwargs
Keyword arguments to be passed to matplotlib.table.table.
If `rowLabels` or `colLabels` is not specified, data index or column
name will be used.
Returns
-------
matplotlib table object
Examples
--------
.. plot::
:context: close-figs
>>> import matplotlib.pyplot as plt
>>> df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
>>> fix, ax = plt.subplots()
>>> ax.axis('off')
(0.0, 1.0, 0.0, 1.0)
>>> table = pd.plotting.table(ax, df, loc='center',
... cellLoc='center', colWidths=list([.2, .2]))
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.table(
ax=ax, data=data, rowLabels=None, colLabels=None, **kwargs
)
def register() -> None:
"""
Register pandas formatters and converters with matplotlib.
This function modifies the global ``matplotlib.units.registry``
dictionary. pandas adds custom converters for
* pd.Timestamp
* pd.Period
* np.datetime64
* datetime.datetime
* datetime.date
* datetime.time
See Also
--------
deregister_matplotlib_converters : Remove pandas formatters and converters.
Examples
--------
.. plot::
:context: close-figs
The following line is done automatically by pandas so
the plot can be rendered:
>>> pd.plotting.register_matplotlib_converters()
>>> df = pd.DataFrame({'ts': pd.period_range('2020', periods=2, freq='M'),
... 'y': [1, 2]
... })
>>> plot = df.plot.line(x='ts', y='y')
Unsetting the register manually an error will be raised:
>>> pd.set_option("plotting.matplotlib.register_converters",
... False) # doctest: +SKIP
>>> df.plot.line(x='ts', y='y') # doctest: +SKIP
Traceback (most recent call last):
TypeError: float() argument must be a string or a real number, not 'Period'
"""
plot_backend = _get_plot_backend("matplotlib")
plot_backend.register()
def deregister() -> None:
"""
Remove pandas formatters and converters.
Removes the custom converters added by :func:`register`. This
attempts to set the state of the registry back to the state before
pandas registered its own units. Converters for pandas' own types like
Timestamp and Period are removed completely. Converters for types
pandas overwrites, like ``datetime.datetime``, are restored to their
original value.
See Also
--------
register_matplotlib_converters : Register pandas formatters and converters
with matplotlib.
Examples
--------
.. plot::
:context: close-figs
The following line is done automatically by pandas so
the plot can be rendered:
>>> pd.plotting.register_matplotlib_converters()
>>> df = pd.DataFrame({'ts': pd.period_range('2020', periods=2, freq='M'),
... 'y': [1, 2]
... })
>>> plot = df.plot.line(x='ts', y='y')
Unsetting the register manually an error will be raised:
>>> pd.set_option("plotting.matplotlib.register_converters",
... False) # doctest: +SKIP
>>> df.plot.line(x='ts', y='y') # doctest: +SKIP
Traceback (most recent call last):
TypeError: float() argument must be a string or a real number, not 'Period'
"""
plot_backend = _get_plot_backend("matplotlib")
plot_backend.deregister()
def scatter_matrix(
frame: DataFrame,
alpha: float = 0.5,
figsize: tuple[float, float] | None = None,
ax: Axes | None = None,
grid: bool = False,
diagonal: str = "hist",
marker: str = ".",
density_kwds: Mapping[str, Any] | None = None,
hist_kwds: Mapping[str, Any] | None = None,
range_padding: float = 0.05,
**kwargs,
) -> np.ndarray:
"""
Draw a matrix of scatter plots.
Parameters
----------
frame : DataFrame
alpha : float, optional
Amount of transparency applied.
figsize : (float,float), optional
A tuple (width, height) in inches.
ax : Matplotlib axis object, optional
grid : bool, optional
Setting this to True will show the grid.
diagonal : {'hist', 'kde'}
Pick between 'kde' and 'hist' for either Kernel Density Estimation or
Histogram plot in the diagonal.
marker : str, optional
Matplotlib marker type, default '.'.
density_kwds : keywords
Keyword arguments to be passed to kernel density estimate plot.
hist_kwds : keywords
Keyword arguments to be passed to hist function.
range_padding : float, default 0.05
Relative extension of axis range in x and y with respect to
(x_max - x_min) or (y_max - y_min).
**kwargs
Keyword arguments to be passed to scatter function.
Returns
-------
numpy.ndarray
A matrix of scatter plots.
Examples
--------
.. plot::
:context: close-figs
>>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
>>> pd.plotting.scatter_matrix(df, alpha=0.2)
array([[<Axes: xlabel='A', ylabel='A'>, <Axes: xlabel='B', ylabel='A'>,
<Axes: xlabel='C', ylabel='A'>, <Axes: xlabel='D', ylabel='A'>],
[<Axes: xlabel='A', ylabel='B'>, <Axes: xlabel='B', ylabel='B'>,
<Axes: xlabel='C', ylabel='B'>, <Axes: xlabel='D', ylabel='B'>],
[<Axes: xlabel='A', ylabel='C'>, <Axes: xlabel='B', ylabel='C'>,
<Axes: xlabel='C', ylabel='C'>, <Axes: xlabel='D', ylabel='C'>],
[<Axes: xlabel='A', ylabel='D'>, <Axes: xlabel='B', ylabel='D'>,
<Axes: xlabel='C', ylabel='D'>, <Axes: xlabel='D', ylabel='D'>]],
dtype=object)
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.scatter_matrix(
frame=frame,
alpha=alpha,
figsize=figsize,
ax=ax,
grid=grid,
diagonal=diagonal,
marker=marker,
density_kwds=density_kwds,
hist_kwds=hist_kwds,
range_padding=range_padding,
**kwargs,
)
def radviz(
frame: DataFrame,
class_column: str,
ax: Axes | None = None,
color: list[str] | tuple[str, ...] | None = None,
colormap: Colormap | str | None = None,
**kwds,
) -> Axes:
"""
Plot a multidimensional dataset in 2D.
Each Series in the DataFrame is represented as a evenly distributed
slice on a circle. Each data point is rendered in the circle according to
the value on each Series. Highly correlated `Series` in the `DataFrame`
are placed closer on the unit circle.
RadViz allow to project a N-dimensional data set into a 2D space where the
influence of each dimension can be interpreted as a balance between the
influence of all dimensions.
More info available at the `original article
<https://doi.org/10.1145/331770.331775>`_
describing RadViz.
Parameters
----------
frame : `DataFrame`
Object holding the data.
class_column : str
Column name containing the name of the data point category.
ax : :class:`matplotlib.axes.Axes`, optional
A plot instance to which to add the information.
color : list[str] or tuple[str], optional
Assign a color to each category. Example: ['blue', 'green'].
colormap : str or :class:`matplotlib.colors.Colormap`, default None
Colormap to select colors from. If string, load colormap with that
name from matplotlib.
**kwds
Options to pass to matplotlib scatter plotting method.
Returns
-------
:class:`matplotlib.axes.Axes`
See Also
--------
pandas.plotting.andrews_curves : Plot clustering visualization.
Examples
--------
.. plot::
:context: close-figs
>>> df = pd.DataFrame(
... {
... 'SepalLength': [6.5, 7.7, 5.1, 5.8, 7.6, 5.0, 5.4, 4.6, 6.7, 4.6],
... 'SepalWidth': [3.0, 3.8, 3.8, 2.7, 3.0, 2.3, 3.0, 3.2, 3.3, 3.6],
... 'PetalLength': [5.5, 6.7, 1.9, 5.1, 6.6, 3.3, 4.5, 1.4, 5.7, 1.0],
... 'PetalWidth': [1.8, 2.2, 0.4, 1.9, 2.1, 1.0, 1.5, 0.2, 2.1, 0.2],
... 'Category': [
... 'virginica',
... 'virginica',
... 'setosa',
... 'virginica',
... 'virginica',
... 'versicolor',
... 'versicolor',
... 'setosa',
... 'virginica',
... 'setosa'
... ]
... }
... )
>>> pd.plotting.radviz(df, 'Category') # doctest: +SKIP
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.radviz(
frame=frame,
class_column=class_column,
ax=ax,
color=color,
colormap=colormap,
**kwds,
)
def andrews_curves(
frame: DataFrame,
class_column: str,
ax: Axes | None = None,
samples: int = 200,
color: list[str] | tuple[str, ...] | None = None,
colormap: Colormap | str | None = None,
**kwargs,
) -> Axes:
"""
Generate a matplotlib plot for visualizing clusters of multivariate data.
Andrews curves have the functional form:
.. math::
f(t) = \\frac{x_1}{\\sqrt{2}} + x_2 \\sin(t) + x_3 \\cos(t) +
x_4 \\sin(2t) + x_5 \\cos(2t) + \\cdots
Where :math:`x` coefficients correspond to the values of each dimension
and :math:`t` is linearly spaced between :math:`-\\pi` and :math:`+\\pi`.
Each row of frame then corresponds to a single curve.
Parameters
----------
frame : DataFrame
Data to be plotted, preferably normalized to (0.0, 1.0).
class_column : label
Name of the column containing class names.
ax : axes object, default None
Axes to use.
samples : int
Number of points to plot in each curve.
color : str, list[str] or tuple[str], optional
Colors to use for the different classes. Colors can be strings
or 3-element floating point RGB values.
colormap : str or matplotlib colormap object, default None
Colormap to select colors from. If a string, load colormap with that
name from matplotlib.
**kwargs
Options to pass to matplotlib plotting method.
Returns
-------
:class:`matplotlib.axes.Axes`
Examples
--------
.. plot::
:context: close-figs
>>> df = pd.read_csv(
... 'https://raw.githubusercontent.com/pandas-dev/'
... 'pandas/main/pandas/tests/io/data/csv/iris.csv'
... )
>>> pd.plotting.andrews_curves(df, 'Name') # doctest: +SKIP
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.andrews_curves(
frame=frame,
class_column=class_column,
ax=ax,
samples=samples,
color=color,
colormap=colormap,
**kwargs,
)
def bootstrap_plot(
series: Series,
fig: Figure | None = None,
size: int = 50,
samples: int = 500,
**kwds,
) -> Figure:
"""
Bootstrap plot on mean, median and mid-range statistics.
The bootstrap plot is used to estimate the uncertainty of a statistic
by relying on random sampling with replacement [1]_. This function will
generate bootstrapping plots for mean, median and mid-range statistics
for the given number of samples of the given size.
.. [1] "Bootstrapping (statistics)" in \
https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
Parameters
----------
series : pandas.Series
Series from where to get the samplings for the bootstrapping.
fig : matplotlib.figure.Figure, default None
If given, it will use the `fig` reference for plotting instead of
creating a new one with default parameters.
size : int, default 50
Number of data points to consider during each sampling. It must be
less than or equal to the length of the `series`.
samples : int, default 500
Number of times the bootstrap procedure is performed.
**kwds
Options to pass to matplotlib plotting method.
Returns
-------
matplotlib.figure.Figure
Matplotlib figure.
See Also
--------
pandas.DataFrame.plot : Basic plotting for DataFrame objects.
pandas.Series.plot : Basic plotting for Series objects.
Examples
--------
This example draws a basic bootstrap plot for a Series.
.. plot::
:context: close-figs
>>> s = pd.Series(np.random.uniform(size=100))
>>> pd.plotting.bootstrap_plot(s) # doctest: +SKIP
<Figure size 640x480 with 6 Axes>
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.bootstrap_plot(
series=series, fig=fig, size=size, samples=samples, **kwds
)
def parallel_coordinates(
frame: DataFrame,
class_column: str,
cols: list[str] | None = None,
ax: Axes | None = None,
color: list[str] | tuple[str, ...] | None = None,
use_columns: bool = False,
xticks: list | tuple | None = None,
colormap: Colormap | str | None = None,
axvlines: bool = True,
axvlines_kwds: Mapping[str, Any] | None = None,
sort_labels: bool = False,
**kwargs,
) -> Axes:
"""
Parallel coordinates plotting.
Parameters
----------
frame : DataFrame
class_column : str
Column name containing class names.
cols : list, optional
A list of column names to use.
ax : matplotlib.axis, optional
Matplotlib axis object.
color : list or tuple, optional
Colors to use for the different classes.
use_columns : bool, optional
If true, columns will be used as xticks.
xticks : list or tuple, optional
A list of values to use for xticks.
colormap : str or matplotlib colormap, default None
Colormap to use for line colors.
axvlines : bool, optional
If true, vertical lines will be added at each xtick.
axvlines_kwds : keywords, optional
Options to be passed to axvline method for vertical lines.
sort_labels : bool, default False
Sort class_column labels, useful when assigning colors.
**kwargs
Options to pass to matplotlib plotting method.
Returns
-------
matplotlib.axes.Axes
Examples
--------
.. plot::
:context: close-figs
>>> df = pd.read_csv(
... 'https://raw.githubusercontent.com/pandas-dev/'
... 'pandas/main/pandas/tests/io/data/csv/iris.csv'
... )
>>> pd.plotting.parallel_coordinates(
... df, 'Name', color=('#556270', '#4ECDC4', '#C7F464')
... ) # doctest: +SKIP
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.parallel_coordinates(
frame=frame,
class_column=class_column,
cols=cols,
ax=ax,
color=color,
use_columns=use_columns,
xticks=xticks,
colormap=colormap,
axvlines=axvlines,
axvlines_kwds=axvlines_kwds,
sort_labels=sort_labels,
**kwargs,
)
def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Axes:
"""
Lag plot for time series.
Parameters
----------
series : Series
The time series to visualize.
lag : int, default 1
Lag length of the scatter plot.
ax : Matplotlib axis object, optional
The matplotlib axis object to use.
**kwds
Matplotlib scatter method keyword arguments.
Returns
-------
matplotlib.axes.Axes
Examples
--------
Lag plots are most commonly used to look for patterns in time series data.
Given the following time series
.. plot::
:context: close-figs
>>> np.random.seed(5)
>>> x = np.cumsum(np.random.normal(loc=1, scale=5, size=50))
>>> s = pd.Series(x)
>>> s.plot() # doctest: +SKIP
A lag plot with ``lag=1`` returns
.. plot::
:context: close-figs
>>> pd.plotting.lag_plot(s, lag=1)
<Axes: xlabel='y(t)', ylabel='y(t + 1)'>
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.lag_plot(series=series, lag=lag, ax=ax, **kwds)
def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwargs) -> Axes:
"""
Autocorrelation plot for time series.
Parameters
----------
series : Series
The time series to visualize.
ax : Matplotlib axis object, optional
The matplotlib axis object to use.
**kwargs
Options to pass to matplotlib plotting method.
Returns
-------
matplotlib.axes.Axes
Examples
--------
The horizontal lines in the plot correspond to 95% and 99% confidence bands.
The dashed line is 99% confidence band.
.. plot::
:context: close-figs
>>> spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
>>> s = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
>>> pd.plotting.autocorrelation_plot(s) # doctest: +SKIP
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.autocorrelation_plot(series=series, ax=ax, **kwargs)
class _Options(dict):
"""
Stores pandas plotting options.
Allows for parameter aliasing so you can just use parameter names that are
the same as the plot function parameters, but is stored in a canonical
format that makes it easy to breakdown into groups later.
Examples
--------
.. plot::
:context: close-figs
>>> np.random.seed(42)
>>> df = pd.DataFrame({'A': np.random.randn(10),
... 'B': np.random.randn(10)},
... index=pd.date_range("1/1/2000",
... freq='4MS', periods=10))
>>> with pd.plotting.plot_params.use("x_compat", True):
... _ = df["A"].plot(color="r")
... _ = df["B"].plot(color="g")
"""
# alias so the names are same as plotting method parameter names
_ALIASES = {"x_compat": "xaxis.compat"}
_DEFAULT_KEYS = ["xaxis.compat"]
def __init__(self, deprecated: bool = False) -> None:
self._deprecated = deprecated
super().__setitem__("xaxis.compat", False)
def __getitem__(self, key):
key = self._get_canonical_key(key)
if key not in self:
raise ValueError(f"{key} is not a valid pandas plotting option")
return super().__getitem__(key)
def __setitem__(self, key, value) -> None:
key = self._get_canonical_key(key)
super().__setitem__(key, value)
def __delitem__(self, key) -> None:
key = self._get_canonical_key(key)
if key in self._DEFAULT_KEYS:
raise ValueError(f"Cannot remove default parameter {key}")
super().__delitem__(key)
def __contains__(self, key) -> bool:
key = self._get_canonical_key(key)
return super().__contains__(key)
def reset(self) -> None:
"""
Reset the option store to its initial state
Returns
-------
None
"""
# error: Cannot access "__init__" directly
self.__init__() # type: ignore[misc]
def _get_canonical_key(self, key):
return self._ALIASES.get(key, key)
@contextmanager
def use(self, key, value) -> Generator[_Options, None, None]:
"""
Temporarily set a parameter value using the with statement.
Aliasing allowed.
"""
old_value = self[key]
try:
self[key] = value
yield self
finally:
self[key] = old_value
plot_params = _Options()
|