File size: 13,358 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
from __future__ import annotations
import random
from typing import TYPE_CHECKING
from matplotlib import patches
import matplotlib.lines as mlines
import numpy as np
from pandas.core.dtypes.missing import notna
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.style import get_standard_colors
from pandas.plotting._matplotlib.tools import (
create_subplots,
do_adjust_figure,
maybe_adjust_figure,
set_ticks_props,
)
if TYPE_CHECKING:
from collections.abc import Hashable
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from pandas import (
DataFrame,
Index,
Series,
)
def scatter_matrix(
frame: DataFrame,
alpha: float = 0.5,
figsize: tuple[float, float] | None = None,
ax=None,
grid: bool = False,
diagonal: str = "hist",
marker: str = ".",
density_kwds=None,
hist_kwds=None,
range_padding: float = 0.05,
**kwds,
):
df = frame._get_numeric_data()
n = df.columns.size
naxes = n * n
fig, axes = create_subplots(naxes=naxes, figsize=figsize, ax=ax, squeeze=False)
# no gaps between subplots
maybe_adjust_figure(fig, wspace=0, hspace=0)
mask = notna(df)
marker = _get_marker_compat(marker)
hist_kwds = hist_kwds or {}
density_kwds = density_kwds or {}
# GH 14855
kwds.setdefault("edgecolors", "none")
boundaries_list = []
for a in df.columns:
values = df[a].values[mask[a].values]
rmin_, rmax_ = np.min(values), np.max(values)
rdelta_ext = (rmax_ - rmin_) * range_padding / 2
boundaries_list.append((rmin_ - rdelta_ext, rmax_ + rdelta_ext))
for i, a in enumerate(df.columns):
for j, b in enumerate(df.columns):
ax = axes[i, j]
if i == j:
values = df[a].values[mask[a].values]
# Deal with the diagonal by drawing a histogram there.
if diagonal == "hist":
ax.hist(values, **hist_kwds)
elif diagonal in ("kde", "density"):
from scipy.stats import gaussian_kde
y = values
gkde = gaussian_kde(y)
ind = np.linspace(y.min(), y.max(), 1000)
ax.plot(ind, gkde.evaluate(ind), **density_kwds)
ax.set_xlim(boundaries_list[i])
else:
common = (mask[a] & mask[b]).values
ax.scatter(
df[b][common], df[a][common], marker=marker, alpha=alpha, **kwds
)
ax.set_xlim(boundaries_list[j])
ax.set_ylim(boundaries_list[i])
ax.set_xlabel(b)
ax.set_ylabel(a)
if j != 0:
ax.yaxis.set_visible(False)
if i != n - 1:
ax.xaxis.set_visible(False)
if len(df.columns) > 1:
lim1 = boundaries_list[0]
locs = axes[0][1].yaxis.get_majorticklocs()
locs = locs[(lim1[0] <= locs) & (locs <= lim1[1])]
adj = (locs - lim1[0]) / (lim1[1] - lim1[0])
lim0 = axes[0][0].get_ylim()
adj = adj * (lim0[1] - lim0[0]) + lim0[0]
axes[0][0].yaxis.set_ticks(adj)
if np.all(locs == locs.astype(int)):
# if all ticks are int
locs = locs.astype(int)
axes[0][0].yaxis.set_ticklabels(locs)
set_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
return axes
def _get_marker_compat(marker):
if marker not in mlines.lineMarkers:
return "o"
return marker
def radviz(
frame: DataFrame,
class_column,
ax: Axes | None = None,
color=None,
colormap=None,
**kwds,
) -> Axes:
import matplotlib.pyplot as plt
def normalize(series):
a = min(series)
b = max(series)
return (series - a) / (b - a)
n = len(frame)
classes = frame[class_column].drop_duplicates()
class_col = frame[class_column]
df = frame.drop(class_column, axis=1).apply(normalize)
if ax is None:
ax = plt.gca()
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
to_plot: dict[Hashable, list[list]] = {}
colors = get_standard_colors(
num_colors=len(classes), colormap=colormap, color_type="random", color=color
)
for kls in classes:
to_plot[kls] = [[], []]
m = len(frame.columns) - 1
s = np.array(
[(np.cos(t), np.sin(t)) for t in [2 * np.pi * (i / m) for i in range(m)]]
)
for i in range(n):
row = df.iloc[i].values
row_ = np.repeat(np.expand_dims(row, axis=1), 2, axis=1)
y = (s * row_).sum(axis=0) / row.sum()
kls = class_col.iat[i]
to_plot[kls][0].append(y[0])
to_plot[kls][1].append(y[1])
for i, kls in enumerate(classes):
ax.scatter(
to_plot[kls][0],
to_plot[kls][1],
color=colors[i],
label=pprint_thing(kls),
**kwds,
)
ax.legend()
ax.add_patch(patches.Circle((0.0, 0.0), radius=1.0, facecolor="none"))
for xy, name in zip(s, df.columns):
ax.add_patch(patches.Circle(xy, radius=0.025, facecolor="gray"))
if xy[0] < 0.0 and xy[1] < 0.0:
ax.text(
xy[0] - 0.025, xy[1] - 0.025, name, ha="right", va="top", size="small"
)
elif xy[0] < 0.0 <= xy[1]:
ax.text(
xy[0] - 0.025,
xy[1] + 0.025,
name,
ha="right",
va="bottom",
size="small",
)
elif xy[1] < 0.0 <= xy[0]:
ax.text(
xy[0] + 0.025, xy[1] - 0.025, name, ha="left", va="top", size="small"
)
elif xy[0] >= 0.0 and xy[1] >= 0.0:
ax.text(
xy[0] + 0.025, xy[1] + 0.025, name, ha="left", va="bottom", size="small"
)
ax.axis("equal")
return ax
def andrews_curves(
frame: DataFrame,
class_column,
ax: Axes | None = None,
samples: int = 200,
color=None,
colormap=None,
**kwds,
) -> Axes:
import matplotlib.pyplot as plt
def function(amplitudes):
def f(t):
x1 = amplitudes[0]
result = x1 / np.sqrt(2.0)
# Take the rest of the coefficients and resize them
# appropriately. Take a copy of amplitudes as otherwise numpy
# deletes the element from amplitudes itself.
coeffs = np.delete(np.copy(amplitudes), 0)
coeffs = np.resize(coeffs, (int((coeffs.size + 1) / 2), 2))
# Generate the harmonics and arguments for the sin and cos
# functions.
harmonics = np.arange(0, coeffs.shape[0]) + 1
trig_args = np.outer(harmonics, t)
result += np.sum(
coeffs[:, 0, np.newaxis] * np.sin(trig_args)
+ coeffs[:, 1, np.newaxis] * np.cos(trig_args),
axis=0,
)
return result
return f
n = len(frame)
class_col = frame[class_column]
classes = frame[class_column].drop_duplicates()
df = frame.drop(class_column, axis=1)
t = np.linspace(-np.pi, np.pi, samples)
used_legends: set[str] = set()
color_values = get_standard_colors(
num_colors=len(classes), colormap=colormap, color_type="random", color=color
)
colors = dict(zip(classes, color_values))
if ax is None:
ax = plt.gca()
ax.set_xlim(-np.pi, np.pi)
for i in range(n):
row = df.iloc[i].values
f = function(row)
y = f(t)
kls = class_col.iat[i]
label = pprint_thing(kls)
if label not in used_legends:
used_legends.add(label)
ax.plot(t, y, color=colors[kls], label=label, **kwds)
else:
ax.plot(t, y, color=colors[kls], **kwds)
ax.legend(loc="upper right")
ax.grid()
return ax
def bootstrap_plot(
series: Series,
fig: Figure | None = None,
size: int = 50,
samples: int = 500,
**kwds,
) -> Figure:
import matplotlib.pyplot as plt
# TODO: is the failure mentioned below still relevant?
# random.sample(ndarray, int) fails on python 3.3, sigh
data = list(series.values)
samplings = [random.sample(data, size) for _ in range(samples)]
means = np.array([np.mean(sampling) for sampling in samplings])
medians = np.array([np.median(sampling) for sampling in samplings])
midranges = np.array(
[(min(sampling) + max(sampling)) * 0.5 for sampling in samplings]
)
if fig is None:
fig = plt.figure()
x = list(range(samples))
axes = []
ax1 = fig.add_subplot(2, 3, 1)
ax1.set_xlabel("Sample")
axes.append(ax1)
ax1.plot(x, means, **kwds)
ax2 = fig.add_subplot(2, 3, 2)
ax2.set_xlabel("Sample")
axes.append(ax2)
ax2.plot(x, medians, **kwds)
ax3 = fig.add_subplot(2, 3, 3)
ax3.set_xlabel("Sample")
axes.append(ax3)
ax3.plot(x, midranges, **kwds)
ax4 = fig.add_subplot(2, 3, 4)
ax4.set_xlabel("Mean")
axes.append(ax4)
ax4.hist(means, **kwds)
ax5 = fig.add_subplot(2, 3, 5)
ax5.set_xlabel("Median")
axes.append(ax5)
ax5.hist(medians, **kwds)
ax6 = fig.add_subplot(2, 3, 6)
ax6.set_xlabel("Midrange")
axes.append(ax6)
ax6.hist(midranges, **kwds)
for axis in axes:
plt.setp(axis.get_xticklabels(), fontsize=8)
plt.setp(axis.get_yticklabels(), fontsize=8)
if do_adjust_figure(fig):
plt.tight_layout()
return fig
def parallel_coordinates(
frame: DataFrame,
class_column,
cols=None,
ax: Axes | None = None,
color=None,
use_columns: bool = False,
xticks=None,
colormap=None,
axvlines: bool = True,
axvlines_kwds=None,
sort_labels: bool = False,
**kwds,
) -> Axes:
import matplotlib.pyplot as plt
if axvlines_kwds is None:
axvlines_kwds = {"linewidth": 1, "color": "black"}
n = len(frame)
classes = frame[class_column].drop_duplicates()
class_col = frame[class_column]
if cols is None:
df = frame.drop(class_column, axis=1)
else:
df = frame[cols]
used_legends: set[str] = set()
ncols = len(df.columns)
# determine values to use for xticks
x: list[int] | Index
if use_columns is True:
if not np.all(np.isreal(list(df.columns))):
raise ValueError("Columns must be numeric to be used as xticks")
x = df.columns
elif xticks is not None:
if not np.all(np.isreal(xticks)):
raise ValueError("xticks specified must be numeric")
if len(xticks) != ncols:
raise ValueError("Length of xticks must match number of columns")
x = xticks
else:
x = list(range(ncols))
if ax is None:
ax = plt.gca()
color_values = get_standard_colors(
num_colors=len(classes), colormap=colormap, color_type="random", color=color
)
if sort_labels:
classes = sorted(classes)
color_values = sorted(color_values)
colors = dict(zip(classes, color_values))
for i in range(n):
y = df.iloc[i].values
kls = class_col.iat[i]
label = pprint_thing(kls)
if label not in used_legends:
used_legends.add(label)
ax.plot(x, y, color=colors[kls], label=label, **kwds)
else:
ax.plot(x, y, color=colors[kls], **kwds)
if axvlines:
for i in x:
ax.axvline(i, **axvlines_kwds)
ax.set_xticks(x)
ax.set_xticklabels(df.columns)
ax.set_xlim(x[0], x[-1])
ax.legend(loc="upper right")
ax.grid()
return ax
def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Axes:
# workaround because `c='b'` is hardcoded in matplotlib's scatter method
import matplotlib.pyplot as plt
kwds.setdefault("c", plt.rcParams["patch.facecolor"])
data = series.values
y1 = data[:-lag]
y2 = data[lag:]
if ax is None:
ax = plt.gca()
ax.set_xlabel("y(t)")
ax.set_ylabel(f"y(t + {lag})")
ax.scatter(y1, y2, **kwds)
return ax
def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwds) -> Axes:
import matplotlib.pyplot as plt
n = len(series)
data = np.asarray(series)
if ax is None:
ax = plt.gca()
ax.set_xlim(1, n)
ax.set_ylim(-1.0, 1.0)
mean = np.mean(data)
c0 = np.sum((data - mean) ** 2) / n
def r(h):
return ((data[: n - h] - mean) * (data[h:] - mean)).sum() / n / c0
x = np.arange(n) + 1
y = [r(loc) for loc in x]
z95 = 1.959963984540054
z99 = 2.5758293035489004
ax.axhline(y=z99 / np.sqrt(n), linestyle="--", color="grey")
ax.axhline(y=z95 / np.sqrt(n), color="grey")
ax.axhline(y=0.0, color="black")
ax.axhline(y=-z95 / np.sqrt(n), color="grey")
ax.axhline(y=-z99 / np.sqrt(n), linestyle="--", color="grey")
ax.set_xlabel("Lag")
ax.set_ylabel("Autocorrelation")
ax.plot(x, y, **kwds)
if "label" in kwds:
ax.legend()
ax.grid()
return ax
def unpack_single_str_list(keys):
# GH 42795
if isinstance(keys, list) and len(keys) == 1:
keys = keys[0]
return keys
|