File size: 16,816 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
Literal,
final,
)
import numpy as np
from pandas.core.dtypes.common import (
is_integer,
is_list_like,
)
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCIndex,
)
from pandas.core.dtypes.missing import (
isna,
remove_na_arraylike,
)
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.core import (
LinePlot,
MPLPlot,
)
from pandas.plotting._matplotlib.groupby import (
create_iter_data_given_by,
reformat_hist_y_given_by,
)
from pandas.plotting._matplotlib.misc import unpack_single_str_list
from pandas.plotting._matplotlib.tools import (
create_subplots,
flatten_axes,
maybe_adjust_figure,
set_ticks_props,
)
if TYPE_CHECKING:
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from pandas._typing import PlottingOrientation
from pandas import (
DataFrame,
Series,
)
class HistPlot(LinePlot):
@property
def _kind(self) -> Literal["hist", "kde"]:
return "hist"
def __init__(
self,
data,
bins: int | np.ndarray | list[np.ndarray] = 10,
bottom: int | np.ndarray = 0,
*,
range=None,
weights=None,
**kwargs,
) -> None:
if is_list_like(bottom):
bottom = np.array(bottom)
self.bottom = bottom
self._bin_range = range
self.weights = weights
self.xlabel = kwargs.get("xlabel")
self.ylabel = kwargs.get("ylabel")
# Do not call LinePlot.__init__ which may fill nan
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called
self.bins = self._adjust_bins(bins)
def _adjust_bins(self, bins: int | np.ndarray | list[np.ndarray]):
if is_integer(bins):
if self.by is not None:
by_modified = unpack_single_str_list(self.by)
grouped = self.data.groupby(by_modified)[self.columns]
bins = [self._calculate_bins(group, bins) for key, group in grouped]
else:
bins = self._calculate_bins(self.data, bins)
return bins
def _calculate_bins(self, data: Series | DataFrame, bins) -> np.ndarray:
"""Calculate bins given data"""
nd_values = data.infer_objects(copy=False)._get_numeric_data()
values = np.ravel(nd_values)
values = values[~isna(values)]
hist, bins = np.histogram(values, bins=bins, range=self._bin_range)
return bins
# error: Signature of "_plot" incompatible with supertype "LinePlot"
@classmethod
def _plot( # type: ignore[override]
cls,
ax: Axes,
y: np.ndarray,
style=None,
bottom: int | np.ndarray = 0,
column_num: int = 0,
stacking_id=None,
*,
bins,
**kwds,
):
if column_num == 0:
cls._initialize_stacker(ax, stacking_id, len(bins) - 1)
base = np.zeros(len(bins) - 1)
bottom = bottom + cls._get_stacked_values(ax, stacking_id, base, kwds["label"])
# ignore style
n, bins, patches = ax.hist(y, bins=bins, bottom=bottom, **kwds)
cls._update_stacker(ax, stacking_id, n)
return patches
def _make_plot(self, fig: Figure) -> None:
colors = self._get_colors()
stacking_id = self._get_stacking_id()
# Re-create iterated data if `by` is assigned by users
data = (
create_iter_data_given_by(self.data, self._kind)
if self.by is not None
else self.data
)
# error: Argument "data" to "_iter_data" of "MPLPlot" has incompatible
# type "object"; expected "DataFrame | dict[Hashable, Series | DataFrame]"
for i, (label, y) in enumerate(self._iter_data(data=data)): # type: ignore[arg-type]
ax = self._get_ax(i)
kwds = self.kwds.copy()
if self.color is not None:
kwds["color"] = self.color
label = pprint_thing(label)
label = self._mark_right_label(label, index=i)
kwds["label"] = label
style, kwds = self._apply_style_colors(colors, kwds, i, label)
if style is not None:
kwds["style"] = style
self._make_plot_keywords(kwds, y)
# the bins is multi-dimension array now and each plot need only 1-d and
# when by is applied, label should be columns that are grouped
if self.by is not None:
kwds["bins"] = kwds["bins"][i]
kwds["label"] = self.columns
kwds.pop("color")
if self.weights is not None:
kwds["weights"] = type(self)._get_column_weights(self.weights, i, y)
y = reformat_hist_y_given_by(y, self.by)
artists = self._plot(ax, y, column_num=i, stacking_id=stacking_id, **kwds)
# when by is applied, show title for subplots to know which group it is
if self.by is not None:
ax.set_title(pprint_thing(label))
self._append_legend_handles_labels(artists[0], label)
def _make_plot_keywords(self, kwds: dict[str, Any], y: np.ndarray) -> None:
"""merge BoxPlot/KdePlot properties to passed kwds"""
# y is required for KdePlot
kwds["bottom"] = self.bottom
kwds["bins"] = self.bins
@final
@staticmethod
def _get_column_weights(weights, i: int, y):
# We allow weights to be a multi-dimensional array, e.g. a (10, 2) array,
# and each sub-array (10,) will be called in each iteration. If users only
# provide 1D array, we assume the same weights is used for all iterations
if weights is not None:
if np.ndim(weights) != 1 and np.shape(weights)[-1] != 1:
try:
weights = weights[:, i]
except IndexError as err:
raise ValueError(
"weights must have the same shape as data, "
"or be a single column"
) from err
weights = weights[~isna(y)]
return weights
def _post_plot_logic(self, ax: Axes, data) -> None:
if self.orientation == "horizontal":
# error: Argument 1 to "set_xlabel" of "_AxesBase" has incompatible
# type "Hashable"; expected "str"
ax.set_xlabel(
"Frequency"
if self.xlabel is None
else self.xlabel # type: ignore[arg-type]
)
ax.set_ylabel(self.ylabel) # type: ignore[arg-type]
else:
ax.set_xlabel(self.xlabel) # type: ignore[arg-type]
ax.set_ylabel(
"Frequency"
if self.ylabel is None
else self.ylabel # type: ignore[arg-type]
)
@property
def orientation(self) -> PlottingOrientation:
if self.kwds.get("orientation", None) == "horizontal":
return "horizontal"
else:
return "vertical"
class KdePlot(HistPlot):
@property
def _kind(self) -> Literal["kde"]:
return "kde"
@property
def orientation(self) -> Literal["vertical"]:
return "vertical"
def __init__(
self, data, bw_method=None, ind=None, *, weights=None, **kwargs
) -> None:
# Do not call LinePlot.__init__ which may fill nan
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called
self.bw_method = bw_method
self.ind = ind
self.weights = weights
@staticmethod
def _get_ind(y: np.ndarray, ind):
if ind is None:
# np.nanmax() and np.nanmin() ignores the missing values
sample_range = np.nanmax(y) - np.nanmin(y)
ind = np.linspace(
np.nanmin(y) - 0.5 * sample_range,
np.nanmax(y) + 0.5 * sample_range,
1000,
)
elif is_integer(ind):
sample_range = np.nanmax(y) - np.nanmin(y)
ind = np.linspace(
np.nanmin(y) - 0.5 * sample_range,
np.nanmax(y) + 0.5 * sample_range,
ind,
)
return ind
@classmethod
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
def _plot( # type: ignore[override]
cls,
ax: Axes,
y: np.ndarray,
style=None,
bw_method=None,
ind=None,
column_num=None,
stacking_id: int | None = None,
**kwds,
):
from scipy.stats import gaussian_kde
y = remove_na_arraylike(y)
gkde = gaussian_kde(y, bw_method=bw_method)
y = gkde.evaluate(ind)
lines = MPLPlot._plot(ax, ind, y, style=style, **kwds)
return lines
def _make_plot_keywords(self, kwds: dict[str, Any], y: np.ndarray) -> None:
kwds["bw_method"] = self.bw_method
kwds["ind"] = type(self)._get_ind(y, ind=self.ind)
def _post_plot_logic(self, ax: Axes, data) -> None:
ax.set_ylabel("Density")
def _grouped_plot(
plotf,
data: Series | DataFrame,
column=None,
by=None,
numeric_only: bool = True,
figsize: tuple[float, float] | None = None,
sharex: bool = True,
sharey: bool = True,
layout=None,
rot: float = 0,
ax=None,
**kwargs,
):
# error: Non-overlapping equality check (left operand type: "Optional[Tuple[float,
# float]]", right operand type: "Literal['default']")
if figsize == "default": # type: ignore[comparison-overlap]
# allowed to specify mpl default with 'default'
raise ValueError(
"figsize='default' is no longer supported. "
"Specify figure size by tuple instead"
)
grouped = data.groupby(by)
if column is not None:
grouped = grouped[column]
naxes = len(grouped)
fig, axes = create_subplots(
naxes=naxes, figsize=figsize, sharex=sharex, sharey=sharey, ax=ax, layout=layout
)
_axes = flatten_axes(axes)
for i, (key, group) in enumerate(grouped):
ax = _axes[i]
if numeric_only and isinstance(group, ABCDataFrame):
group = group._get_numeric_data()
plotf(group, ax, **kwargs)
ax.set_title(pprint_thing(key))
return fig, axes
def _grouped_hist(
data: Series | DataFrame,
column=None,
by=None,
ax=None,
bins: int = 50,
figsize: tuple[float, float] | None = None,
layout=None,
sharex: bool = False,
sharey: bool = False,
rot: float = 90,
grid: bool = True,
xlabelsize: int | None = None,
xrot=None,
ylabelsize: int | None = None,
yrot=None,
legend: bool = False,
**kwargs,
):
"""
Grouped histogram
Parameters
----------
data : Series/DataFrame
column : object, optional
by : object, optional
ax : axes, optional
bins : int, default 50
figsize : tuple, optional
layout : optional
sharex : bool, default False
sharey : bool, default False
rot : float, default 90
grid : bool, default True
legend: : bool, default False
kwargs : dict, keyword arguments passed to matplotlib.Axes.hist
Returns
-------
collection of Matplotlib Axes
"""
if legend:
assert "label" not in kwargs
if data.ndim == 1:
kwargs["label"] = data.name
elif column is None:
kwargs["label"] = data.columns
else:
kwargs["label"] = column
def plot_group(group, ax) -> None:
ax.hist(group.dropna().values, bins=bins, **kwargs)
if legend:
ax.legend()
if xrot is None:
xrot = rot
fig, axes = _grouped_plot(
plot_group,
data,
column=column,
by=by,
sharex=sharex,
sharey=sharey,
ax=ax,
figsize=figsize,
layout=layout,
rot=rot,
)
set_ticks_props(
axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot
)
maybe_adjust_figure(
fig, bottom=0.15, top=0.9, left=0.1, right=0.9, hspace=0.5, wspace=0.3
)
return axes
def hist_series(
self: Series,
by=None,
ax=None,
grid: bool = True,
xlabelsize: int | None = None,
xrot=None,
ylabelsize: int | None = None,
yrot=None,
figsize: tuple[float, float] | None = None,
bins: int = 10,
legend: bool = False,
**kwds,
):
import matplotlib.pyplot as plt
if legend and "label" in kwds:
raise ValueError("Cannot use both legend and label")
if by is None:
if kwds.get("layout", None) is not None:
raise ValueError("The 'layout' keyword is not supported when 'by' is None")
# hack until the plotting interface is a bit more unified
fig = kwds.pop(
"figure", plt.gcf() if plt.get_fignums() else plt.figure(figsize=figsize)
)
if figsize is not None and tuple(figsize) != tuple(fig.get_size_inches()):
fig.set_size_inches(*figsize, forward=True)
if ax is None:
ax = fig.gca()
elif ax.get_figure() != fig:
raise AssertionError("passed axis not bound to passed figure")
values = self.dropna().values
if legend:
kwds["label"] = self.name
ax.hist(values, bins=bins, **kwds)
if legend:
ax.legend()
ax.grid(grid)
axes = np.array([ax])
# error: Argument 1 to "set_ticks_props" has incompatible type "ndarray[Any,
# dtype[Any]]"; expected "Axes | Sequence[Axes]"
set_ticks_props(
axes, # type: ignore[arg-type]
xlabelsize=xlabelsize,
xrot=xrot,
ylabelsize=ylabelsize,
yrot=yrot,
)
else:
if "figure" in kwds:
raise ValueError(
"Cannot pass 'figure' when using the "
"'by' argument, since a new 'Figure' instance will be created"
)
axes = _grouped_hist(
self,
by=by,
ax=ax,
grid=grid,
figsize=figsize,
bins=bins,
xlabelsize=xlabelsize,
xrot=xrot,
ylabelsize=ylabelsize,
yrot=yrot,
legend=legend,
**kwds,
)
if hasattr(axes, "ndim"):
if axes.ndim == 1 and len(axes) == 1:
return axes[0]
return axes
def hist_frame(
data: DataFrame,
column=None,
by=None,
grid: bool = True,
xlabelsize: int | None = None,
xrot=None,
ylabelsize: int | None = None,
yrot=None,
ax=None,
sharex: bool = False,
sharey: bool = False,
figsize: tuple[float, float] | None = None,
layout=None,
bins: int = 10,
legend: bool = False,
**kwds,
):
if legend and "label" in kwds:
raise ValueError("Cannot use both legend and label")
if by is not None:
axes = _grouped_hist(
data,
column=column,
by=by,
ax=ax,
grid=grid,
figsize=figsize,
sharex=sharex,
sharey=sharey,
layout=layout,
bins=bins,
xlabelsize=xlabelsize,
xrot=xrot,
ylabelsize=ylabelsize,
yrot=yrot,
legend=legend,
**kwds,
)
return axes
if column is not None:
if not isinstance(column, (list, np.ndarray, ABCIndex)):
column = [column]
data = data[column]
# GH32590
data = data.select_dtypes(
include=(np.number, "datetime64", "datetimetz"), exclude="timedelta"
)
naxes = len(data.columns)
if naxes == 0:
raise ValueError(
"hist method requires numerical or datetime columns, nothing to plot."
)
fig, axes = create_subplots(
naxes=naxes,
ax=ax,
squeeze=False,
sharex=sharex,
sharey=sharey,
figsize=figsize,
layout=layout,
)
_axes = flatten_axes(axes)
can_set_label = "label" not in kwds
for i, col in enumerate(data.columns):
ax = _axes[i]
if legend and can_set_label:
kwds["label"] = col
ax.hist(data[col].dropna().values, bins=bins, **kwds)
ax.set_title(col)
ax.grid(grid)
if legend:
ax.legend()
set_ticks_props(
axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot
)
maybe_adjust_figure(fig, wspace=0.3, hspace=0.3)
return axes
|