File size: 101,704 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
"""
Collection of query wrappers / abstractions to both facilitate data
retrieval and to reduce dependency on DB-specific API.
"""

from __future__ import annotations

from abc import (
    ABC,
    abstractmethod,
)
from contextlib import (
    ExitStack,
    contextmanager,
)
from datetime import (
    date,
    datetime,
    time,
)
from functools import partial
import re
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Literal,
    cast,
    overload,
)
import warnings

import numpy as np

from pandas._config import using_pyarrow_string_dtype

from pandas._libs import lib
from pandas.compat._optional import import_optional_dependency
from pandas.errors import (
    AbstractMethodError,
    DatabaseError,
)
from pandas.util._exceptions import find_stack_level
from pandas.util._validators import check_dtype_backend

from pandas.core.dtypes.common import (
    is_dict_like,
    is_list_like,
)
from pandas.core.dtypes.dtypes import (
    ArrowDtype,
    DatetimeTZDtype,
)
from pandas.core.dtypes.missing import isna

from pandas import get_option
from pandas.core.api import (
    DataFrame,
    Series,
)
from pandas.core.arrays import ArrowExtensionArray
from pandas.core.base import PandasObject
import pandas.core.common as com
from pandas.core.common import maybe_make_list
from pandas.core.internals.construction import convert_object_array
from pandas.core.tools.datetimes import to_datetime

if TYPE_CHECKING:
    from collections.abc import (
        Iterator,
        Mapping,
    )

    from sqlalchemy import Table
    from sqlalchemy.sql.expression import (
        Select,
        TextClause,
    )

    from pandas._typing import (
        DateTimeErrorChoices,
        DtypeArg,
        DtypeBackend,
        IndexLabel,
        Self,
    )

    from pandas import Index

# -----------------------------------------------------------------------------
# -- Helper functions


def _process_parse_dates_argument(parse_dates):
    """Process parse_dates argument for read_sql functions"""
    # handle non-list entries for parse_dates gracefully
    if parse_dates is True or parse_dates is None or parse_dates is False:
        parse_dates = []

    elif not hasattr(parse_dates, "__iter__"):
        parse_dates = [parse_dates]
    return parse_dates


def _handle_date_column(
    col, utc: bool = False, format: str | dict[str, Any] | None = None
):
    if isinstance(format, dict):
        # GH35185 Allow custom error values in parse_dates argument of
        # read_sql like functions.
        # Format can take on custom to_datetime argument values such as
        # {"errors": "coerce"} or {"dayfirst": True}
        error: DateTimeErrorChoices = format.pop("errors", None) or "ignore"
        if error == "ignore":
            try:
                return to_datetime(col, **format)
            except (TypeError, ValueError):
                # TODO: not reached 2023-10-27; needed?
                return col
        return to_datetime(col, errors=error, **format)
    else:
        # Allow passing of formatting string for integers
        # GH17855
        if format is None and (
            issubclass(col.dtype.type, np.floating)
            or issubclass(col.dtype.type, np.integer)
        ):
            format = "s"
        if format in ["D", "d", "h", "m", "s", "ms", "us", "ns"]:
            return to_datetime(col, errors="coerce", unit=format, utc=utc)
        elif isinstance(col.dtype, DatetimeTZDtype):
            # coerce to UTC timezone
            # GH11216
            return to_datetime(col, utc=True)
        else:
            return to_datetime(col, errors="coerce", format=format, utc=utc)


def _parse_date_columns(data_frame, parse_dates):
    """
    Force non-datetime columns to be read as such.
    Supports both string formatted and integer timestamp columns.
    """
    parse_dates = _process_parse_dates_argument(parse_dates)

    # we want to coerce datetime64_tz dtypes for now to UTC
    # we could in theory do a 'nice' conversion from a FixedOffset tz
    # GH11216
    for i, (col_name, df_col) in enumerate(data_frame.items()):
        if isinstance(df_col.dtype, DatetimeTZDtype) or col_name in parse_dates:
            try:
                fmt = parse_dates[col_name]
            except (KeyError, TypeError):
                fmt = None
            data_frame.isetitem(i, _handle_date_column(df_col, format=fmt))

    return data_frame


def _convert_arrays_to_dataframe(
    data,
    columns,
    coerce_float: bool = True,
    dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
) -> DataFrame:
    content = lib.to_object_array_tuples(data)
    arrays = convert_object_array(
        list(content.T),
        dtype=None,
        coerce_float=coerce_float,
        dtype_backend=dtype_backend,
    )
    if dtype_backend == "pyarrow":
        pa = import_optional_dependency("pyarrow")

        result_arrays = []
        for arr in arrays:
            pa_array = pa.array(arr, from_pandas=True)
            if arr.dtype == "string":
                # TODO: Arrow still infers strings arrays as regular strings instead
                # of large_string, which is what we preserver everywhere else for
                # dtype_backend="pyarrow". We may want to reconsider this
                pa_array = pa_array.cast(pa.string())
            result_arrays.append(ArrowExtensionArray(pa_array))
        arrays = result_arrays  # type: ignore[assignment]
    if arrays:
        df = DataFrame(dict(zip(list(range(len(columns))), arrays)))
        df.columns = columns
        return df
    else:
        return DataFrame(columns=columns)


def _wrap_result(
    data,
    columns,
    index_col=None,
    coerce_float: bool = True,
    parse_dates=None,
    dtype: DtypeArg | None = None,
    dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
):
    """Wrap result set of a SQLAlchemy query in a DataFrame."""
    frame = _convert_arrays_to_dataframe(data, columns, coerce_float, dtype_backend)

    if dtype:
        frame = frame.astype(dtype)

    frame = _parse_date_columns(frame, parse_dates)

    if index_col is not None:
        frame = frame.set_index(index_col)

    return frame


def _wrap_result_adbc(
    df: DataFrame,
    *,
    index_col=None,
    parse_dates=None,
    dtype: DtypeArg | None = None,
    dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
) -> DataFrame:
    """Wrap result set of a SQLAlchemy query in a DataFrame."""
    if dtype:
        df = df.astype(dtype)

    df = _parse_date_columns(df, parse_dates)

    if index_col is not None:
        df = df.set_index(index_col)

    return df


def execute(sql, con, params=None):
    """
    Execute the given SQL query using the provided connection object.

    Parameters
    ----------
    sql : string
        SQL query to be executed.
    con : SQLAlchemy connection or sqlite3 connection
        If a DBAPI2 object, only sqlite3 is supported.
    params : list or tuple, optional, default: None
        List of parameters to pass to execute method.

    Returns
    -------
    Results Iterable
    """
    warnings.warn(
        "`pandas.io.sql.execute` is deprecated and "
        "will be removed in the future version.",
        FutureWarning,
        stacklevel=find_stack_level(),
    )  # GH50185
    sqlalchemy = import_optional_dependency("sqlalchemy", errors="ignore")

    if sqlalchemy is not None and isinstance(con, (str, sqlalchemy.engine.Engine)):
        raise TypeError("pandas.io.sql.execute requires a connection")  # GH50185
    with pandasSQL_builder(con, need_transaction=True) as pandas_sql:
        return pandas_sql.execute(sql, params)


# -----------------------------------------------------------------------------
# -- Read and write to DataFrames


@overload
def read_sql_table(
    table_name: str,
    con,
    schema=...,
    index_col: str | list[str] | None = ...,
    coerce_float=...,
    parse_dates: list[str] | dict[str, str] | None = ...,
    columns: list[str] | None = ...,
    chunksize: None = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> DataFrame:
    ...


@overload
def read_sql_table(
    table_name: str,
    con,
    schema=...,
    index_col: str | list[str] | None = ...,
    coerce_float=...,
    parse_dates: list[str] | dict[str, str] | None = ...,
    columns: list[str] | None = ...,
    chunksize: int = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> Iterator[DataFrame]:
    ...


def read_sql_table(
    table_name: str,
    con,
    schema: str | None = None,
    index_col: str | list[str] | None = None,
    coerce_float: bool = True,
    parse_dates: list[str] | dict[str, str] | None = None,
    columns: list[str] | None = None,
    chunksize: int | None = None,
    dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
) -> DataFrame | Iterator[DataFrame]:
    """
    Read SQL database table into a DataFrame.

    Given a table name and a SQLAlchemy connectable, returns a DataFrame.
    This function does not support DBAPI connections.

    Parameters
    ----------
    table_name : str
        Name of SQL table in database.
    con : SQLAlchemy connectable or str
        A database URI could be provided as str.
        SQLite DBAPI connection mode not supported.
    schema : str, default None
        Name of SQL schema in database to query (if database flavor
        supports this). Uses default schema if None (default).
    index_col : str or list of str, optional, default: None
        Column(s) to set as index(MultiIndex).
    coerce_float : bool, default True
        Attempts to convert values of non-string, non-numeric objects (like
        decimal.Decimal) to floating point. Can result in loss of Precision.
    parse_dates : list or dict, default None
        - List of column names to parse as dates.
        - Dict of ``{column_name: format string}`` where format string is
          strftime compatible in case of parsing string times or is one of
          (D, s, ns, ms, us) in case of parsing integer timestamps.
        - Dict of ``{column_name: arg dict}``, where the arg dict corresponds
          to the keyword arguments of :func:`pandas.to_datetime`
          Especially useful with databases without native Datetime support,
          such as SQLite.
    columns : list, default None
        List of column names to select from SQL table.
    chunksize : int, default None
        If specified, returns an iterator where `chunksize` is the number of
        rows to include in each chunk.
    dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable'
        Back-end data type applied to the resultant :class:`DataFrame`
        (still experimental). Behaviour is as follows:

        * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
          (default).
        * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
          DataFrame.

        .. versionadded:: 2.0

    Returns
    -------
    DataFrame or Iterator[DataFrame]
        A SQL table is returned as two-dimensional data structure with labeled
        axes.

    See Also
    --------
    read_sql_query : Read SQL query into a DataFrame.
    read_sql : Read SQL query or database table into a DataFrame.

    Notes
    -----
    Any datetime values with time zone information will be converted to UTC.

    Examples
    --------
    >>> pd.read_sql_table('table_name', 'postgres:///db_name')  # doctest:+SKIP
    """

    check_dtype_backend(dtype_backend)
    if dtype_backend is lib.no_default:
        dtype_backend = "numpy"  # type: ignore[assignment]
    assert dtype_backend is not lib.no_default

    with pandasSQL_builder(con, schema=schema, need_transaction=True) as pandas_sql:
        if not pandas_sql.has_table(table_name):
            raise ValueError(f"Table {table_name} not found")

        table = pandas_sql.read_table(
            table_name,
            index_col=index_col,
            coerce_float=coerce_float,
            parse_dates=parse_dates,
            columns=columns,
            chunksize=chunksize,
            dtype_backend=dtype_backend,
        )

    if table is not None:
        return table
    else:
        raise ValueError(f"Table {table_name} not found", con)


@overload
def read_sql_query(
    sql,
    con,
    index_col: str | list[str] | None = ...,
    coerce_float=...,
    params: list[Any] | Mapping[str, Any] | None = ...,
    parse_dates: list[str] | dict[str, str] | None = ...,
    chunksize: None = ...,
    dtype: DtypeArg | None = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> DataFrame:
    ...


@overload
def read_sql_query(
    sql,
    con,
    index_col: str | list[str] | None = ...,
    coerce_float=...,
    params: list[Any] | Mapping[str, Any] | None = ...,
    parse_dates: list[str] | dict[str, str] | None = ...,
    chunksize: int = ...,
    dtype: DtypeArg | None = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> Iterator[DataFrame]:
    ...


def read_sql_query(
    sql,
    con,
    index_col: str | list[str] | None = None,
    coerce_float: bool = True,
    params: list[Any] | Mapping[str, Any] | None = None,
    parse_dates: list[str] | dict[str, str] | None = None,
    chunksize: int | None = None,
    dtype: DtypeArg | None = None,
    dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
) -> DataFrame | Iterator[DataFrame]:
    """
    Read SQL query into a DataFrame.

    Returns a DataFrame corresponding to the result set of the query
    string. Optionally provide an `index_col` parameter to use one of the
    columns as the index, otherwise default integer index will be used.

    Parameters
    ----------
    sql : str SQL query or SQLAlchemy Selectable (select or text object)
        SQL query to be executed.
    con : SQLAlchemy connectable, str, or sqlite3 connection
        Using SQLAlchemy makes it possible to use any DB supported by that
        library. If a DBAPI2 object, only sqlite3 is supported.
    index_col : str or list of str, optional, default: None
        Column(s) to set as index(MultiIndex).
    coerce_float : bool, default True
        Attempts to convert values of non-string, non-numeric objects (like
        decimal.Decimal) to floating point. Useful for SQL result sets.
    params : list, tuple or mapping, optional, default: None
        List of parameters to pass to execute method.  The syntax used
        to pass parameters is database driver dependent. Check your
        database driver documentation for which of the five syntax styles,
        described in PEP 249's paramstyle, is supported.
        Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}.
    parse_dates : list or dict, default: None
        - List of column names to parse as dates.
        - Dict of ``{column_name: format string}`` where format string is
          strftime compatible in case of parsing string times, or is one of
          (D, s, ns, ms, us) in case of parsing integer timestamps.
        - Dict of ``{column_name: arg dict}``, where the arg dict corresponds
          to the keyword arguments of :func:`pandas.to_datetime`
          Especially useful with databases without native Datetime support,
          such as SQLite.
    chunksize : int, default None
        If specified, return an iterator where `chunksize` is the number of
        rows to include in each chunk.
    dtype : Type name or dict of columns
        Data type for data or columns. E.g. np.float64 or
        {'a': np.float64, 'b': np.int32, 'c': 'Int64'}.

        .. versionadded:: 1.3.0
    dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable'
        Back-end data type applied to the resultant :class:`DataFrame`
        (still experimental). Behaviour is as follows:

        * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
          (default).
        * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
          DataFrame.

        .. versionadded:: 2.0

    Returns
    -------
    DataFrame or Iterator[DataFrame]

    See Also
    --------
    read_sql_table : Read SQL database table into a DataFrame.
    read_sql : Read SQL query or database table into a DataFrame.

    Notes
    -----
    Any datetime values with time zone information parsed via the `parse_dates`
    parameter will be converted to UTC.

    Examples
    --------
    >>> from sqlalchemy import create_engine  # doctest: +SKIP
    >>> engine = create_engine("sqlite:///database.db")  # doctest: +SKIP
    >>> with engine.connect() as conn, conn.begin():  # doctest: +SKIP
    ...     data = pd.read_sql_table("data", conn)  # doctest: +SKIP
    """

    check_dtype_backend(dtype_backend)
    if dtype_backend is lib.no_default:
        dtype_backend = "numpy"  # type: ignore[assignment]
    assert dtype_backend is not lib.no_default

    with pandasSQL_builder(con) as pandas_sql:
        return pandas_sql.read_query(
            sql,
            index_col=index_col,
            params=params,
            coerce_float=coerce_float,
            parse_dates=parse_dates,
            chunksize=chunksize,
            dtype=dtype,
            dtype_backend=dtype_backend,
        )


@overload
def read_sql(
    sql,
    con,
    index_col: str | list[str] | None = ...,
    coerce_float=...,
    params=...,
    parse_dates=...,
    columns: list[str] = ...,
    chunksize: None = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
    dtype: DtypeArg | None = None,
) -> DataFrame:
    ...


@overload
def read_sql(
    sql,
    con,
    index_col: str | list[str] | None = ...,
    coerce_float=...,
    params=...,
    parse_dates=...,
    columns: list[str] = ...,
    chunksize: int = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
    dtype: DtypeArg | None = None,
) -> Iterator[DataFrame]:
    ...


def read_sql(
    sql,
    con,
    index_col: str | list[str] | None = None,
    coerce_float: bool = True,
    params=None,
    parse_dates=None,
    columns: list[str] | None = None,
    chunksize: int | None = None,
    dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
    dtype: DtypeArg | None = None,
) -> DataFrame | Iterator[DataFrame]:
    """
    Read SQL query or database table into a DataFrame.

    This function is a convenience wrapper around ``read_sql_table`` and
    ``read_sql_query`` (for backward compatibility). It will delegate
    to the specific function depending on the provided input. A SQL query
    will be routed to ``read_sql_query``, while a database table name will
    be routed to ``read_sql_table``. Note that the delegated function might
    have more specific notes about their functionality not listed here.

    Parameters
    ----------
    sql : str or SQLAlchemy Selectable (select or text object)
        SQL query to be executed or a table name.
    con : ADBC Connection, SQLAlchemy connectable, str, or sqlite3 connection
        ADBC provides high performance I/O with native type support, where available.
        Using SQLAlchemy makes it possible to use any DB supported by that
        library. If a DBAPI2 object, only sqlite3 is supported. The user is responsible
        for engine disposal and connection closure for the ADBC connection and
        SQLAlchemy connectable; str connections are closed automatically. See
        `here <https://docs.sqlalchemy.org/en/20/core/connections.html>`_.
    index_col : str or list of str, optional, default: None
        Column(s) to set as index(MultiIndex).
    coerce_float : bool, default True
        Attempts to convert values of non-string, non-numeric objects (like
        decimal.Decimal) to floating point, useful for SQL result sets.
    params : list, tuple or dict, optional, default: None
        List of parameters to pass to execute method.  The syntax used
        to pass parameters is database driver dependent. Check your
        database driver documentation for which of the five syntax styles,
        described in PEP 249's paramstyle, is supported.
        Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}.
    parse_dates : list or dict, default: None
        - List of column names to parse as dates.
        - Dict of ``{column_name: format string}`` where format string is
          strftime compatible in case of parsing string times, or is one of
          (D, s, ns, ms, us) in case of parsing integer timestamps.
        - Dict of ``{column_name: arg dict}``, where the arg dict corresponds
          to the keyword arguments of :func:`pandas.to_datetime`
          Especially useful with databases without native Datetime support,
          such as SQLite.
    columns : list, default: None
        List of column names to select from SQL table (only used when reading
        a table).
    chunksize : int, default None
        If specified, return an iterator where `chunksize` is the
        number of rows to include in each chunk.
    dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable'
        Back-end data type applied to the resultant :class:`DataFrame`
        (still experimental). Behaviour is as follows:

        * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
          (default).
        * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
          DataFrame.

        .. versionadded:: 2.0
    dtype : Type name or dict of columns
        Data type for data or columns. E.g. np.float64 or
        {'a': np.float64, 'b': np.int32, 'c': 'Int64'}.
        The argument is ignored if a table is passed instead of a query.

        .. versionadded:: 2.0.0

    Returns
    -------
    DataFrame or Iterator[DataFrame]

    See Also
    --------
    read_sql_table : Read SQL database table into a DataFrame.
    read_sql_query : Read SQL query into a DataFrame.

    Examples
    --------
    Read data from SQL via either a SQL query or a SQL tablename.
    When using a SQLite database only SQL queries are accepted,
    providing only the SQL tablename will result in an error.

    >>> from sqlite3 import connect
    >>> conn = connect(':memory:')
    >>> df = pd.DataFrame(data=[[0, '10/11/12'], [1, '12/11/10']],
    ...                   columns=['int_column', 'date_column'])
    >>> df.to_sql(name='test_data', con=conn)
    2

    >>> pd.read_sql('SELECT int_column, date_column FROM test_data', conn)
       int_column date_column
    0           0    10/11/12
    1           1    12/11/10

    >>> pd.read_sql('test_data', 'postgres:///db_name')  # doctest:+SKIP

    Apply date parsing to columns through the ``parse_dates`` argument
    The ``parse_dates`` argument calls ``pd.to_datetime`` on the provided columns.
    Custom argument values for applying ``pd.to_datetime`` on a column are specified
    via a dictionary format:

    >>> pd.read_sql('SELECT int_column, date_column FROM test_data',
    ...             conn,
    ...             parse_dates={"date_column": {"format": "%d/%m/%y"}})
       int_column date_column
    0           0  2012-11-10
    1           1  2010-11-12

    .. versionadded:: 2.2.0

       pandas now supports reading via ADBC drivers

    >>> from adbc_driver_postgresql import dbapi  # doctest:+SKIP
    >>> with dbapi.connect('postgres:///db_name') as conn:  # doctest:+SKIP
    ...     pd.read_sql('SELECT int_column FROM test_data', conn)
       int_column
    0           0
    1           1
    """

    check_dtype_backend(dtype_backend)
    if dtype_backend is lib.no_default:
        dtype_backend = "numpy"  # type: ignore[assignment]
    assert dtype_backend is not lib.no_default

    with pandasSQL_builder(con) as pandas_sql:
        if isinstance(pandas_sql, SQLiteDatabase):
            return pandas_sql.read_query(
                sql,
                index_col=index_col,
                params=params,
                coerce_float=coerce_float,
                parse_dates=parse_dates,
                chunksize=chunksize,
                dtype_backend=dtype_backend,
                dtype=dtype,
            )

        try:
            _is_table_name = pandas_sql.has_table(sql)
        except Exception:
            # using generic exception to catch errors from sql drivers (GH24988)
            _is_table_name = False

        if _is_table_name:
            return pandas_sql.read_table(
                sql,
                index_col=index_col,
                coerce_float=coerce_float,
                parse_dates=parse_dates,
                columns=columns,
                chunksize=chunksize,
                dtype_backend=dtype_backend,
            )
        else:
            return pandas_sql.read_query(
                sql,
                index_col=index_col,
                params=params,
                coerce_float=coerce_float,
                parse_dates=parse_dates,
                chunksize=chunksize,
                dtype_backend=dtype_backend,
                dtype=dtype,
            )


def to_sql(
    frame,
    name: str,
    con,
    schema: str | None = None,
    if_exists: Literal["fail", "replace", "append"] = "fail",
    index: bool = True,
    index_label: IndexLabel | None = None,
    chunksize: int | None = None,
    dtype: DtypeArg | None = None,
    method: Literal["multi"] | Callable | None = None,
    engine: str = "auto",
    **engine_kwargs,
) -> int | None:
    """
    Write records stored in a DataFrame to a SQL database.

    Parameters
    ----------
    frame : DataFrame, Series
    name : str
        Name of SQL table.
    con : ADBC Connection, SQLAlchemy connectable, str, or sqlite3 connection
        or sqlite3 DBAPI2 connection
        ADBC provides high performance I/O with native type support, where available.
        Using SQLAlchemy makes it possible to use any DB supported by that
        library.
        If a DBAPI2 object, only sqlite3 is supported.
    schema : str, optional
        Name of SQL schema in database to write to (if database flavor
        supports this). If None, use default schema (default).
    if_exists : {'fail', 'replace', 'append'}, default 'fail'
        - fail: If table exists, do nothing.
        - replace: If table exists, drop it, recreate it, and insert data.
        - append: If table exists, insert data. Create if does not exist.
    index : bool, default True
        Write DataFrame index as a column.
    index_label : str or sequence, optional
        Column label for index column(s). If None is given (default) and
        `index` is True, then the index names are used.
        A sequence should be given if the DataFrame uses MultiIndex.
    chunksize : int, optional
        Specify the number of rows in each batch to be written at a time.
        By default, all rows will be written at once.
    dtype : dict or scalar, optional
        Specifying the datatype for columns. If a dictionary is used, the
        keys should be the column names and the values should be the
        SQLAlchemy types or strings for the sqlite3 fallback mode. If a
        scalar is provided, it will be applied to all columns.
    method : {None, 'multi', callable}, optional
        Controls the SQL insertion clause used:

        - None : Uses standard SQL ``INSERT`` clause (one per row).
        - ``'multi'``: Pass multiple values in a single ``INSERT`` clause.
        - callable with signature ``(pd_table, conn, keys, data_iter) -> int | None``.

        Details and a sample callable implementation can be found in the
        section :ref:`insert method <io.sql.method>`.
    engine : {'auto', 'sqlalchemy'}, default 'auto'
        SQL engine library to use. If 'auto', then the option
        ``io.sql.engine`` is used. The default ``io.sql.engine``
        behavior is 'sqlalchemy'

        .. versionadded:: 1.3.0

    **engine_kwargs
        Any additional kwargs are passed to the engine.

    Returns
    -------
    None or int
        Number of rows affected by to_sql. None is returned if the callable
        passed into ``method`` does not return an integer number of rows.

        .. versionadded:: 1.4.0

    Notes
    -----
    The returned rows affected is the sum of the ``rowcount`` attribute of ``sqlite3.Cursor``
    or SQLAlchemy connectable. If using ADBC the returned rows are the result
    of ``Cursor.adbc_ingest``. The returned value may not reflect the exact number of written
    rows as stipulated in the
    `sqlite3 <https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.rowcount>`__ or
    `SQLAlchemy <https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.BaseCursorResult.rowcount>`__
    """  # noqa: E501
    if if_exists not in ("fail", "replace", "append"):
        raise ValueError(f"'{if_exists}' is not valid for if_exists")

    if isinstance(frame, Series):
        frame = frame.to_frame()
    elif not isinstance(frame, DataFrame):
        raise NotImplementedError(
            "'frame' argument should be either a Series or a DataFrame"
        )

    with pandasSQL_builder(con, schema=schema, need_transaction=True) as pandas_sql:
        return pandas_sql.to_sql(
            frame,
            name,
            if_exists=if_exists,
            index=index,
            index_label=index_label,
            schema=schema,
            chunksize=chunksize,
            dtype=dtype,
            method=method,
            engine=engine,
            **engine_kwargs,
        )


def has_table(table_name: str, con, schema: str | None = None) -> bool:
    """
    Check if DataBase has named table.

    Parameters
    ----------
    table_name: string
        Name of SQL table.
    con: ADBC Connection, SQLAlchemy connectable, str, or sqlite3 connection
        ADBC provides high performance I/O with native type support, where available.
        Using SQLAlchemy makes it possible to use any DB supported by that
        library.
        If a DBAPI2 object, only sqlite3 is supported.
    schema : string, default None
        Name of SQL schema in database to write to (if database flavor supports
        this). If None, use default schema (default).

    Returns
    -------
    boolean
    """
    with pandasSQL_builder(con, schema=schema) as pandas_sql:
        return pandas_sql.has_table(table_name)


table_exists = has_table


def pandasSQL_builder(
    con,
    schema: str | None = None,
    need_transaction: bool = False,
) -> PandasSQL:
    """
    Convenience function to return the correct PandasSQL subclass based on the
    provided parameters.  Also creates a sqlalchemy connection and transaction
    if necessary.
    """
    import sqlite3

    if isinstance(con, sqlite3.Connection) or con is None:
        return SQLiteDatabase(con)

    sqlalchemy = import_optional_dependency("sqlalchemy", errors="ignore")

    if isinstance(con, str) and sqlalchemy is None:
        raise ImportError("Using URI string without sqlalchemy installed.")

    if sqlalchemy is not None and isinstance(con, (str, sqlalchemy.engine.Connectable)):
        return SQLDatabase(con, schema, need_transaction)

    adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore")
    if adbc and isinstance(con, adbc.Connection):
        return ADBCDatabase(con)

    warnings.warn(
        "pandas only supports SQLAlchemy connectable (engine/connection) or "
        "database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 "
        "objects are not tested. Please consider using SQLAlchemy.",
        UserWarning,
        stacklevel=find_stack_level(),
    )
    return SQLiteDatabase(con)


class SQLTable(PandasObject):
    """
    For mapping Pandas tables to SQL tables.
    Uses fact that table is reflected by SQLAlchemy to
    do better type conversions.
    Also holds various flags needed to avoid having to
    pass them between functions all the time.
    """

    # TODO: support for multiIndex

    def __init__(
        self,
        name: str,
        pandas_sql_engine,
        frame=None,
        index: bool | str | list[str] | None = True,
        if_exists: Literal["fail", "replace", "append"] = "fail",
        prefix: str = "pandas",
        index_label=None,
        schema=None,
        keys=None,
        dtype: DtypeArg | None = None,
    ) -> None:
        self.name = name
        self.pd_sql = pandas_sql_engine
        self.prefix = prefix
        self.frame = frame
        self.index = self._index_name(index, index_label)
        self.schema = schema
        self.if_exists = if_exists
        self.keys = keys
        self.dtype = dtype

        if frame is not None:
            # We want to initialize based on a dataframe
            self.table = self._create_table_setup()
        else:
            # no data provided, read-only mode
            self.table = self.pd_sql.get_table(self.name, self.schema)

        if self.table is None:
            raise ValueError(f"Could not init table '{name}'")

        if not len(self.name):
            raise ValueError("Empty table name specified")

    def exists(self):
        return self.pd_sql.has_table(self.name, self.schema)

    def sql_schema(self) -> str:
        from sqlalchemy.schema import CreateTable

        return str(CreateTable(self.table).compile(self.pd_sql.con))

    def _execute_create(self) -> None:
        # Inserting table into database, add to MetaData object
        self.table = self.table.to_metadata(self.pd_sql.meta)
        with self.pd_sql.run_transaction():
            self.table.create(bind=self.pd_sql.con)

    def create(self) -> None:
        if self.exists():
            if self.if_exists == "fail":
                raise ValueError(f"Table '{self.name}' already exists.")
            if self.if_exists == "replace":
                self.pd_sql.drop_table(self.name, self.schema)
                self._execute_create()
            elif self.if_exists == "append":
                pass
            else:
                raise ValueError(f"'{self.if_exists}' is not valid for if_exists")
        else:
            self._execute_create()

    def _execute_insert(self, conn, keys: list[str], data_iter) -> int:
        """
        Execute SQL statement inserting data

        Parameters
        ----------
        conn : sqlalchemy.engine.Engine or sqlalchemy.engine.Connection
        keys : list of str
           Column names
        data_iter : generator of list
           Each item contains a list of values to be inserted
        """
        data = [dict(zip(keys, row)) for row in data_iter]
        result = conn.execute(self.table.insert(), data)
        return result.rowcount

    def _execute_insert_multi(self, conn, keys: list[str], data_iter) -> int:
        """
        Alternative to _execute_insert for DBs support multi-value INSERT.

        Note: multi-value insert is usually faster for analytics DBs
        and tables containing a few columns
        but performance degrades quickly with increase of columns.

        """

        from sqlalchemy import insert

        data = [dict(zip(keys, row)) for row in data_iter]
        stmt = insert(self.table).values(data)
        result = conn.execute(stmt)
        return result.rowcount

    def insert_data(self) -> tuple[list[str], list[np.ndarray]]:
        if self.index is not None:
            temp = self.frame.copy()
            temp.index.names = self.index
            try:
                temp.reset_index(inplace=True)
            except ValueError as err:
                raise ValueError(f"duplicate name in index/columns: {err}") from err
        else:
            temp = self.frame

        column_names = list(map(str, temp.columns))
        ncols = len(column_names)
        # this just pre-allocates the list: None's will be replaced with ndarrays
        # error: List item 0 has incompatible type "None"; expected "ndarray"
        data_list: list[np.ndarray] = [None] * ncols  # type: ignore[list-item]

        for i, (_, ser) in enumerate(temp.items()):
            if ser.dtype.kind == "M":
                if isinstance(ser._values, ArrowExtensionArray):
                    import pyarrow as pa

                    if pa.types.is_date(ser.dtype.pyarrow_dtype):
                        # GH#53854 to_pydatetime not supported for pyarrow date dtypes
                        d = ser._values.to_numpy(dtype=object)
                    else:
                        with warnings.catch_warnings():
                            warnings.filterwarnings("ignore", category=FutureWarning)
                            # GH#52459 to_pydatetime will return Index[object]
                            d = np.asarray(ser.dt.to_pydatetime(), dtype=object)
                else:
                    d = ser._values.to_pydatetime()
            elif ser.dtype.kind == "m":
                vals = ser._values
                if isinstance(vals, ArrowExtensionArray):
                    vals = vals.to_numpy(dtype=np.dtype("m8[ns]"))
                # store as integers, see GH#6921, GH#7076
                d = vals.view("i8").astype(object)
            else:
                d = ser._values.astype(object)

            assert isinstance(d, np.ndarray), type(d)

            if ser._can_hold_na:
                # Note: this will miss timedeltas since they are converted to int
                mask = isna(d)
                d[mask] = None

            data_list[i] = d

        return column_names, data_list

    def insert(
        self,
        chunksize: int | None = None,
        method: Literal["multi"] | Callable | None = None,
    ) -> int | None:
        # set insert method
        if method is None:
            exec_insert = self._execute_insert
        elif method == "multi":
            exec_insert = self._execute_insert_multi
        elif callable(method):
            exec_insert = partial(method, self)
        else:
            raise ValueError(f"Invalid parameter `method`: {method}")

        keys, data_list = self.insert_data()

        nrows = len(self.frame)

        if nrows == 0:
            return 0

        if chunksize is None:
            chunksize = nrows
        elif chunksize == 0:
            raise ValueError("chunksize argument should be non-zero")

        chunks = (nrows // chunksize) + 1
        total_inserted = None
        with self.pd_sql.run_transaction() as conn:
            for i in range(chunks):
                start_i = i * chunksize
                end_i = min((i + 1) * chunksize, nrows)
                if start_i >= end_i:
                    break

                chunk_iter = zip(*(arr[start_i:end_i] for arr in data_list))
                num_inserted = exec_insert(conn, keys, chunk_iter)
                # GH 46891
                if num_inserted is not None:
                    if total_inserted is None:
                        total_inserted = num_inserted
                    else:
                        total_inserted += num_inserted
        return total_inserted

    def _query_iterator(
        self,
        result,
        exit_stack: ExitStack,
        chunksize: int | None,
        columns,
        coerce_float: bool = True,
        parse_dates=None,
        dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
    ):
        """Return generator through chunked result set."""
        has_read_data = False
        with exit_stack:
            while True:
                data = result.fetchmany(chunksize)
                if not data:
                    if not has_read_data:
                        yield DataFrame.from_records(
                            [], columns=columns, coerce_float=coerce_float
                        )
                    break

                has_read_data = True
                self.frame = _convert_arrays_to_dataframe(
                    data, columns, coerce_float, dtype_backend
                )

                self._harmonize_columns(
                    parse_dates=parse_dates, dtype_backend=dtype_backend
                )

                if self.index is not None:
                    self.frame.set_index(self.index, inplace=True)

                yield self.frame

    def read(
        self,
        exit_stack: ExitStack,
        coerce_float: bool = True,
        parse_dates=None,
        columns=None,
        chunksize: int | None = None,
        dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
    ) -> DataFrame | Iterator[DataFrame]:
        from sqlalchemy import select

        if columns is not None and len(columns) > 0:
            cols = [self.table.c[n] for n in columns]
            if self.index is not None:
                for idx in self.index[::-1]:
                    cols.insert(0, self.table.c[idx])
            sql_select = select(*cols)
        else:
            sql_select = select(self.table)
        result = self.pd_sql.execute(sql_select)
        column_names = result.keys()

        if chunksize is not None:
            return self._query_iterator(
                result,
                exit_stack,
                chunksize,
                column_names,
                coerce_float=coerce_float,
                parse_dates=parse_dates,
                dtype_backend=dtype_backend,
            )
        else:
            data = result.fetchall()
            self.frame = _convert_arrays_to_dataframe(
                data, column_names, coerce_float, dtype_backend
            )

            self._harmonize_columns(
                parse_dates=parse_dates, dtype_backend=dtype_backend
            )

            if self.index is not None:
                self.frame.set_index(self.index, inplace=True)

            return self.frame

    def _index_name(self, index, index_label):
        # for writing: index=True to include index in sql table
        if index is True:
            nlevels = self.frame.index.nlevels
            # if index_label is specified, set this as index name(s)
            if index_label is not None:
                if not isinstance(index_label, list):
                    index_label = [index_label]
                if len(index_label) != nlevels:
                    raise ValueError(
                        "Length of 'index_label' should match number of "
                        f"levels, which is {nlevels}"
                    )
                return index_label
            # return the used column labels for the index columns
            if (
                nlevels == 1
                and "index" not in self.frame.columns
                and self.frame.index.name is None
            ):
                return ["index"]
            else:
                return com.fill_missing_names(self.frame.index.names)

        # for reading: index=(list of) string to specify column to set as index
        elif isinstance(index, str):
            return [index]
        elif isinstance(index, list):
            return index
        else:
            return None

    def _get_column_names_and_types(self, dtype_mapper):
        column_names_and_types = []
        if self.index is not None:
            for i, idx_label in enumerate(self.index):
                idx_type = dtype_mapper(self.frame.index._get_level_values(i))
                column_names_and_types.append((str(idx_label), idx_type, True))

        column_names_and_types += [
            (str(self.frame.columns[i]), dtype_mapper(self.frame.iloc[:, i]), False)
            for i in range(len(self.frame.columns))
        ]

        return column_names_and_types

    def _create_table_setup(self):
        from sqlalchemy import (
            Column,
            PrimaryKeyConstraint,
            Table,
        )
        from sqlalchemy.schema import MetaData

        column_names_and_types = self._get_column_names_and_types(self._sqlalchemy_type)

        columns: list[Any] = [
            Column(name, typ, index=is_index)
            for name, typ, is_index in column_names_and_types
        ]

        if self.keys is not None:
            if not is_list_like(self.keys):
                keys = [self.keys]
            else:
                keys = self.keys
            pkc = PrimaryKeyConstraint(*keys, name=self.name + "_pk")
            columns.append(pkc)

        schema = self.schema or self.pd_sql.meta.schema

        # At this point, attach to new metadata, only attach to self.meta
        # once table is created.
        meta = MetaData()
        return Table(self.name, meta, *columns, schema=schema)

    def _harmonize_columns(
        self,
        parse_dates=None,
        dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
    ) -> None:
        """
        Make the DataFrame's column types align with the SQL table
        column types.
        Need to work around limited NA value support. Floats are always
        fine, ints must always be floats if there are Null values.
        Booleans are hard because converting bool column with None replaces
        all Nones with false. Therefore only convert bool if there are no
        NA values.
        Datetimes should already be converted to np.datetime64 if supported,
        but here we also force conversion if required.
        """
        parse_dates = _process_parse_dates_argument(parse_dates)

        for sql_col in self.table.columns:
            col_name = sql_col.name
            try:
                df_col = self.frame[col_name]

                # Handle date parsing upfront; don't try to convert columns
                # twice
                if col_name in parse_dates:
                    try:
                        fmt = parse_dates[col_name]
                    except TypeError:
                        fmt = None
                    self.frame[col_name] = _handle_date_column(df_col, format=fmt)
                    continue

                # the type the dataframe column should have
                col_type = self._get_dtype(sql_col.type)

                if (
                    col_type is datetime
                    or col_type is date
                    or col_type is DatetimeTZDtype
                ):
                    # Convert tz-aware Datetime SQL columns to UTC
                    utc = col_type is DatetimeTZDtype
                    self.frame[col_name] = _handle_date_column(df_col, utc=utc)
                elif dtype_backend == "numpy" and col_type is float:
                    # floats support NA, can always convert!
                    self.frame[col_name] = df_col.astype(col_type, copy=False)

                elif dtype_backend == "numpy" and len(df_col) == df_col.count():
                    # No NA values, can convert ints and bools
                    if col_type is np.dtype("int64") or col_type is bool:
                        self.frame[col_name] = df_col.astype(col_type, copy=False)
            except KeyError:
                pass  # this column not in results

    def _sqlalchemy_type(self, col: Index | Series):
        dtype: DtypeArg = self.dtype or {}
        if is_dict_like(dtype):
            dtype = cast(dict, dtype)
            if col.name in dtype:
                return dtype[col.name]

        # Infer type of column, while ignoring missing values.
        # Needed for inserting typed data containing NULLs, GH 8778.
        col_type = lib.infer_dtype(col, skipna=True)

        from sqlalchemy.types import (
            TIMESTAMP,
            BigInteger,
            Boolean,
            Date,
            DateTime,
            Float,
            Integer,
            SmallInteger,
            Text,
            Time,
        )

        if col_type in ("datetime64", "datetime"):
            # GH 9086: TIMESTAMP is the suggested type if the column contains
            # timezone information
            try:
                # error: Item "Index" of "Union[Index, Series]" has no attribute "dt"
                if col.dt.tz is not None:  # type: ignore[union-attr]
                    return TIMESTAMP(timezone=True)
            except AttributeError:
                # The column is actually a DatetimeIndex
                # GH 26761 or an Index with date-like data e.g. 9999-01-01
                if getattr(col, "tz", None) is not None:
                    return TIMESTAMP(timezone=True)
            return DateTime
        if col_type == "timedelta64":
            warnings.warn(
                "the 'timedelta' type is not supported, and will be "
                "written as integer values (ns frequency) to the database.",
                UserWarning,
                stacklevel=find_stack_level(),
            )
            return BigInteger
        elif col_type == "floating":
            if col.dtype == "float32":
                return Float(precision=23)
            else:
                return Float(precision=53)
        elif col_type == "integer":
            # GH35076 Map pandas integer to optimal SQLAlchemy integer type
            if col.dtype.name.lower() in ("int8", "uint8", "int16"):
                return SmallInteger
            elif col.dtype.name.lower() in ("uint16", "int32"):
                return Integer
            elif col.dtype.name.lower() == "uint64":
                raise ValueError("Unsigned 64 bit integer datatype is not supported")
            else:
                return BigInteger
        elif col_type == "boolean":
            return Boolean
        elif col_type == "date":
            return Date
        elif col_type == "time":
            return Time
        elif col_type == "complex":
            raise ValueError("Complex datatypes not supported")

        return Text

    def _get_dtype(self, sqltype):
        from sqlalchemy.types import (
            TIMESTAMP,
            Boolean,
            Date,
            DateTime,
            Float,
            Integer,
        )

        if isinstance(sqltype, Float):
            return float
        elif isinstance(sqltype, Integer):
            # TODO: Refine integer size.
            return np.dtype("int64")
        elif isinstance(sqltype, TIMESTAMP):
            # we have a timezone capable type
            if not sqltype.timezone:
                return datetime
            return DatetimeTZDtype
        elif isinstance(sqltype, DateTime):
            # Caution: np.datetime64 is also a subclass of np.number.
            return datetime
        elif isinstance(sqltype, Date):
            return date
        elif isinstance(sqltype, Boolean):
            return bool
        return object


class PandasSQL(PandasObject, ABC):
    """
    Subclasses Should define read_query and to_sql.
    """

    def __enter__(self) -> Self:
        return self

    def __exit__(self, *args) -> None:
        pass

    def read_table(
        self,
        table_name: str,
        index_col: str | list[str] | None = None,
        coerce_float: bool = True,
        parse_dates=None,
        columns=None,
        schema: str | None = None,
        chunksize: int | None = None,
        dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
    ) -> DataFrame | Iterator[DataFrame]:
        raise NotImplementedError

    @abstractmethod
    def read_query(
        self,
        sql: str,
        index_col: str | list[str] | None = None,
        coerce_float: bool = True,
        parse_dates=None,
        params=None,
        chunksize: int | None = None,
        dtype: DtypeArg | None = None,
        dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
    ) -> DataFrame | Iterator[DataFrame]:
        pass

    @abstractmethod
    def to_sql(
        self,
        frame,
        name: str,
        if_exists: Literal["fail", "replace", "append"] = "fail",
        index: bool = True,
        index_label=None,
        schema=None,
        chunksize: int | None = None,
        dtype: DtypeArg | None = None,
        method: Literal["multi"] | Callable | None = None,
        engine: str = "auto",
        **engine_kwargs,
    ) -> int | None:
        pass

    @abstractmethod
    def execute(self, sql: str | Select | TextClause, params=None):
        pass

    @abstractmethod
    def has_table(self, name: str, schema: str | None = None) -> bool:
        pass

    @abstractmethod
    def _create_sql_schema(
        self,
        frame: DataFrame,
        table_name: str,
        keys: list[str] | None = None,
        dtype: DtypeArg | None = None,
        schema: str | None = None,
    ) -> str:
        pass


class BaseEngine:
    def insert_records(
        self,
        table: SQLTable,
        con,
        frame,
        name: str,
        index: bool | str | list[str] | None = True,
        schema=None,
        chunksize: int | None = None,
        method=None,
        **engine_kwargs,
    ) -> int | None:
        """
        Inserts data into already-prepared table
        """
        raise AbstractMethodError(self)


class SQLAlchemyEngine(BaseEngine):
    def __init__(self) -> None:
        import_optional_dependency(
            "sqlalchemy", extra="sqlalchemy is required for SQL support."
        )

    def insert_records(
        self,
        table: SQLTable,
        con,
        frame,
        name: str,
        index: bool | str | list[str] | None = True,
        schema=None,
        chunksize: int | None = None,
        method=None,
        **engine_kwargs,
    ) -> int | None:
        from sqlalchemy import exc

        try:
            return table.insert(chunksize=chunksize, method=method)
        except exc.StatementError as err:
            # GH34431
            # https://stackoverflow.com/a/67358288/6067848
            msg = r"""(\(1054, "Unknown column 'inf(e0)?' in 'field list'"\))(?#
            )|inf can not be used with MySQL"""
            err_text = str(err.orig)
            if re.search(msg, err_text):
                raise ValueError("inf cannot be used with MySQL") from err
            raise err


def get_engine(engine: str) -> BaseEngine:
    """return our implementation"""
    if engine == "auto":
        engine = get_option("io.sql.engine")

    if engine == "auto":
        # try engines in this order
        engine_classes = [SQLAlchemyEngine]

        error_msgs = ""
        for engine_class in engine_classes:
            try:
                return engine_class()
            except ImportError as err:
                error_msgs += "\n - " + str(err)

        raise ImportError(
            "Unable to find a usable engine; "
            "tried using: 'sqlalchemy'.\n"
            "A suitable version of "
            "sqlalchemy is required for sql I/O "
            "support.\n"
            "Trying to import the above resulted in these errors:"
            f"{error_msgs}"
        )

    if engine == "sqlalchemy":
        return SQLAlchemyEngine()

    raise ValueError("engine must be one of 'auto', 'sqlalchemy'")


class SQLDatabase(PandasSQL):
    """
    This class enables conversion between DataFrame and SQL databases
    using SQLAlchemy to handle DataBase abstraction.

    Parameters
    ----------
    con : SQLAlchemy Connectable or URI string.
        Connectable to connect with the database. Using SQLAlchemy makes it
        possible to use any DB supported by that library.
    schema : string, default None
        Name of SQL schema in database to write to (if database flavor
        supports this). If None, use default schema (default).
    need_transaction : bool, default False
        If True, SQLDatabase will create a transaction.

    """

    def __init__(
        self, con, schema: str | None = None, need_transaction: bool = False
    ) -> None:
        from sqlalchemy import create_engine
        from sqlalchemy.engine import Engine
        from sqlalchemy.schema import MetaData

        # self.exit_stack cleans up the Engine and Connection and commits the
        # transaction if any of those objects was created below.
        # Cleanup happens either in self.__exit__ or at the end of the iterator
        # returned by read_sql when chunksize is not None.
        self.exit_stack = ExitStack()
        if isinstance(con, str):
            con = create_engine(con)
            self.exit_stack.callback(con.dispose)
        if isinstance(con, Engine):
            con = self.exit_stack.enter_context(con.connect())
        if need_transaction and not con.in_transaction():
            self.exit_stack.enter_context(con.begin())
        self.con = con
        self.meta = MetaData(schema=schema)
        self.returns_generator = False

    def __exit__(self, *args) -> None:
        if not self.returns_generator:
            self.exit_stack.close()

    @contextmanager
    def run_transaction(self):
        if not self.con.in_transaction():
            with self.con.begin():
                yield self.con
        else:
            yield self.con

    def execute(self, sql: str | Select | TextClause, params=None):
        """Simple passthrough to SQLAlchemy connectable"""
        args = [] if params is None else [params]
        if isinstance(sql, str):
            return self.con.exec_driver_sql(sql, *args)
        return self.con.execute(sql, *args)

    def read_table(
        self,
        table_name: str,
        index_col: str | list[str] | None = None,
        coerce_float: bool = True,
        parse_dates=None,
        columns=None,
        schema: str | None = None,
        chunksize: int | None = None,
        dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
    ) -> DataFrame | Iterator[DataFrame]:
        """
        Read SQL database table into a DataFrame.

        Parameters
        ----------
        table_name : str
            Name of SQL table in database.
        index_col : string, optional, default: None
            Column to set as index.
        coerce_float : bool, default True
            Attempts to convert values of non-string, non-numeric objects
            (like decimal.Decimal) to floating point. This can result in
            loss of precision.
        parse_dates : list or dict, default: None
            - List of column names to parse as dates.
            - Dict of ``{column_name: format string}`` where format string is
              strftime compatible in case of parsing string times, or is one of
              (D, s, ns, ms, us) in case of parsing integer timestamps.
            - Dict of ``{column_name: arg}``, where the arg corresponds
              to the keyword arguments of :func:`pandas.to_datetime`.
              Especially useful with databases without native Datetime support,
              such as SQLite.
        columns : list, default: None
            List of column names to select from SQL table.
        schema : string, default None
            Name of SQL schema in database to query (if database flavor
            supports this).  If specified, this overwrites the default
            schema of the SQL database object.
        chunksize : int, default None
            If specified, return an iterator where `chunksize` is the number
            of rows to include in each chunk.
        dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable'
            Back-end data type applied to the resultant :class:`DataFrame`
            (still experimental). Behaviour is as follows:

            * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
              (default).
            * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
              DataFrame.

            .. versionadded:: 2.0

        Returns
        -------
        DataFrame

        See Also
        --------
        pandas.read_sql_table
        SQLDatabase.read_query

        """
        self.meta.reflect(bind=self.con, only=[table_name], views=True)
        table = SQLTable(table_name, self, index=index_col, schema=schema)
        if chunksize is not None:
            self.returns_generator = True
        return table.read(
            self.exit_stack,
            coerce_float=coerce_float,
            parse_dates=parse_dates,
            columns=columns,
            chunksize=chunksize,
            dtype_backend=dtype_backend,
        )

    @staticmethod
    def _query_iterator(
        result,
        exit_stack: ExitStack,
        chunksize: int,
        columns,
        index_col=None,
        coerce_float: bool = True,
        parse_dates=None,
        dtype: DtypeArg | None = None,
        dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
    ):
        """Return generator through chunked result set"""
        has_read_data = False
        with exit_stack:
            while True:
                data = result.fetchmany(chunksize)
                if not data:
                    if not has_read_data:
                        yield _wrap_result(
                            [],
                            columns,
                            index_col=index_col,
                            coerce_float=coerce_float,
                            parse_dates=parse_dates,
                            dtype=dtype,
                            dtype_backend=dtype_backend,
                        )
                    break

                has_read_data = True
                yield _wrap_result(
                    data,
                    columns,
                    index_col=index_col,
                    coerce_float=coerce_float,
                    parse_dates=parse_dates,
                    dtype=dtype,
                    dtype_backend=dtype_backend,
                )

    def read_query(
        self,
        sql: str,
        index_col: str | list[str] | None = None,
        coerce_float: bool = True,
        parse_dates=None,
        params=None,
        chunksize: int | None = None,
        dtype: DtypeArg | None = None,
        dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
    ) -> DataFrame | Iterator[DataFrame]:
        """
        Read SQL query into a DataFrame.

        Parameters
        ----------
        sql : str
            SQL query to be executed.
        index_col : string, optional, default: None
            Column name to use as index for the returned DataFrame object.
        coerce_float : bool, default True
            Attempt to convert values of non-string, non-numeric objects (like
            decimal.Decimal) to floating point, useful for SQL result sets.
        params : list, tuple or dict, optional, default: None
            List of parameters to pass to execute method.  The syntax used
            to pass parameters is database driver dependent. Check your
            database driver documentation for which of the five syntax styles,
            described in PEP 249's paramstyle, is supported.
            Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}
        parse_dates : list or dict, default: None
            - List of column names to parse as dates.
            - Dict of ``{column_name: format string}`` where format string is
              strftime compatible in case of parsing string times, or is one of
              (D, s, ns, ms, us) in case of parsing integer timestamps.
            - Dict of ``{column_name: arg dict}``, where the arg dict
              corresponds to the keyword arguments of
              :func:`pandas.to_datetime` Especially useful with databases
              without native Datetime support, such as SQLite.
        chunksize : int, default None
            If specified, return an iterator where `chunksize` is the number
            of rows to include in each chunk.
        dtype : Type name or dict of columns
            Data type for data or columns. E.g. np.float64 or
            {'a': np.float64, 'b': np.int32, 'c': 'Int64'}

            .. versionadded:: 1.3.0

        Returns
        -------
        DataFrame

        See Also
        --------
        read_sql_table : Read SQL database table into a DataFrame.
        read_sql

        """
        result = self.execute(sql, params)
        columns = result.keys()

        if chunksize is not None:
            self.returns_generator = True
            return self._query_iterator(
                result,
                self.exit_stack,
                chunksize,
                columns,
                index_col=index_col,
                coerce_float=coerce_float,
                parse_dates=parse_dates,
                dtype=dtype,
                dtype_backend=dtype_backend,
            )
        else:
            data = result.fetchall()
            frame = _wrap_result(
                data,
                columns,
                index_col=index_col,
                coerce_float=coerce_float,
                parse_dates=parse_dates,
                dtype=dtype,
                dtype_backend=dtype_backend,
            )
            return frame

    read_sql = read_query

    def prep_table(
        self,
        frame,
        name: str,
        if_exists: Literal["fail", "replace", "append"] = "fail",
        index: bool | str | list[str] | None = True,
        index_label=None,
        schema=None,
        dtype: DtypeArg | None = None,
    ) -> SQLTable:
        """
        Prepares table in the database for data insertion. Creates it if needed, etc.
        """
        if dtype:
            if not is_dict_like(dtype):
                # error: Value expression in dictionary comprehension has incompatible
                # type "Union[ExtensionDtype, str, dtype[Any], Type[object],
                # Dict[Hashable, Union[ExtensionDtype, Union[str, dtype[Any]],
                # Type[str], Type[float], Type[int], Type[complex], Type[bool],
                # Type[object]]]]"; expected type "Union[ExtensionDtype, str,
                # dtype[Any], Type[object]]"
                dtype = {col_name: dtype for col_name in frame}  # type: ignore[misc]
            else:
                dtype = cast(dict, dtype)

            from sqlalchemy.types import TypeEngine

            for col, my_type in dtype.items():
                if isinstance(my_type, type) and issubclass(my_type, TypeEngine):
                    pass
                elif isinstance(my_type, TypeEngine):
                    pass
                else:
                    raise ValueError(f"The type of {col} is not a SQLAlchemy type")

        table = SQLTable(
            name,
            self,
            frame=frame,
            index=index,
            if_exists=if_exists,
            index_label=index_label,
            schema=schema,
            dtype=dtype,
        )
        table.create()
        return table

    def check_case_sensitive(
        self,
        name: str,
        schema: str | None,
    ) -> None:
        """
        Checks table name for issues with case-sensitivity.
        Method is called after data is inserted.
        """
        if not name.isdigit() and not name.islower():
            # check for potentially case sensitivity issues (GH7815)
            # Only check when name is not a number and name is not lower case
            from sqlalchemy import inspect as sqlalchemy_inspect

            insp = sqlalchemy_inspect(self.con)
            table_names = insp.get_table_names(schema=schema or self.meta.schema)
            if name not in table_names:
                msg = (
                    f"The provided table name '{name}' is not found exactly as "
                    "such in the database after writing the table, possibly "
                    "due to case sensitivity issues. Consider using lower "
                    "case table names."
                )
                warnings.warn(
                    msg,
                    UserWarning,
                    stacklevel=find_stack_level(),
                )

    def to_sql(
        self,
        frame,
        name: str,
        if_exists: Literal["fail", "replace", "append"] = "fail",
        index: bool = True,
        index_label=None,
        schema: str | None = None,
        chunksize: int | None = None,
        dtype: DtypeArg | None = None,
        method: Literal["multi"] | Callable | None = None,
        engine: str = "auto",
        **engine_kwargs,
    ) -> int | None:
        """
        Write records stored in a DataFrame to a SQL database.

        Parameters
        ----------
        frame : DataFrame
        name : string
            Name of SQL table.
        if_exists : {'fail', 'replace', 'append'}, default 'fail'
            - fail: If table exists, do nothing.
            - replace: If table exists, drop it, recreate it, and insert data.
            - append: If table exists, insert data. Create if does not exist.
        index : boolean, default True
            Write DataFrame index as a column.
        index_label : string or sequence, default None
            Column label for index column(s). If None is given (default) and
            `index` is True, then the index names are used.
            A sequence should be given if the DataFrame uses MultiIndex.
        schema : string, default None
            Name of SQL schema in database to write to (if database flavor
            supports this). If specified, this overwrites the default
            schema of the SQLDatabase object.
        chunksize : int, default None
            If not None, then rows will be written in batches of this size at a
            time.  If None, all rows will be written at once.
        dtype : single type or dict of column name to SQL type, default None
            Optional specifying the datatype for columns. The SQL type should
            be a SQLAlchemy type. If all columns are of the same type, one
            single value can be used.
        method : {None', 'multi', callable}, default None
            Controls the SQL insertion clause used:

            * None : Uses standard SQL ``INSERT`` clause (one per row).
            * 'multi': Pass multiple values in a single ``INSERT`` clause.
            * callable with signature ``(pd_table, conn, keys, data_iter)``.

            Details and a sample callable implementation can be found in the
            section :ref:`insert method <io.sql.method>`.
        engine : {'auto', 'sqlalchemy'}, default 'auto'
            SQL engine library to use. If 'auto', then the option
            ``io.sql.engine`` is used. The default ``io.sql.engine``
            behavior is 'sqlalchemy'

            .. versionadded:: 1.3.0

        **engine_kwargs
            Any additional kwargs are passed to the engine.
        """
        sql_engine = get_engine(engine)

        table = self.prep_table(
            frame=frame,
            name=name,
            if_exists=if_exists,
            index=index,
            index_label=index_label,
            schema=schema,
            dtype=dtype,
        )

        total_inserted = sql_engine.insert_records(
            table=table,
            con=self.con,
            frame=frame,
            name=name,
            index=index,
            schema=schema,
            chunksize=chunksize,
            method=method,
            **engine_kwargs,
        )

        self.check_case_sensitive(name=name, schema=schema)
        return total_inserted

    @property
    def tables(self):
        return self.meta.tables

    def has_table(self, name: str, schema: str | None = None) -> bool:
        from sqlalchemy import inspect as sqlalchemy_inspect

        insp = sqlalchemy_inspect(self.con)
        return insp.has_table(name, schema or self.meta.schema)

    def get_table(self, table_name: str, schema: str | None = None) -> Table:
        from sqlalchemy import (
            Numeric,
            Table,
        )

        schema = schema or self.meta.schema
        tbl = Table(table_name, self.meta, autoload_with=self.con, schema=schema)
        for column in tbl.columns:
            if isinstance(column.type, Numeric):
                column.type.asdecimal = False
        return tbl

    def drop_table(self, table_name: str, schema: str | None = None) -> None:
        schema = schema or self.meta.schema
        if self.has_table(table_name, schema):
            self.meta.reflect(
                bind=self.con, only=[table_name], schema=schema, views=True
            )
            with self.run_transaction():
                self.get_table(table_name, schema).drop(bind=self.con)
            self.meta.clear()

    def _create_sql_schema(
        self,
        frame: DataFrame,
        table_name: str,
        keys: list[str] | None = None,
        dtype: DtypeArg | None = None,
        schema: str | None = None,
    ) -> str:
        table = SQLTable(
            table_name,
            self,
            frame=frame,
            index=False,
            keys=keys,
            dtype=dtype,
            schema=schema,
        )
        return str(table.sql_schema())


# ---- SQL without SQLAlchemy ---


class ADBCDatabase(PandasSQL):
    """
    This class enables conversion between DataFrame and SQL databases
    using ADBC to handle DataBase abstraction.

    Parameters
    ----------
    con : adbc_driver_manager.dbapi.Connection
    """

    def __init__(self, con) -> None:
        self.con = con

    @contextmanager
    def run_transaction(self):
        with self.con.cursor() as cur:
            try:
                yield cur
            except Exception:
                self.con.rollback()
                raise
            self.con.commit()

    def execute(self, sql: str | Select | TextClause, params=None):
        if not isinstance(sql, str):
            raise TypeError("Query must be a string unless using sqlalchemy.")
        args = [] if params is None else [params]
        cur = self.con.cursor()
        try:
            cur.execute(sql, *args)
            return cur
        except Exception as exc:
            try:
                self.con.rollback()
            except Exception as inner_exc:  # pragma: no cover
                ex = DatabaseError(
                    f"Execution failed on sql: {sql}\n{exc}\nunable to rollback"
                )
                raise ex from inner_exc

            ex = DatabaseError(f"Execution failed on sql '{sql}': {exc}")
            raise ex from exc

    def read_table(
        self,
        table_name: str,
        index_col: str | list[str] | None = None,
        coerce_float: bool = True,
        parse_dates=None,
        columns=None,
        schema: str | None = None,
        chunksize: int | None = None,
        dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
    ) -> DataFrame | Iterator[DataFrame]:
        """
        Read SQL database table into a DataFrame.

        Parameters
        ----------
        table_name : str
            Name of SQL table in database.
        coerce_float : bool, default True
            Raises NotImplementedError
        parse_dates : list or dict, default: None
            - List of column names to parse as dates.
            - Dict of ``{column_name: format string}`` where format string is
              strftime compatible in case of parsing string times, or is one of
              (D, s, ns, ms, us) in case of parsing integer timestamps.
            - Dict of ``{column_name: arg}``, where the arg corresponds
              to the keyword arguments of :func:`pandas.to_datetime`.
              Especially useful with databases without native Datetime support,
              such as SQLite.
        columns : list, default: None
            List of column names to select from SQL table.
        schema : string, default None
            Name of SQL schema in database to query (if database flavor
            supports this).  If specified, this overwrites the default
            schema of the SQL database object.
        chunksize : int, default None
            Raises NotImplementedError
        dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable'
            Back-end data type applied to the resultant :class:`DataFrame`
            (still experimental). Behaviour is as follows:

            * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
              (default).
            * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
              DataFrame.

            .. versionadded:: 2.0

        Returns
        -------
        DataFrame

        See Also
        --------
        pandas.read_sql_table
        SQLDatabase.read_query

        """
        if coerce_float is not True:
            raise NotImplementedError(
                "'coerce_float' is not implemented for ADBC drivers"
            )
        if chunksize:
            raise NotImplementedError("'chunksize' is not implemented for ADBC drivers")

        if columns:
            if index_col:
                index_select = maybe_make_list(index_col)
            else:
                index_select = []
            to_select = index_select + columns
            select_list = ", ".join(f'"{x}"' for x in to_select)
        else:
            select_list = "*"
        if schema:
            stmt = f"SELECT {select_list} FROM {schema}.{table_name}"
        else:
            stmt = f"SELECT {select_list} FROM {table_name}"

        mapping: type[ArrowDtype] | None | Callable
        if dtype_backend == "pyarrow":
            mapping = ArrowDtype
        elif dtype_backend == "numpy_nullable":
            from pandas.io._util import _arrow_dtype_mapping

            mapping = _arrow_dtype_mapping().get
        elif using_pyarrow_string_dtype():
            from pandas.io._util import arrow_string_types_mapper

            arrow_string_types_mapper()
        else:
            mapping = None

        with self.con.cursor() as cur:
            cur.execute(stmt)
            df = cur.fetch_arrow_table().to_pandas(types_mapper=mapping)

        return _wrap_result_adbc(
            df,
            index_col=index_col,
            parse_dates=parse_dates,
        )

    def read_query(
        self,
        sql: str,
        index_col: str | list[str] | None = None,
        coerce_float: bool = True,
        parse_dates=None,
        params=None,
        chunksize: int | None = None,
        dtype: DtypeArg | None = None,
        dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
    ) -> DataFrame | Iterator[DataFrame]:
        """
        Read SQL query into a DataFrame.

        Parameters
        ----------
        sql : str
            SQL query to be executed.
        index_col : string, optional, default: None
            Column name to use as index for the returned DataFrame object.
        coerce_float : bool, default True
            Raises NotImplementedError
        params : list, tuple or dict, optional, default: None
            Raises NotImplementedError
        parse_dates : list or dict, default: None
            - List of column names to parse as dates.
            - Dict of ``{column_name: format string}`` where format string is
              strftime compatible in case of parsing string times, or is one of
              (D, s, ns, ms, us) in case of parsing integer timestamps.
            - Dict of ``{column_name: arg dict}``, where the arg dict
              corresponds to the keyword arguments of
              :func:`pandas.to_datetime` Especially useful with databases
              without native Datetime support, such as SQLite.
        chunksize : int, default None
            Raises NotImplementedError
        dtype : Type name or dict of columns
            Data type for data or columns. E.g. np.float64 or
            {'a': np.float64, 'b': np.int32, 'c': 'Int64'}

            .. versionadded:: 1.3.0

        Returns
        -------
        DataFrame

        See Also
        --------
        read_sql_table : Read SQL database table into a DataFrame.
        read_sql

        """
        if coerce_float is not True:
            raise NotImplementedError(
                "'coerce_float' is not implemented for ADBC drivers"
            )
        if params:
            raise NotImplementedError("'params' is not implemented for ADBC drivers")
        if chunksize:
            raise NotImplementedError("'chunksize' is not implemented for ADBC drivers")

        mapping: type[ArrowDtype] | None | Callable
        if dtype_backend == "pyarrow":
            mapping = ArrowDtype
        elif dtype_backend == "numpy_nullable":
            from pandas.io._util import _arrow_dtype_mapping

            mapping = _arrow_dtype_mapping().get
        else:
            mapping = None

        with self.con.cursor() as cur:
            cur.execute(sql)
            df = cur.fetch_arrow_table().to_pandas(types_mapper=mapping)

        return _wrap_result_adbc(
            df,
            index_col=index_col,
            parse_dates=parse_dates,
            dtype=dtype,
        )

    read_sql = read_query

    def to_sql(
        self,
        frame,
        name: str,
        if_exists: Literal["fail", "replace", "append"] = "fail",
        index: bool = True,
        index_label=None,
        schema: str | None = None,
        chunksize: int | None = None,
        dtype: DtypeArg | None = None,
        method: Literal["multi"] | Callable | None = None,
        engine: str = "auto",
        **engine_kwargs,
    ) -> int | None:
        """
        Write records stored in a DataFrame to a SQL database.

        Parameters
        ----------
        frame : DataFrame
        name : string
            Name of SQL table.
        if_exists : {'fail', 'replace', 'append'}, default 'fail'
            - fail: If table exists, do nothing.
            - replace: If table exists, drop it, recreate it, and insert data.
            - append: If table exists, insert data. Create if does not exist.
        index : boolean, default True
            Write DataFrame index as a column.
        index_label : string or sequence, default None
            Raises NotImplementedError
        schema : string, default None
            Name of SQL schema in database to write to (if database flavor
            supports this). If specified, this overwrites the default
            schema of the SQLDatabase object.
        chunksize : int, default None
            Raises NotImplementedError
        dtype : single type or dict of column name to SQL type, default None
            Raises NotImplementedError
        method : {None', 'multi', callable}, default None
            Raises NotImplementedError
        engine : {'auto', 'sqlalchemy'}, default 'auto'
            Raises NotImplementedError if not set to 'auto'
        """
        if index_label:
            raise NotImplementedError(
                "'index_label' is not implemented for ADBC drivers"
            )
        if chunksize:
            raise NotImplementedError("'chunksize' is not implemented for ADBC drivers")
        if dtype:
            raise NotImplementedError("'dtype' is not implemented for ADBC drivers")
        if method:
            raise NotImplementedError("'method' is not implemented for ADBC drivers")
        if engine != "auto":
            raise NotImplementedError(
                "engine != 'auto' not implemented for ADBC drivers"
            )

        if schema:
            table_name = f"{schema}.{name}"
        else:
            table_name = name

        # pandas if_exists="append" will still create the
        # table if it does not exist; ADBC is more explicit with append/create
        # as applicable modes, so the semantics get blurred across
        # the libraries
        mode = "create"
        if self.has_table(name, schema):
            if if_exists == "fail":
                raise ValueError(f"Table '{table_name}' already exists.")
            elif if_exists == "replace":
                with self.con.cursor() as cur:
                    cur.execute(f"DROP TABLE {table_name}")
            elif if_exists == "append":
                mode = "append"

        import pyarrow as pa

        try:
            tbl = pa.Table.from_pandas(frame, preserve_index=index)
        except pa.ArrowNotImplementedError as exc:
            raise ValueError("datatypes not supported") from exc

        with self.con.cursor() as cur:
            total_inserted = cur.adbc_ingest(
                table_name=name, data=tbl, mode=mode, db_schema_name=schema
            )

        self.con.commit()
        return total_inserted

    def has_table(self, name: str, schema: str | None = None) -> bool:
        meta = self.con.adbc_get_objects(
            db_schema_filter=schema, table_name_filter=name
        ).read_all()

        for catalog_schema in meta["catalog_db_schemas"].to_pylist():
            if not catalog_schema:
                continue
            for schema_record in catalog_schema:
                if not schema_record:
                    continue

                for table_record in schema_record["db_schema_tables"]:
                    if table_record["table_name"] == name:
                        return True

        return False

    def _create_sql_schema(
        self,
        frame: DataFrame,
        table_name: str,
        keys: list[str] | None = None,
        dtype: DtypeArg | None = None,
        schema: str | None = None,
    ) -> str:
        raise NotImplementedError("not implemented for adbc")


# sqlite-specific sql strings and handler class
# dictionary used for readability purposes
_SQL_TYPES = {
    "string": "TEXT",
    "floating": "REAL",
    "integer": "INTEGER",
    "datetime": "TIMESTAMP",
    "date": "DATE",
    "time": "TIME",
    "boolean": "INTEGER",
}


def _get_unicode_name(name: object):
    try:
        uname = str(name).encode("utf-8", "strict").decode("utf-8")
    except UnicodeError as err:
        raise ValueError(f"Cannot convert identifier to UTF-8: '{name}'") from err
    return uname


def _get_valid_sqlite_name(name: object):
    # See https://stackoverflow.com/questions/6514274/how-do-you-escape-strings\
    # -for-sqlite-table-column-names-in-python
    # Ensure the string can be encoded as UTF-8.
    # Ensure the string does not include any NUL characters.
    # Replace all " with "".
    # Wrap the entire thing in double quotes.

    uname = _get_unicode_name(name)
    if not len(uname):
        raise ValueError("Empty table or column name specified")

    nul_index = uname.find("\x00")
    if nul_index >= 0:
        raise ValueError("SQLite identifier cannot contain NULs")
    return '"' + uname.replace('"', '""') + '"'


class SQLiteTable(SQLTable):
    """
    Patch the SQLTable for fallback support.
    Instead of a table variable just use the Create Table statement.
    """

    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)

        self._register_date_adapters()

    def _register_date_adapters(self) -> None:
        # GH 8341
        # register an adapter callable for datetime.time object
        import sqlite3

        # this will transform time(12,34,56,789) into '12:34:56.000789'
        # (this is what sqlalchemy does)
        def _adapt_time(t) -> str:
            # This is faster than strftime
            return f"{t.hour:02d}:{t.minute:02d}:{t.second:02d}.{t.microsecond:06d}"

        # Also register adapters for date/datetime and co
        # xref https://docs.python.org/3.12/library/sqlite3.html#adapter-and-converter-recipes
        # Python 3.12+ doesn't auto-register adapters for us anymore

        adapt_date_iso = lambda val: val.isoformat()
        adapt_datetime_iso = lambda val: val.isoformat(" ")

        sqlite3.register_adapter(time, _adapt_time)

        sqlite3.register_adapter(date, adapt_date_iso)
        sqlite3.register_adapter(datetime, adapt_datetime_iso)

        convert_date = lambda val: date.fromisoformat(val.decode())
        convert_timestamp = lambda val: datetime.fromisoformat(val.decode())

        sqlite3.register_converter("date", convert_date)
        sqlite3.register_converter("timestamp", convert_timestamp)

    def sql_schema(self) -> str:
        return str(";\n".join(self.table))

    def _execute_create(self) -> None:
        with self.pd_sql.run_transaction() as conn:
            for stmt in self.table:
                conn.execute(stmt)

    def insert_statement(self, *, num_rows: int) -> str:
        names = list(map(str, self.frame.columns))
        wld = "?"  # wildcard char
        escape = _get_valid_sqlite_name

        if self.index is not None:
            for idx in self.index[::-1]:
                names.insert(0, idx)

        bracketed_names = [escape(column) for column in names]
        col_names = ",".join(bracketed_names)

        row_wildcards = ",".join([wld] * len(names))
        wildcards = ",".join([f"({row_wildcards})" for _ in range(num_rows)])
        insert_statement = (
            f"INSERT INTO {escape(self.name)} ({col_names}) VALUES {wildcards}"
        )
        return insert_statement

    def _execute_insert(self, conn, keys, data_iter) -> int:
        data_list = list(data_iter)
        conn.executemany(self.insert_statement(num_rows=1), data_list)
        return conn.rowcount

    def _execute_insert_multi(self, conn, keys, data_iter) -> int:
        data_list = list(data_iter)
        flattened_data = [x for row in data_list for x in row]
        conn.execute(self.insert_statement(num_rows=len(data_list)), flattened_data)
        return conn.rowcount

    def _create_table_setup(self):
        """
        Return a list of SQL statements that creates a table reflecting the
        structure of a DataFrame.  The first entry will be a CREATE TABLE
        statement while the rest will be CREATE INDEX statements.
        """
        column_names_and_types = self._get_column_names_and_types(self._sql_type_name)
        escape = _get_valid_sqlite_name

        create_tbl_stmts = [
            escape(cname) + " " + ctype for cname, ctype, _ in column_names_and_types
        ]

        if self.keys is not None and len(self.keys):
            if not is_list_like(self.keys):
                keys = [self.keys]
            else:
                keys = self.keys
            cnames_br = ", ".join([escape(c) for c in keys])
            create_tbl_stmts.append(
                f"CONSTRAINT {self.name}_pk PRIMARY KEY ({cnames_br})"
            )
        if self.schema:
            schema_name = self.schema + "."
        else:
            schema_name = ""
        create_stmts = [
            "CREATE TABLE "
            + schema_name
            + escape(self.name)
            + " (\n"
            + ",\n  ".join(create_tbl_stmts)
            + "\n)"
        ]

        ix_cols = [cname for cname, _, is_index in column_names_and_types if is_index]
        if len(ix_cols):
            cnames = "_".join(ix_cols)
            cnames_br = ",".join([escape(c) for c in ix_cols])
            create_stmts.append(
                "CREATE INDEX "
                + escape("ix_" + self.name + "_" + cnames)
                + "ON "
                + escape(self.name)
                + " ("
                + cnames_br
                + ")"
            )

        return create_stmts

    def _sql_type_name(self, col):
        dtype: DtypeArg = self.dtype or {}
        if is_dict_like(dtype):
            dtype = cast(dict, dtype)
            if col.name in dtype:
                return dtype[col.name]

        # Infer type of column, while ignoring missing values.
        # Needed for inserting typed data containing NULLs, GH 8778.
        col_type = lib.infer_dtype(col, skipna=True)

        if col_type == "timedelta64":
            warnings.warn(
                "the 'timedelta' type is not supported, and will be "
                "written as integer values (ns frequency) to the database.",
                UserWarning,
                stacklevel=find_stack_level(),
            )
            col_type = "integer"

        elif col_type == "datetime64":
            col_type = "datetime"

        elif col_type == "empty":
            col_type = "string"

        elif col_type == "complex":
            raise ValueError("Complex datatypes not supported")

        if col_type not in _SQL_TYPES:
            col_type = "string"

        return _SQL_TYPES[col_type]


class SQLiteDatabase(PandasSQL):
    """
    Version of SQLDatabase to support SQLite connections (fallback without
    SQLAlchemy). This should only be used internally.

    Parameters
    ----------
    con : sqlite connection object

    """

    def __init__(self, con) -> None:
        self.con = con

    @contextmanager
    def run_transaction(self):
        cur = self.con.cursor()
        try:
            yield cur
            self.con.commit()
        except Exception:
            self.con.rollback()
            raise
        finally:
            cur.close()

    def execute(self, sql: str | Select | TextClause, params=None):
        if not isinstance(sql, str):
            raise TypeError("Query must be a string unless using sqlalchemy.")
        args = [] if params is None else [params]
        cur = self.con.cursor()
        try:
            cur.execute(sql, *args)
            return cur
        except Exception as exc:
            try:
                self.con.rollback()
            except Exception as inner_exc:  # pragma: no cover
                ex = DatabaseError(
                    f"Execution failed on sql: {sql}\n{exc}\nunable to rollback"
                )
                raise ex from inner_exc

            ex = DatabaseError(f"Execution failed on sql '{sql}': {exc}")
            raise ex from exc

    @staticmethod
    def _query_iterator(
        cursor,
        chunksize: int,
        columns,
        index_col=None,
        coerce_float: bool = True,
        parse_dates=None,
        dtype: DtypeArg | None = None,
        dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
    ):
        """Return generator through chunked result set"""
        has_read_data = False
        while True:
            data = cursor.fetchmany(chunksize)
            if type(data) == tuple:
                data = list(data)
            if not data:
                cursor.close()
                if not has_read_data:
                    result = DataFrame.from_records(
                        [], columns=columns, coerce_float=coerce_float
                    )
                    if dtype:
                        result = result.astype(dtype)
                    yield result
                break

            has_read_data = True
            yield _wrap_result(
                data,
                columns,
                index_col=index_col,
                coerce_float=coerce_float,
                parse_dates=parse_dates,
                dtype=dtype,
                dtype_backend=dtype_backend,
            )

    def read_query(
        self,
        sql,
        index_col=None,
        coerce_float: bool = True,
        parse_dates=None,
        params=None,
        chunksize: int | None = None,
        dtype: DtypeArg | None = None,
        dtype_backend: DtypeBackend | Literal["numpy"] = "numpy",
    ) -> DataFrame | Iterator[DataFrame]:
        cursor = self.execute(sql, params)
        columns = [col_desc[0] for col_desc in cursor.description]

        if chunksize is not None:
            return self._query_iterator(
                cursor,
                chunksize,
                columns,
                index_col=index_col,
                coerce_float=coerce_float,
                parse_dates=parse_dates,
                dtype=dtype,
                dtype_backend=dtype_backend,
            )
        else:
            data = self._fetchall_as_list(cursor)
            cursor.close()

            frame = _wrap_result(
                data,
                columns,
                index_col=index_col,
                coerce_float=coerce_float,
                parse_dates=parse_dates,
                dtype=dtype,
                dtype_backend=dtype_backend,
            )
            return frame

    def _fetchall_as_list(self, cur):
        result = cur.fetchall()
        if not isinstance(result, list):
            result = list(result)
        return result

    def to_sql(
        self,
        frame,
        name: str,
        if_exists: str = "fail",
        index: bool = True,
        index_label=None,
        schema=None,
        chunksize: int | None = None,
        dtype: DtypeArg | None = None,
        method: Literal["multi"] | Callable | None = None,
        engine: str = "auto",
        **engine_kwargs,
    ) -> int | None:
        """
        Write records stored in a DataFrame to a SQL database.

        Parameters
        ----------
        frame: DataFrame
        name: string
            Name of SQL table.
        if_exists: {'fail', 'replace', 'append'}, default 'fail'
            fail: If table exists, do nothing.
            replace: If table exists, drop it, recreate it, and insert data.
            append: If table exists, insert data. Create if it does not exist.
        index : bool, default True
            Write DataFrame index as a column
        index_label : string or sequence, default None
            Column label for index column(s). If None is given (default) and
            `index` is True, then the index names are used.
            A sequence should be given if the DataFrame uses MultiIndex.
        schema : string, default None
            Ignored parameter included for compatibility with SQLAlchemy
            version of ``to_sql``.
        chunksize : int, default None
            If not None, then rows will be written in batches of this
            size at a time. If None, all rows will be written at once.
        dtype : single type or dict of column name to SQL type, default None
            Optional specifying the datatype for columns. The SQL type should
            be a string. If all columns are of the same type, one single value
            can be used.
        method : {None, 'multi', callable}, default None
            Controls the SQL insertion clause used:

            * None : Uses standard SQL ``INSERT`` clause (one per row).
            * 'multi': Pass multiple values in a single ``INSERT`` clause.
            * callable with signature ``(pd_table, conn, keys, data_iter)``.

            Details and a sample callable implementation can be found in the
            section :ref:`insert method <io.sql.method>`.
        """
        if dtype:
            if not is_dict_like(dtype):
                # error: Value expression in dictionary comprehension has incompatible
                # type "Union[ExtensionDtype, str, dtype[Any], Type[object],
                # Dict[Hashable, Union[ExtensionDtype, Union[str, dtype[Any]],
                # Type[str], Type[float], Type[int], Type[complex], Type[bool],
                # Type[object]]]]"; expected type "Union[ExtensionDtype, str,
                # dtype[Any], Type[object]]"
                dtype = {col_name: dtype for col_name in frame}  # type: ignore[misc]
            else:
                dtype = cast(dict, dtype)

            for col, my_type in dtype.items():
                if not isinstance(my_type, str):
                    raise ValueError(f"{col} ({my_type}) not a string")

        table = SQLiteTable(
            name,
            self,
            frame=frame,
            index=index,
            if_exists=if_exists,
            index_label=index_label,
            dtype=dtype,
        )
        table.create()
        return table.insert(chunksize, method)

    def has_table(self, name: str, schema: str | None = None) -> bool:
        wld = "?"
        query = f"""
        SELECT
            name
        FROM
            sqlite_master
        WHERE
            type IN ('table', 'view')
            AND name={wld};
        """

        return len(self.execute(query, [name]).fetchall()) > 0

    def get_table(self, table_name: str, schema: str | None = None) -> None:
        return None  # not supported in fallback mode

    def drop_table(self, name: str, schema: str | None = None) -> None:
        drop_sql = f"DROP TABLE {_get_valid_sqlite_name(name)}"
        self.execute(drop_sql)

    def _create_sql_schema(
        self,
        frame,
        table_name: str,
        keys=None,
        dtype: DtypeArg | None = None,
        schema: str | None = None,
    ) -> str:
        table = SQLiteTable(
            table_name,
            self,
            frame=frame,
            index=False,
            keys=keys,
            dtype=dtype,
            schema=schema,
        )
        return str(table.sql_schema())


def get_schema(
    frame,
    name: str,
    keys=None,
    con=None,
    dtype: DtypeArg | None = None,
    schema: str | None = None,
) -> str:
    """
    Get the SQL db table schema for the given frame.

    Parameters
    ----------
    frame : DataFrame
    name : str
        name of SQL table
    keys : string or sequence, default: None
        columns to use a primary key
    con: ADBC Connection, SQLAlchemy connectable, sqlite3 connection, default: None
        ADBC provides high performance I/O with native type support, where available.
        Using SQLAlchemy makes it possible to use any DB supported by that
        library
        If a DBAPI2 object, only sqlite3 is supported.
    dtype : dict of column name to SQL type, default None
        Optional specifying the datatype for columns. The SQL type should
        be a SQLAlchemy type, or a string for sqlite3 fallback connection.
    schema: str, default: None
        Optional specifying the schema to be used in creating the table.
    """
    with pandasSQL_builder(con=con) as pandas_sql:
        return pandas_sql._create_sql_schema(
            frame, name, keys=keys, dtype=dtype, schema=schema
        )