File size: 49,443 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
from __future__ import annotations

from collections import defaultdict
from copy import copy
import csv
import datetime
from enum import Enum
import itertools
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    cast,
    final,
    overload,
)
import warnings

import numpy as np

from pandas._libs import (
    lib,
    parsers,
)
import pandas._libs.ops as libops
from pandas._libs.parsers import STR_NA_VALUES
from pandas._libs.tslibs import parsing
from pandas.compat._optional import import_optional_dependency
from pandas.errors import (
    ParserError,
    ParserWarning,
)
from pandas.util._exceptions import find_stack_level

from pandas.core.dtypes.astype import astype_array
from pandas.core.dtypes.common import (
    ensure_object,
    is_bool_dtype,
    is_dict_like,
    is_extension_array_dtype,
    is_float_dtype,
    is_integer,
    is_integer_dtype,
    is_list_like,
    is_object_dtype,
    is_scalar,
    is_string_dtype,
    pandas_dtype,
)
from pandas.core.dtypes.dtypes import (
    CategoricalDtype,
    ExtensionDtype,
)
from pandas.core.dtypes.missing import isna

from pandas import (
    ArrowDtype,
    DataFrame,
    DatetimeIndex,
    StringDtype,
    concat,
)
from pandas.core import algorithms
from pandas.core.arrays import (
    ArrowExtensionArray,
    BaseMaskedArray,
    BooleanArray,
    Categorical,
    ExtensionArray,
    FloatingArray,
    IntegerArray,
)
from pandas.core.arrays.boolean import BooleanDtype
from pandas.core.indexes.api import (
    Index,
    MultiIndex,
    default_index,
    ensure_index_from_sequences,
)
from pandas.core.series import Series
from pandas.core.tools import datetimes as tools

from pandas.io.common import is_potential_multi_index

if TYPE_CHECKING:
    from collections.abc import (
        Hashable,
        Iterable,
        Mapping,
        Sequence,
    )

    from pandas._typing import (
        ArrayLike,
        DtypeArg,
        DtypeObj,
        Scalar,
    )


class ParserBase:
    class BadLineHandleMethod(Enum):
        ERROR = 0
        WARN = 1
        SKIP = 2

    _implicit_index: bool
    _first_chunk: bool
    keep_default_na: bool
    dayfirst: bool
    cache_dates: bool
    keep_date_col: bool
    usecols_dtype: str | None

    def __init__(self, kwds) -> None:
        self._implicit_index = False

        self.names = kwds.get("names")
        self.orig_names: Sequence[Hashable] | None = None

        self.index_col = kwds.get("index_col", None)
        self.unnamed_cols: set = set()
        self.index_names: Sequence[Hashable] | None = None
        self.col_names: Sequence[Hashable] | None = None

        self.parse_dates = _validate_parse_dates_arg(kwds.pop("parse_dates", False))
        self._parse_date_cols: Iterable = []
        self.date_parser = kwds.pop("date_parser", lib.no_default)
        self.date_format = kwds.pop("date_format", None)
        self.dayfirst = kwds.pop("dayfirst", False)
        self.keep_date_col = kwds.pop("keep_date_col", False)

        self.na_values = kwds.get("na_values")
        self.na_fvalues = kwds.get("na_fvalues")
        self.na_filter = kwds.get("na_filter", False)
        self.keep_default_na = kwds.get("keep_default_na", True)

        self.dtype = copy(kwds.get("dtype", None))
        self.converters = kwds.get("converters")
        self.dtype_backend = kwds.get("dtype_backend")

        self.true_values = kwds.get("true_values")
        self.false_values = kwds.get("false_values")
        self.cache_dates = kwds.pop("cache_dates", True)

        self._date_conv = _make_date_converter(
            date_parser=self.date_parser,
            date_format=self.date_format,
            dayfirst=self.dayfirst,
            cache_dates=self.cache_dates,
        )

        # validate header options for mi
        self.header = kwds.get("header")
        if is_list_like(self.header, allow_sets=False):
            if kwds.get("usecols"):
                raise ValueError(
                    "cannot specify usecols when specifying a multi-index header"
                )
            if kwds.get("names"):
                raise ValueError(
                    "cannot specify names when specifying a multi-index header"
                )

            # validate index_col that only contains integers
            if self.index_col is not None:
                # In this case we can pin down index_col as list[int]
                if is_integer(self.index_col):
                    self.index_col = [self.index_col]
                elif not (
                    is_list_like(self.index_col, allow_sets=False)
                    and all(map(is_integer, self.index_col))
                ):
                    raise ValueError(
                        "index_col must only contain row numbers "
                        "when specifying a multi-index header"
                    )
                else:
                    self.index_col = list(self.index_col)

        self._name_processed = False

        self._first_chunk = True

        self.usecols, self.usecols_dtype = self._validate_usecols_arg(kwds["usecols"])

        # Fallback to error to pass a sketchy test(test_override_set_noconvert_columns)
        # Normally, this arg would get pre-processed earlier on
        self.on_bad_lines = kwds.get("on_bad_lines", self.BadLineHandleMethod.ERROR)

    def _validate_parse_dates_presence(self, columns: Sequence[Hashable]) -> Iterable:
        """
        Check if parse_dates are in columns.

        If user has provided names for parse_dates, check if those columns
        are available.

        Parameters
        ----------
        columns : list
            List of names of the dataframe.

        Returns
        -------
        The names of the columns which will get parsed later if a dict or list
        is given as specification.

        Raises
        ------
        ValueError
            If column to parse_date is not in dataframe.

        """
        cols_needed: Iterable
        if is_dict_like(self.parse_dates):
            cols_needed = itertools.chain(*self.parse_dates.values())
        elif is_list_like(self.parse_dates):
            # a column in parse_dates could be represented
            # ColReference = Union[int, str]
            # DateGroups = List[ColReference]
            # ParseDates = Union[DateGroups, List[DateGroups],
            #     Dict[ColReference, DateGroups]]
            cols_needed = itertools.chain.from_iterable(
                col if is_list_like(col) and not isinstance(col, tuple) else [col]
                for col in self.parse_dates
            )
        else:
            cols_needed = []

        cols_needed = list(cols_needed)

        # get only columns that are references using names (str), not by index
        missing_cols = ", ".join(
            sorted(
                {
                    col
                    for col in cols_needed
                    if isinstance(col, str) and col not in columns
                }
            )
        )
        if missing_cols:
            raise ValueError(
                f"Missing column provided to 'parse_dates': '{missing_cols}'"
            )
        # Convert positions to actual column names
        return [
            col if (isinstance(col, str) or col in columns) else columns[col]
            for col in cols_needed
        ]

    def close(self) -> None:
        pass

    @final
    @property
    def _has_complex_date_col(self) -> bool:
        return isinstance(self.parse_dates, dict) or (
            isinstance(self.parse_dates, list)
            and len(self.parse_dates) > 0
            and isinstance(self.parse_dates[0], list)
        )

    @final
    def _should_parse_dates(self, i: int) -> bool:
        if lib.is_bool(self.parse_dates):
            return bool(self.parse_dates)
        else:
            if self.index_names is not None:
                name = self.index_names[i]
            else:
                name = None
            j = i if self.index_col is None else self.index_col[i]

            return (j in self.parse_dates) or (
                name is not None and name in self.parse_dates
            )

    @final
    def _extract_multi_indexer_columns(
        self,
        header,
        index_names: Sequence[Hashable] | None,
        passed_names: bool = False,
    ) -> tuple[
        Sequence[Hashable], Sequence[Hashable] | None, Sequence[Hashable] | None, bool
    ]:
        """
        Extract and return the names, index_names, col_names if the column
        names are a MultiIndex.

        Parameters
        ----------
        header: list of lists
            The header rows
        index_names: list, optional
            The names of the future index
        passed_names: bool, default False
            A flag specifying if names where passed

        """
        if len(header) < 2:
            return header[0], index_names, None, passed_names

        # the names are the tuples of the header that are not the index cols
        # 0 is the name of the index, assuming index_col is a list of column
        # numbers
        ic = self.index_col
        if ic is None:
            ic = []

        if not isinstance(ic, (list, tuple, np.ndarray)):
            ic = [ic]
        sic = set(ic)

        # clean the index_names
        index_names = header.pop(-1)
        index_names, _, _ = self._clean_index_names(index_names, self.index_col)

        # extract the columns
        field_count = len(header[0])

        # check if header lengths are equal
        if not all(len(header_iter) == field_count for header_iter in header[1:]):
            raise ParserError("Header rows must have an equal number of columns.")

        def extract(r):
            return tuple(r[i] for i in range(field_count) if i not in sic)

        columns = list(zip(*(extract(r) for r in header)))
        names = columns.copy()
        for single_ic in sorted(ic):
            names.insert(single_ic, single_ic)

        # Clean the column names (if we have an index_col).
        if len(ic):
            col_names = [
                r[ic[0]]
                if ((r[ic[0]] is not None) and r[ic[0]] not in self.unnamed_cols)
                else None
                for r in header
            ]
        else:
            col_names = [None] * len(header)

        passed_names = True

        return names, index_names, col_names, passed_names

    @final
    def _maybe_make_multi_index_columns(
        self,
        columns: Sequence[Hashable],
        col_names: Sequence[Hashable] | None = None,
    ) -> Sequence[Hashable] | MultiIndex:
        # possibly create a column mi here
        if is_potential_multi_index(columns):
            list_columns = cast(list[tuple], columns)
            return MultiIndex.from_tuples(list_columns, names=col_names)
        return columns

    @final
    def _make_index(
        self, data, alldata, columns, indexnamerow: list[Scalar] | None = None
    ) -> tuple[Index | None, Sequence[Hashable] | MultiIndex]:
        index: Index | None
        if not is_index_col(self.index_col) or not self.index_col:
            index = None

        elif not self._has_complex_date_col:
            simple_index = self._get_simple_index(alldata, columns)
            index = self._agg_index(simple_index)
        elif self._has_complex_date_col:
            if not self._name_processed:
                (self.index_names, _, self.index_col) = self._clean_index_names(
                    list(columns), self.index_col
                )
                self._name_processed = True
            date_index = self._get_complex_date_index(data, columns)
            index = self._agg_index(date_index, try_parse_dates=False)

        # add names for the index
        if indexnamerow:
            coffset = len(indexnamerow) - len(columns)
            assert index is not None
            index = index.set_names(indexnamerow[:coffset])

        # maybe create a mi on the columns
        columns = self._maybe_make_multi_index_columns(columns, self.col_names)

        return index, columns

    @final
    def _get_simple_index(self, data, columns):
        def ix(col):
            if not isinstance(col, str):
                return col
            raise ValueError(f"Index {col} invalid")

        to_remove = []
        index = []
        for idx in self.index_col:
            i = ix(idx)
            to_remove.append(i)
            index.append(data[i])

        # remove index items from content and columns, don't pop in
        # loop
        for i in sorted(to_remove, reverse=True):
            data.pop(i)
            if not self._implicit_index:
                columns.pop(i)

        return index

    @final
    def _get_complex_date_index(self, data, col_names):
        def _get_name(icol):
            if isinstance(icol, str):
                return icol

            if col_names is None:
                raise ValueError(f"Must supply column order to use {icol!s} as index")

            for i, c in enumerate(col_names):
                if i == icol:
                    return c

        to_remove = []
        index = []
        for idx in self.index_col:
            name = _get_name(idx)
            to_remove.append(name)
            index.append(data[name])

        # remove index items from content and columns, don't pop in
        # loop
        for c in sorted(to_remove, reverse=True):
            data.pop(c)
            col_names.remove(c)

        return index

    @final
    def _clean_mapping(self, mapping):
        """converts col numbers to names"""
        if not isinstance(mapping, dict):
            return mapping
        clean = {}
        # for mypy
        assert self.orig_names is not None

        for col, v in mapping.items():
            if isinstance(col, int) and col not in self.orig_names:
                col = self.orig_names[col]
            clean[col] = v
        if isinstance(mapping, defaultdict):
            remaining_cols = set(self.orig_names) - set(clean.keys())
            clean.update({col: mapping[col] for col in remaining_cols})
        return clean

    @final
    def _agg_index(self, index, try_parse_dates: bool = True) -> Index:
        arrays = []
        converters = self._clean_mapping(self.converters)

        for i, arr in enumerate(index):
            if try_parse_dates and self._should_parse_dates(i):
                arr = self._date_conv(
                    arr,
                    col=self.index_names[i] if self.index_names is not None else None,
                )

            if self.na_filter:
                col_na_values = self.na_values
                col_na_fvalues = self.na_fvalues
            else:
                col_na_values = set()
                col_na_fvalues = set()

            if isinstance(self.na_values, dict):
                assert self.index_names is not None
                col_name = self.index_names[i]
                if col_name is not None:
                    col_na_values, col_na_fvalues = _get_na_values(
                        col_name, self.na_values, self.na_fvalues, self.keep_default_na
                    )

            clean_dtypes = self._clean_mapping(self.dtype)

            cast_type = None
            index_converter = False
            if self.index_names is not None:
                if isinstance(clean_dtypes, dict):
                    cast_type = clean_dtypes.get(self.index_names[i], None)

                if isinstance(converters, dict):
                    index_converter = converters.get(self.index_names[i]) is not None

            try_num_bool = not (
                cast_type and is_string_dtype(cast_type) or index_converter
            )

            arr, _ = self._infer_types(
                arr, col_na_values | col_na_fvalues, cast_type is None, try_num_bool
            )
            arrays.append(arr)

        names = self.index_names
        index = ensure_index_from_sequences(arrays, names)

        return index

    @final
    def _convert_to_ndarrays(
        self,
        dct: Mapping,
        na_values,
        na_fvalues,
        verbose: bool = False,
        converters=None,
        dtypes=None,
    ):
        result = {}
        for c, values in dct.items():
            conv_f = None if converters is None else converters.get(c, None)
            if isinstance(dtypes, dict):
                cast_type = dtypes.get(c, None)
            else:
                # single dtype or None
                cast_type = dtypes

            if self.na_filter:
                col_na_values, col_na_fvalues = _get_na_values(
                    c, na_values, na_fvalues, self.keep_default_na
                )
            else:
                col_na_values, col_na_fvalues = set(), set()

            if c in self._parse_date_cols:
                # GH#26203 Do not convert columns which get converted to dates
                # but replace nans to ensure to_datetime works
                mask = algorithms.isin(values, set(col_na_values) | col_na_fvalues)
                np.putmask(values, mask, np.nan)
                result[c] = values
                continue

            if conv_f is not None:
                # conv_f applied to data before inference
                if cast_type is not None:
                    warnings.warn(
                        (
                            "Both a converter and dtype were specified "
                            f"for column {c} - only the converter will be used."
                        ),
                        ParserWarning,
                        stacklevel=find_stack_level(),
                    )

                try:
                    values = lib.map_infer(values, conv_f)
                except ValueError:
                    mask = algorithms.isin(values, list(na_values)).view(np.uint8)
                    values = lib.map_infer_mask(values, conv_f, mask)

                cvals, na_count = self._infer_types(
                    values,
                    set(col_na_values) | col_na_fvalues,
                    cast_type is None,
                    try_num_bool=False,
                )
            else:
                is_ea = is_extension_array_dtype(cast_type)
                is_str_or_ea_dtype = is_ea or is_string_dtype(cast_type)
                # skip inference if specified dtype is object
                # or casting to an EA
                try_num_bool = not (cast_type and is_str_or_ea_dtype)

                # general type inference and conversion
                cvals, na_count = self._infer_types(
                    values,
                    set(col_na_values) | col_na_fvalues,
                    cast_type is None,
                    try_num_bool,
                )

                # type specified in dtype param or cast_type is an EA
                if cast_type is not None:
                    cast_type = pandas_dtype(cast_type)
                if cast_type and (cvals.dtype != cast_type or is_ea):
                    if not is_ea and na_count > 0:
                        if is_bool_dtype(cast_type):
                            raise ValueError(f"Bool column has NA values in column {c}")
                    cvals = self._cast_types(cvals, cast_type, c)

            result[c] = cvals
            if verbose and na_count:
                print(f"Filled {na_count} NA values in column {c!s}")
        return result

    @final
    def _set_noconvert_dtype_columns(
        self, col_indices: list[int], names: Sequence[Hashable]
    ) -> set[int]:
        """
        Set the columns that should not undergo dtype conversions.

        Currently, any column that is involved with date parsing will not
        undergo such conversions. If usecols is specified, the positions of the columns
        not to cast is relative to the usecols not to all columns.

        Parameters
        ----------
        col_indices: The indices specifying order and positions of the columns
        names: The column names which order is corresponding with the order
               of col_indices

        Returns
        -------
        A set of integers containing the positions of the columns not to convert.
        """
        usecols: list[int] | list[str] | None
        noconvert_columns = set()
        if self.usecols_dtype == "integer":
            # A set of integers will be converted to a list in
            # the correct order every single time.
            usecols = sorted(self.usecols)
        elif callable(self.usecols) or self.usecols_dtype not in ("empty", None):
            # The names attribute should have the correct columns
            # in the proper order for indexing with parse_dates.
            usecols = col_indices
        else:
            # Usecols is empty.
            usecols = None

        def _set(x) -> int:
            if usecols is not None and is_integer(x):
                x = usecols[x]

            if not is_integer(x):
                x = col_indices[names.index(x)]

            return x

        if isinstance(self.parse_dates, list):
            for val in self.parse_dates:
                if isinstance(val, list):
                    for k in val:
                        noconvert_columns.add(_set(k))
                else:
                    noconvert_columns.add(_set(val))

        elif isinstance(self.parse_dates, dict):
            for val in self.parse_dates.values():
                if isinstance(val, list):
                    for k in val:
                        noconvert_columns.add(_set(k))
                else:
                    noconvert_columns.add(_set(val))

        elif self.parse_dates:
            if isinstance(self.index_col, list):
                for k in self.index_col:
                    noconvert_columns.add(_set(k))
            elif self.index_col is not None:
                noconvert_columns.add(_set(self.index_col))

        return noconvert_columns

    @final
    def _infer_types(
        self, values, na_values, no_dtype_specified, try_num_bool: bool = True
    ) -> tuple[ArrayLike, int]:
        """
        Infer types of values, possibly casting

        Parameters
        ----------
        values : ndarray
        na_values : set
        no_dtype_specified: Specifies if we want to cast explicitly
        try_num_bool : bool, default try
           try to cast values to numeric (first preference) or boolean

        Returns
        -------
        converted : ndarray or ExtensionArray
        na_count : int
        """
        na_count = 0
        if issubclass(values.dtype.type, (np.number, np.bool_)):
            # If our array has numeric dtype, we don't have to check for strings in isin
            na_values = np.array([val for val in na_values if not isinstance(val, str)])
            mask = algorithms.isin(values, na_values)
            na_count = mask.astype("uint8", copy=False).sum()
            if na_count > 0:
                if is_integer_dtype(values):
                    values = values.astype(np.float64)
                np.putmask(values, mask, np.nan)
            return values, na_count

        dtype_backend = self.dtype_backend
        non_default_dtype_backend = (
            no_dtype_specified and dtype_backend is not lib.no_default
        )
        result: ArrayLike

        if try_num_bool and is_object_dtype(values.dtype):
            # exclude e.g DatetimeIndex here
            try:
                result, result_mask = lib.maybe_convert_numeric(
                    values,
                    na_values,
                    False,
                    convert_to_masked_nullable=non_default_dtype_backend,  # type: ignore[arg-type]
                )
            except (ValueError, TypeError):
                # e.g. encountering datetime string gets ValueError
                #  TypeError can be raised in floatify
                na_count = parsers.sanitize_objects(values, na_values)
                result = values
            else:
                if non_default_dtype_backend:
                    if result_mask is None:
                        result_mask = np.zeros(result.shape, dtype=np.bool_)

                    if result_mask.all():
                        result = IntegerArray(
                            np.ones(result_mask.shape, dtype=np.int64), result_mask
                        )
                    elif is_integer_dtype(result):
                        result = IntegerArray(result, result_mask)
                    elif is_bool_dtype(result):
                        result = BooleanArray(result, result_mask)
                    elif is_float_dtype(result):
                        result = FloatingArray(result, result_mask)

                    na_count = result_mask.sum()
                else:
                    na_count = isna(result).sum()
        else:
            result = values
            if values.dtype == np.object_:
                na_count = parsers.sanitize_objects(values, na_values)

        if result.dtype == np.object_ and try_num_bool:
            result, bool_mask = libops.maybe_convert_bool(
                np.asarray(values),
                true_values=self.true_values,
                false_values=self.false_values,
                convert_to_masked_nullable=non_default_dtype_backend,  # type: ignore[arg-type]
            )
            if result.dtype == np.bool_ and non_default_dtype_backend:
                if bool_mask is None:
                    bool_mask = np.zeros(result.shape, dtype=np.bool_)
                result = BooleanArray(result, bool_mask)
            elif result.dtype == np.object_ and non_default_dtype_backend:
                # read_excel sends array of datetime objects
                if not lib.is_datetime_array(result, skipna=True):
                    dtype = StringDtype()
                    cls = dtype.construct_array_type()
                    result = cls._from_sequence(values, dtype=dtype)

        if dtype_backend == "pyarrow":
            pa = import_optional_dependency("pyarrow")
            if isinstance(result, np.ndarray):
                result = ArrowExtensionArray(pa.array(result, from_pandas=True))
            elif isinstance(result, BaseMaskedArray):
                if result._mask.all():
                    # We want an arrow null array here
                    result = ArrowExtensionArray(pa.array([None] * len(result)))
                else:
                    result = ArrowExtensionArray(
                        pa.array(result._data, mask=result._mask)
                    )
            else:
                result = ArrowExtensionArray(
                    pa.array(result.to_numpy(), from_pandas=True)
                )

        return result, na_count

    @final
    def _cast_types(self, values: ArrayLike, cast_type: DtypeObj, column) -> ArrayLike:
        """
        Cast values to specified type

        Parameters
        ----------
        values : ndarray or ExtensionArray
        cast_type : np.dtype or ExtensionDtype
           dtype to cast values to
        column : string
            column name - used only for error reporting

        Returns
        -------
        converted : ndarray or ExtensionArray
        """
        if isinstance(cast_type, CategoricalDtype):
            known_cats = cast_type.categories is not None

            if not is_object_dtype(values.dtype) and not known_cats:
                # TODO: this is for consistency with
                # c-parser which parses all categories
                # as strings
                values = lib.ensure_string_array(
                    values, skipna=False, convert_na_value=False
                )

            cats = Index(values).unique().dropna()
            values = Categorical._from_inferred_categories(
                cats, cats.get_indexer(values), cast_type, true_values=self.true_values
            )

        # use the EA's implementation of casting
        elif isinstance(cast_type, ExtensionDtype):
            array_type = cast_type.construct_array_type()
            try:
                if isinstance(cast_type, BooleanDtype):
                    # error: Unexpected keyword argument "true_values" for
                    # "_from_sequence_of_strings" of "ExtensionArray"
                    return array_type._from_sequence_of_strings(  # type: ignore[call-arg]
                        values,
                        dtype=cast_type,
                        true_values=self.true_values,
                        false_values=self.false_values,
                    )
                else:
                    return array_type._from_sequence_of_strings(values, dtype=cast_type)
            except NotImplementedError as err:
                raise NotImplementedError(
                    f"Extension Array: {array_type} must implement "
                    "_from_sequence_of_strings in order to be used in parser methods"
                ) from err

        elif isinstance(values, ExtensionArray):
            values = values.astype(cast_type, copy=False)
        elif issubclass(cast_type.type, str):
            # TODO: why skipna=True here and False above? some tests depend
            #  on it here, but nothing fails if we change it above
            #  (as no tests get there as of 2022-12-06)
            values = lib.ensure_string_array(
                values, skipna=True, convert_na_value=False
            )
        else:
            try:
                values = astype_array(values, cast_type, copy=True)
            except ValueError as err:
                raise ValueError(
                    f"Unable to convert column {column} to type {cast_type}"
                ) from err
        return values

    @overload
    def _do_date_conversions(
        self,
        names: Index,
        data: DataFrame,
    ) -> tuple[Sequence[Hashable] | Index, DataFrame]:
        ...

    @overload
    def _do_date_conversions(
        self,
        names: Sequence[Hashable],
        data: Mapping[Hashable, ArrayLike],
    ) -> tuple[Sequence[Hashable], Mapping[Hashable, ArrayLike]]:
        ...

    @final
    def _do_date_conversions(
        self,
        names: Sequence[Hashable] | Index,
        data: Mapping[Hashable, ArrayLike] | DataFrame,
    ) -> tuple[Sequence[Hashable] | Index, Mapping[Hashable, ArrayLike] | DataFrame]:
        # returns data, columns

        if self.parse_dates is not None:
            data, names = _process_date_conversion(
                data,
                self._date_conv,
                self.parse_dates,
                self.index_col,
                self.index_names,
                names,
                keep_date_col=self.keep_date_col,
                dtype_backend=self.dtype_backend,
            )

        return names, data

    @final
    def _check_data_length(
        self,
        columns: Sequence[Hashable],
        data: Sequence[ArrayLike],
    ) -> None:
        """Checks if length of data is equal to length of column names.

        One set of trailing commas is allowed. self.index_col not False
        results in a ParserError previously when lengths do not match.

        Parameters
        ----------
        columns: list of column names
        data: list of array-likes containing the data column-wise.
        """
        if not self.index_col and len(columns) != len(data) and columns:
            empty_str = is_object_dtype(data[-1]) and data[-1] == ""
            # error: No overload variant of "__ror__" of "ndarray" matches
            # argument type "ExtensionArray"
            empty_str_or_na = empty_str | isna(data[-1])  # type: ignore[operator]
            if len(columns) == len(data) - 1 and np.all(empty_str_or_na):
                return
            warnings.warn(
                "Length of header or names does not match length of data. This leads "
                "to a loss of data with index_col=False.",
                ParserWarning,
                stacklevel=find_stack_level(),
            )

    @overload
    def _evaluate_usecols(
        self,
        usecols: set[int] | Callable[[Hashable], object],
        names: Sequence[Hashable],
    ) -> set[int]:
        ...

    @overload
    def _evaluate_usecols(
        self, usecols: set[str], names: Sequence[Hashable]
    ) -> set[str]:
        ...

    @final
    def _evaluate_usecols(
        self,
        usecols: Callable[[Hashable], object] | set[str] | set[int],
        names: Sequence[Hashable],
    ) -> set[str] | set[int]:
        """
        Check whether or not the 'usecols' parameter
        is a callable.  If so, enumerates the 'names'
        parameter and returns a set of indices for
        each entry in 'names' that evaluates to True.
        If not a callable, returns 'usecols'.
        """
        if callable(usecols):
            return {i for i, name in enumerate(names) if usecols(name)}
        return usecols

    @final
    def _validate_usecols_names(self, usecols, names: Sequence):
        """
        Validates that all usecols are present in a given
        list of names. If not, raise a ValueError that
        shows what usecols are missing.

        Parameters
        ----------
        usecols : iterable of usecols
            The columns to validate are present in names.
        names : iterable of names
            The column names to check against.

        Returns
        -------
        usecols : iterable of usecols
            The `usecols` parameter if the validation succeeds.

        Raises
        ------
        ValueError : Columns were missing. Error message will list them.
        """
        missing = [c for c in usecols if c not in names]
        if len(missing) > 0:
            raise ValueError(
                f"Usecols do not match columns, columns expected but not found: "
                f"{missing}"
            )

        return usecols

    @final
    def _validate_usecols_arg(self, usecols):
        """
        Validate the 'usecols' parameter.

        Checks whether or not the 'usecols' parameter contains all integers
        (column selection by index), strings (column by name) or is a callable.
        Raises a ValueError if that is not the case.

        Parameters
        ----------
        usecols : list-like, callable, or None
            List of columns to use when parsing or a callable that can be used
            to filter a list of table columns.

        Returns
        -------
        usecols_tuple : tuple
            A tuple of (verified_usecols, usecols_dtype).

            'verified_usecols' is either a set if an array-like is passed in or
            'usecols' if a callable or None is passed in.

            'usecols_dtype` is the inferred dtype of 'usecols' if an array-like
            is passed in or None if a callable or None is passed in.
        """
        msg = (
            "'usecols' must either be list-like of all strings, all unicode, "
            "all integers or a callable."
        )
        if usecols is not None:
            if callable(usecols):
                return usecols, None

            if not is_list_like(usecols):
                # see gh-20529
                #
                # Ensure it is iterable container but not string.
                raise ValueError(msg)

            usecols_dtype = lib.infer_dtype(usecols, skipna=False)

            if usecols_dtype not in ("empty", "integer", "string"):
                raise ValueError(msg)

            usecols = set(usecols)

            return usecols, usecols_dtype
        return usecols, None

    @final
    def _clean_index_names(self, columns, index_col) -> tuple[list | None, list, list]:
        if not is_index_col(index_col):
            return None, columns, index_col

        columns = list(columns)

        # In case of no rows and multiindex columns we have to set index_names to
        # list of Nones GH#38292
        if not columns:
            return [None] * len(index_col), columns, index_col

        cp_cols = list(columns)
        index_names: list[str | int | None] = []

        # don't mutate
        index_col = list(index_col)

        for i, c in enumerate(index_col):
            if isinstance(c, str):
                index_names.append(c)
                for j, name in enumerate(cp_cols):
                    if name == c:
                        index_col[i] = j
                        columns.remove(name)
                        break
            else:
                name = cp_cols[c]
                columns.remove(name)
                index_names.append(name)

        # Only clean index names that were placeholders.
        for i, name in enumerate(index_names):
            if isinstance(name, str) and name in self.unnamed_cols:
                index_names[i] = None

        return index_names, columns, index_col

    @final
    def _get_empty_meta(self, columns, dtype: DtypeArg | None = None):
        columns = list(columns)

        index_col = self.index_col
        index_names = self.index_names

        # Convert `dtype` to a defaultdict of some kind.
        # This will enable us to write `dtype[col_name]`
        # without worrying about KeyError issues later on.
        dtype_dict: defaultdict[Hashable, Any]
        if not is_dict_like(dtype):
            # if dtype == None, default will be object.
            default_dtype = dtype or object
            dtype_dict = defaultdict(lambda: default_dtype)
        else:
            dtype = cast(dict, dtype)
            dtype_dict = defaultdict(
                lambda: object,
                {columns[k] if is_integer(k) else k: v for k, v in dtype.items()},
            )

        # Even though we have no data, the "index" of the empty DataFrame
        # could for example still be an empty MultiIndex. Thus, we need to
        # check whether we have any index columns specified, via either:
        #
        # 1) index_col (column indices)
        # 2) index_names (column names)
        #
        # Both must be non-null to ensure a successful construction. Otherwise,
        # we have to create a generic empty Index.
        index: Index
        if (index_col is None or index_col is False) or index_names is None:
            index = default_index(0)
        else:
            data = [Series([], dtype=dtype_dict[name]) for name in index_names]
            index = ensure_index_from_sequences(data, names=index_names)
            index_col.sort()

            for i, n in enumerate(index_col):
                columns.pop(n - i)

        col_dict = {
            col_name: Series([], dtype=dtype_dict[col_name]) for col_name in columns
        }

        return index, columns, col_dict


def _make_date_converter(
    date_parser=lib.no_default,
    dayfirst: bool = False,
    cache_dates: bool = True,
    date_format: dict[Hashable, str] | str | None = None,
):
    if date_parser is not lib.no_default:
        warnings.warn(
            "The argument 'date_parser' is deprecated and will "
            "be removed in a future version. "
            "Please use 'date_format' instead, or read your data in as 'object' dtype "
            "and then call 'to_datetime'.",
            FutureWarning,
            stacklevel=find_stack_level(),
        )
    if date_parser is not lib.no_default and date_format is not None:
        raise TypeError("Cannot use both 'date_parser' and 'date_format'")

    def unpack_if_single_element(arg):
        # NumPy 1.25 deprecation: https://github.com/numpy/numpy/pull/10615
        if isinstance(arg, np.ndarray) and arg.ndim == 1 and len(arg) == 1:
            return arg[0]
        return arg

    def converter(*date_cols, col: Hashable):
        if len(date_cols) == 1 and date_cols[0].dtype.kind in "Mm":
            return date_cols[0]

        if date_parser is lib.no_default:
            strs = parsing.concat_date_cols(date_cols)
            date_fmt = (
                date_format.get(col) if isinstance(date_format, dict) else date_format
            )

            with warnings.catch_warnings():
                warnings.filterwarnings(
                    "ignore",
                    ".*parsing datetimes with mixed time zones will raise an error",
                    category=FutureWarning,
                )
                str_objs = ensure_object(strs)
                try:
                    result = tools.to_datetime(
                        str_objs,
                        format=date_fmt,
                        utc=False,
                        dayfirst=dayfirst,
                        cache=cache_dates,
                    )
                except (ValueError, TypeError):
                    # test_usecols_with_parse_dates4
                    return str_objs

            if isinstance(result, DatetimeIndex):
                arr = result.to_numpy()
                arr.flags.writeable = True
                return arr
            return result._values
        else:
            try:
                with warnings.catch_warnings():
                    warnings.filterwarnings(
                        "ignore",
                        ".*parsing datetimes with mixed time zones "
                        "will raise an error",
                        category=FutureWarning,
                    )
                    pre_parsed = date_parser(
                        *(unpack_if_single_element(arg) for arg in date_cols)
                    )
                    try:
                        result = tools.to_datetime(
                            pre_parsed,
                            cache=cache_dates,
                        )
                    except (ValueError, TypeError):
                        # test_read_csv_with_custom_date_parser
                        result = pre_parsed
                if isinstance(result, datetime.datetime):
                    raise Exception("scalar parser")
                return result
            except Exception:
                # e.g. test_datetime_fractional_seconds
                with warnings.catch_warnings():
                    warnings.filterwarnings(
                        "ignore",
                        ".*parsing datetimes with mixed time zones "
                        "will raise an error",
                        category=FutureWarning,
                    )
                    pre_parsed = parsing.try_parse_dates(
                        parsing.concat_date_cols(date_cols),
                        parser=date_parser,
                    )
                    try:
                        return tools.to_datetime(pre_parsed)
                    except (ValueError, TypeError):
                        # TODO: not reached in tests 2023-10-27; needed?
                        return pre_parsed

    return converter


parser_defaults = {
    "delimiter": None,
    "escapechar": None,
    "quotechar": '"',
    "quoting": csv.QUOTE_MINIMAL,
    "doublequote": True,
    "skipinitialspace": False,
    "lineterminator": None,
    "header": "infer",
    "index_col": None,
    "names": None,
    "skiprows": None,
    "skipfooter": 0,
    "nrows": None,
    "na_values": None,
    "keep_default_na": True,
    "true_values": None,
    "false_values": None,
    "converters": None,
    "dtype": None,
    "cache_dates": True,
    "thousands": None,
    "comment": None,
    "decimal": ".",
    # 'engine': 'c',
    "parse_dates": False,
    "keep_date_col": False,
    "dayfirst": False,
    "date_parser": lib.no_default,
    "date_format": None,
    "usecols": None,
    # 'iterator': False,
    "chunksize": None,
    "verbose": False,
    "encoding": None,
    "compression": None,
    "skip_blank_lines": True,
    "encoding_errors": "strict",
    "on_bad_lines": ParserBase.BadLineHandleMethod.ERROR,
    "dtype_backend": lib.no_default,
}


def _process_date_conversion(
    data_dict,
    converter: Callable,
    parse_spec,
    index_col,
    index_names,
    columns,
    keep_date_col: bool = False,
    dtype_backend=lib.no_default,
):
    def _isindex(colspec):
        return (isinstance(index_col, list) and colspec in index_col) or (
            isinstance(index_names, list) and colspec in index_names
        )

    new_cols = []
    new_data = {}

    orig_names = columns
    columns = list(columns)

    date_cols = set()

    if parse_spec is None or isinstance(parse_spec, bool):
        return data_dict, columns

    if isinstance(parse_spec, list):
        # list of column lists
        for colspec in parse_spec:
            if is_scalar(colspec) or isinstance(colspec, tuple):
                if isinstance(colspec, int) and colspec not in data_dict:
                    colspec = orig_names[colspec]
                if _isindex(colspec):
                    continue
                elif dtype_backend == "pyarrow":
                    import pyarrow as pa

                    dtype = data_dict[colspec].dtype
                    if isinstance(dtype, ArrowDtype) and (
                        pa.types.is_timestamp(dtype.pyarrow_dtype)
                        or pa.types.is_date(dtype.pyarrow_dtype)
                    ):
                        continue

                # Pyarrow engine returns Series which we need to convert to
                # numpy array before converter, its a no-op for other parsers
                data_dict[colspec] = converter(
                    np.asarray(data_dict[colspec]), col=colspec
                )
            else:
                new_name, col, old_names = _try_convert_dates(
                    converter, colspec, data_dict, orig_names
                )
                if new_name in data_dict:
                    raise ValueError(f"New date column already in dict {new_name}")
                new_data[new_name] = col
                new_cols.append(new_name)
                date_cols.update(old_names)

    elif isinstance(parse_spec, dict):
        # dict of new name to column list
        for new_name, colspec in parse_spec.items():
            if new_name in data_dict:
                raise ValueError(f"Date column {new_name} already in dict")

            _, col, old_names = _try_convert_dates(
                converter,
                colspec,
                data_dict,
                orig_names,
                target_name=new_name,
            )

            new_data[new_name] = col

            # If original column can be converted to date we keep the converted values
            # This can only happen if values are from single column
            if len(colspec) == 1:
                new_data[colspec[0]] = col

            new_cols.append(new_name)
            date_cols.update(old_names)

    if isinstance(data_dict, DataFrame):
        data_dict = concat([DataFrame(new_data), data_dict], axis=1, copy=False)
    else:
        data_dict.update(new_data)
    new_cols.extend(columns)

    if not keep_date_col:
        for c in list(date_cols):
            data_dict.pop(c)
            new_cols.remove(c)

    return data_dict, new_cols


def _try_convert_dates(
    parser: Callable, colspec, data_dict, columns, target_name: str | None = None
):
    colset = set(columns)
    colnames = []

    for c in colspec:
        if c in colset:
            colnames.append(c)
        elif isinstance(c, int) and c not in columns:
            colnames.append(columns[c])
        else:
            colnames.append(c)

    new_name: tuple | str
    if all(isinstance(x, tuple) for x in colnames):
        new_name = tuple(map("_".join, zip(*colnames)))
    else:
        new_name = "_".join([str(x) for x in colnames])
    to_parse = [np.asarray(data_dict[c]) for c in colnames if c in data_dict]

    new_col = parser(*to_parse, col=new_name if target_name is None else target_name)
    return new_name, new_col, colnames


def _get_na_values(col, na_values, na_fvalues, keep_default_na: bool):
    """
    Get the NaN values for a given column.

    Parameters
    ----------
    col : str
        The name of the column.
    na_values : array-like, dict
        The object listing the NaN values as strings.
    na_fvalues : array-like, dict
        The object listing the NaN values as floats.
    keep_default_na : bool
        If `na_values` is a dict, and the column is not mapped in the
        dictionary, whether to return the default NaN values or the empty set.

    Returns
    -------
    nan_tuple : A length-two tuple composed of

        1) na_values : the string NaN values for that column.
        2) na_fvalues : the float NaN values for that column.
    """
    if isinstance(na_values, dict):
        if col in na_values:
            return na_values[col], na_fvalues[col]
        else:
            if keep_default_na:
                return STR_NA_VALUES, set()

            return set(), set()
    else:
        return na_values, na_fvalues


def _validate_parse_dates_arg(parse_dates):
    """
    Check whether or not the 'parse_dates' parameter
    is a non-boolean scalar. Raises a ValueError if
    that is the case.
    """
    msg = (
        "Only booleans, lists, and dictionaries are accepted "
        "for the 'parse_dates' parameter"
    )

    if not (
        parse_dates is None
        or lib.is_bool(parse_dates)
        or isinstance(parse_dates, (list, dict))
    ):
        raise TypeError(msg)

    return parse_dates


def is_index_col(col) -> bool:
    return col is not None and col is not False