File size: 39,546 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
"""
:mod:`pandas.io.html` is a module containing functionality for dealing with
HTML IO.

"""

from __future__ import annotations

from collections import abc
import numbers
import re
from re import Pattern
from typing import (
    TYPE_CHECKING,
    Literal,
    cast,
)
import warnings

from pandas._libs import lib
from pandas.compat._optional import import_optional_dependency
from pandas.errors import (
    AbstractMethodError,
    EmptyDataError,
)
from pandas.util._decorators import doc
from pandas.util._exceptions import find_stack_level
from pandas.util._validators import check_dtype_backend

from pandas.core.dtypes.common import is_list_like

from pandas import isna
from pandas.core.indexes.base import Index
from pandas.core.indexes.multi import MultiIndex
from pandas.core.series import Series
from pandas.core.shared_docs import _shared_docs

from pandas.io.common import (
    file_exists,
    get_handle,
    is_file_like,
    is_fsspec_url,
    is_url,
    stringify_path,
    validate_header_arg,
)
from pandas.io.formats.printing import pprint_thing
from pandas.io.parsers import TextParser

if TYPE_CHECKING:
    from collections.abc import (
        Iterable,
        Sequence,
    )

    from pandas._typing import (
        BaseBuffer,
        DtypeBackend,
        FilePath,
        HTMLFlavors,
        ReadBuffer,
        StorageOptions,
    )

    from pandas import DataFrame

#############
# READ HTML #
#############
_RE_WHITESPACE = re.compile(r"[\r\n]+|\s{2,}")


def _remove_whitespace(s: str, regex: Pattern = _RE_WHITESPACE) -> str:
    """
    Replace extra whitespace inside of a string with a single space.

    Parameters
    ----------
    s : str or unicode
        The string from which to remove extra whitespace.
    regex : re.Pattern
        The regular expression to use to remove extra whitespace.

    Returns
    -------
    subd : str or unicode
        `s` with all extra whitespace replaced with a single space.
    """
    return regex.sub(" ", s.strip())


def _get_skiprows(skiprows: int | Sequence[int] | slice | None) -> int | Sequence[int]:
    """
    Get an iterator given an integer, slice or container.

    Parameters
    ----------
    skiprows : int, slice, container
        The iterator to use to skip rows; can also be a slice.

    Raises
    ------
    TypeError
        * If `skiprows` is not a slice, integer, or Container

    Returns
    -------
    it : iterable
        A proper iterator to use to skip rows of a DataFrame.
    """
    if isinstance(skiprows, slice):
        start, step = skiprows.start or 0, skiprows.step or 1
        return list(range(start, skiprows.stop, step))
    elif isinstance(skiprows, numbers.Integral) or is_list_like(skiprows):
        return cast("int | Sequence[int]", skiprows)
    elif skiprows is None:
        return 0
    raise TypeError(f"{type(skiprows).__name__} is not a valid type for skipping rows")


def _read(
    obj: FilePath | BaseBuffer,
    encoding: str | None,
    storage_options: StorageOptions | None,
) -> str | bytes:
    """
    Try to read from a url, file or string.

    Parameters
    ----------
    obj : str, unicode, path object, or file-like object

    Returns
    -------
    raw_text : str
    """
    text: str | bytes
    if (
        is_url(obj)
        or hasattr(obj, "read")
        or (isinstance(obj, str) and file_exists(obj))
    ):
        with get_handle(
            obj, "r", encoding=encoding, storage_options=storage_options
        ) as handles:
            text = handles.handle.read()
    elif isinstance(obj, (str, bytes)):
        text = obj
    else:
        raise TypeError(f"Cannot read object of type '{type(obj).__name__}'")
    return text


class _HtmlFrameParser:
    """
    Base class for parsers that parse HTML into DataFrames.

    Parameters
    ----------
    io : str or file-like
        This can be either a string of raw HTML, a valid URL using the HTTP,
        FTP, or FILE protocols or a file-like object.

    match : str or regex
        The text to match in the document.

    attrs : dict
        List of HTML <table> element attributes to match.

    encoding : str
        Encoding to be used by parser

    displayed_only : bool
        Whether or not items with "display:none" should be ignored

    extract_links : {None, "all", "header", "body", "footer"}
        Table elements in the specified section(s) with <a> tags will have their
        href extracted.

        .. versionadded:: 1.5.0

    Attributes
    ----------
    io : str or file-like
        raw HTML, URL, or file-like object

    match : regex
        The text to match in the raw HTML

    attrs : dict-like
        A dictionary of valid table attributes to use to search for table
        elements.

    encoding : str
        Encoding to be used by parser

    displayed_only : bool
        Whether or not items with "display:none" should be ignored

    extract_links : {None, "all", "header", "body", "footer"}
        Table elements in the specified section(s) with <a> tags will have their
        href extracted.

        .. versionadded:: 1.5.0

    Notes
    -----
    To subclass this class effectively you must override the following methods:
        * :func:`_build_doc`
        * :func:`_attr_getter`
        * :func:`_href_getter`
        * :func:`_text_getter`
        * :func:`_parse_td`
        * :func:`_parse_thead_tr`
        * :func:`_parse_tbody_tr`
        * :func:`_parse_tfoot_tr`
        * :func:`_parse_tables`
        * :func:`_equals_tag`
    See each method's respective documentation for details on their
    functionality.
    """

    def __init__(
        self,
        io: FilePath | ReadBuffer[str] | ReadBuffer[bytes],
        match: str | Pattern,
        attrs: dict[str, str] | None,
        encoding: str,
        displayed_only: bool,
        extract_links: Literal[None, "header", "footer", "body", "all"],
        storage_options: StorageOptions = None,
    ) -> None:
        self.io = io
        self.match = match
        self.attrs = attrs
        self.encoding = encoding
        self.displayed_only = displayed_only
        self.extract_links = extract_links
        self.storage_options = storage_options

    def parse_tables(self):
        """
        Parse and return all tables from the DOM.

        Returns
        -------
        list of parsed (header, body, footer) tuples from tables.
        """
        tables = self._parse_tables(self._build_doc(), self.match, self.attrs)
        return (self._parse_thead_tbody_tfoot(table) for table in tables)

    def _attr_getter(self, obj, attr):
        """
        Return the attribute value of an individual DOM node.

        Parameters
        ----------
        obj : node-like
            A DOM node.

        attr : str or unicode
            The attribute, such as "colspan"

        Returns
        -------
        str or unicode
            The attribute value.
        """
        # Both lxml and BeautifulSoup have the same implementation:
        return obj.get(attr)

    def _href_getter(self, obj) -> str | None:
        """
        Return a href if the DOM node contains a child <a> or None.

        Parameters
        ----------
        obj : node-like
            A DOM node.

        Returns
        -------
        href : str or unicode
            The href from the <a> child of the DOM node.
        """
        raise AbstractMethodError(self)

    def _text_getter(self, obj):
        """
        Return the text of an individual DOM node.

        Parameters
        ----------
        obj : node-like
            A DOM node.

        Returns
        -------
        text : str or unicode
            The text from an individual DOM node.
        """
        raise AbstractMethodError(self)

    def _parse_td(self, obj):
        """
        Return the td elements from a row element.

        Parameters
        ----------
        obj : node-like
            A DOM <tr> node.

        Returns
        -------
        list of node-like
            These are the elements of each row, i.e., the columns.
        """
        raise AbstractMethodError(self)

    def _parse_thead_tr(self, table):
        """
        Return the list of thead row elements from the parsed table element.

        Parameters
        ----------
        table : a table element that contains zero or more thead elements.

        Returns
        -------
        list of node-like
            These are the <tr> row elements of a table.
        """
        raise AbstractMethodError(self)

    def _parse_tbody_tr(self, table):
        """
        Return the list of tbody row elements from the parsed table element.

        HTML5 table bodies consist of either 0 or more <tbody> elements (which
        only contain <tr> elements) or 0 or more <tr> elements. This method
        checks for both structures.

        Parameters
        ----------
        table : a table element that contains row elements.

        Returns
        -------
        list of node-like
            These are the <tr> row elements of a table.
        """
        raise AbstractMethodError(self)

    def _parse_tfoot_tr(self, table):
        """
        Return the list of tfoot row elements from the parsed table element.

        Parameters
        ----------
        table : a table element that contains row elements.

        Returns
        -------
        list of node-like
            These are the <tr> row elements of a table.
        """
        raise AbstractMethodError(self)

    def _parse_tables(self, document, match, attrs):
        """
        Return all tables from the parsed DOM.

        Parameters
        ----------
        document : the DOM from which to parse the table element.

        match : str or regular expression
            The text to search for in the DOM tree.

        attrs : dict
            A dictionary of table attributes that can be used to disambiguate
            multiple tables on a page.

        Raises
        ------
        ValueError : `match` does not match any text in the document.

        Returns
        -------
        list of node-like
            HTML <table> elements to be parsed into raw data.
        """
        raise AbstractMethodError(self)

    def _equals_tag(self, obj, tag) -> bool:
        """
        Return whether an individual DOM node matches a tag

        Parameters
        ----------
        obj : node-like
            A DOM node.

        tag : str
            Tag name to be checked for equality.

        Returns
        -------
        boolean
            Whether `obj`'s tag name is `tag`
        """
        raise AbstractMethodError(self)

    def _build_doc(self):
        """
        Return a tree-like object that can be used to iterate over the DOM.

        Returns
        -------
        node-like
            The DOM from which to parse the table element.
        """
        raise AbstractMethodError(self)

    def _parse_thead_tbody_tfoot(self, table_html):
        """
        Given a table, return parsed header, body, and foot.

        Parameters
        ----------
        table_html : node-like

        Returns
        -------
        tuple of (header, body, footer), each a list of list-of-text rows.

        Notes
        -----
        Header and body are lists-of-lists. Top level list is a list of
        rows. Each row is a list of str text.

        Logic: Use <thead>, <tbody>, <tfoot> elements to identify
               header, body, and footer, otherwise:
               - Put all rows into body
               - Move rows from top of body to header only if
                 all elements inside row are <th>
               - Move rows from bottom of body to footer only if
                 all elements inside row are <th>
        """
        header_rows = self._parse_thead_tr(table_html)
        body_rows = self._parse_tbody_tr(table_html)
        footer_rows = self._parse_tfoot_tr(table_html)

        def row_is_all_th(row):
            return all(self._equals_tag(t, "th") for t in self._parse_td(row))

        if not header_rows:
            # The table has no <thead>. Move the top all-<th> rows from
            # body_rows to header_rows. (This is a common case because many
            # tables in the wild have no <thead> or <tfoot>
            while body_rows and row_is_all_th(body_rows[0]):
                header_rows.append(body_rows.pop(0))

        header = self._expand_colspan_rowspan(header_rows, section="header")
        body = self._expand_colspan_rowspan(body_rows, section="body")
        footer = self._expand_colspan_rowspan(footer_rows, section="footer")

        return header, body, footer

    def _expand_colspan_rowspan(
        self, rows, section: Literal["header", "footer", "body"]
    ):
        """
        Given a list of <tr>s, return a list of text rows.

        Parameters
        ----------
        rows : list of node-like
            List of <tr>s
        section : the section that the rows belong to (header, body or footer).

        Returns
        -------
        list of list
            Each returned row is a list of str text, or tuple (text, link)
            if extract_links is not None.

        Notes
        -----
        Any cell with ``rowspan`` or ``colspan`` will have its contents copied
        to subsequent cells.
        """
        all_texts = []  # list of rows, each a list of str
        text: str | tuple
        remainder: list[
            tuple[int, str | tuple, int]
        ] = []  # list of (index, text, nrows)

        for tr in rows:
            texts = []  # the output for this row
            next_remainder = []

            index = 0
            tds = self._parse_td(tr)
            for td in tds:
                # Append texts from previous rows with rowspan>1 that come
                # before this <td>
                while remainder and remainder[0][0] <= index:
                    prev_i, prev_text, prev_rowspan = remainder.pop(0)
                    texts.append(prev_text)
                    if prev_rowspan > 1:
                        next_remainder.append((prev_i, prev_text, prev_rowspan - 1))
                    index += 1

                # Append the text from this <td>, colspan times
                text = _remove_whitespace(self._text_getter(td))
                if self.extract_links in ("all", section):
                    href = self._href_getter(td)
                    text = (text, href)
                rowspan = int(self._attr_getter(td, "rowspan") or 1)
                colspan = int(self._attr_getter(td, "colspan") or 1)

                for _ in range(colspan):
                    texts.append(text)
                    if rowspan > 1:
                        next_remainder.append((index, text, rowspan - 1))
                    index += 1

            # Append texts from previous rows at the final position
            for prev_i, prev_text, prev_rowspan in remainder:
                texts.append(prev_text)
                if prev_rowspan > 1:
                    next_remainder.append((prev_i, prev_text, prev_rowspan - 1))

            all_texts.append(texts)
            remainder = next_remainder

        # Append rows that only appear because the previous row had non-1
        # rowspan
        while remainder:
            next_remainder = []
            texts = []
            for prev_i, prev_text, prev_rowspan in remainder:
                texts.append(prev_text)
                if prev_rowspan > 1:
                    next_remainder.append((prev_i, prev_text, prev_rowspan - 1))
            all_texts.append(texts)
            remainder = next_remainder

        return all_texts

    def _handle_hidden_tables(self, tbl_list, attr_name: str):
        """
        Return list of tables, potentially removing hidden elements

        Parameters
        ----------
        tbl_list : list of node-like
            Type of list elements will vary depending upon parser used
        attr_name : str
            Name of the accessor for retrieving HTML attributes

        Returns
        -------
        list of node-like
            Return type matches `tbl_list`
        """
        if not self.displayed_only:
            return tbl_list

        return [
            x
            for x in tbl_list
            if "display:none"
            not in getattr(x, attr_name).get("style", "").replace(" ", "")
        ]


class _BeautifulSoupHtml5LibFrameParser(_HtmlFrameParser):
    """
    HTML to DataFrame parser that uses BeautifulSoup under the hood.

    See Also
    --------
    pandas.io.html._HtmlFrameParser
    pandas.io.html._LxmlFrameParser

    Notes
    -----
    Documentation strings for this class are in the base class
    :class:`pandas.io.html._HtmlFrameParser`.
    """

    def _parse_tables(self, document, match, attrs):
        element_name = "table"
        tables = document.find_all(element_name, attrs=attrs)
        if not tables:
            raise ValueError("No tables found")

        result = []
        unique_tables = set()
        tables = self._handle_hidden_tables(tables, "attrs")

        for table in tables:
            if self.displayed_only:
                for elem in table.find_all("style"):
                    elem.decompose()

                for elem in table.find_all(style=re.compile(r"display:\s*none")):
                    elem.decompose()

            if table not in unique_tables and table.find(string=match) is not None:
                result.append(table)
            unique_tables.add(table)
        if not result:
            raise ValueError(f"No tables found matching pattern {repr(match.pattern)}")
        return result

    def _href_getter(self, obj) -> str | None:
        a = obj.find("a", href=True)
        return None if not a else a["href"]

    def _text_getter(self, obj):
        return obj.text

    def _equals_tag(self, obj, tag) -> bool:
        return obj.name == tag

    def _parse_td(self, row):
        return row.find_all(("td", "th"), recursive=False)

    def _parse_thead_tr(self, table):
        return table.select("thead tr")

    def _parse_tbody_tr(self, table):
        from_tbody = table.select("tbody tr")
        from_root = table.find_all("tr", recursive=False)
        # HTML spec: at most one of these lists has content
        return from_tbody + from_root

    def _parse_tfoot_tr(self, table):
        return table.select("tfoot tr")

    def _setup_build_doc(self):
        raw_text = _read(self.io, self.encoding, self.storage_options)
        if not raw_text:
            raise ValueError(f"No text parsed from document: {self.io}")
        return raw_text

    def _build_doc(self):
        from bs4 import BeautifulSoup

        bdoc = self._setup_build_doc()
        if isinstance(bdoc, bytes) and self.encoding is not None:
            udoc = bdoc.decode(self.encoding)
            from_encoding = None
        else:
            udoc = bdoc
            from_encoding = self.encoding

        soup = BeautifulSoup(udoc, features="html5lib", from_encoding=from_encoding)

        for br in soup.find_all("br"):
            br.replace_with("\n" + br.text)

        return soup


def _build_xpath_expr(attrs) -> str:
    """
    Build an xpath expression to simulate bs4's ability to pass in kwargs to
    search for attributes when using the lxml parser.

    Parameters
    ----------
    attrs : dict
        A dict of HTML attributes. These are NOT checked for validity.

    Returns
    -------
    expr : unicode
        An XPath expression that checks for the given HTML attributes.
    """
    # give class attribute as class_ because class is a python keyword
    if "class_" in attrs:
        attrs["class"] = attrs.pop("class_")

    s = " and ".join([f"@{k}={repr(v)}" for k, v in attrs.items()])
    return f"[{s}]"


_re_namespace = {"re": "http://exslt.org/regular-expressions"}


class _LxmlFrameParser(_HtmlFrameParser):
    """
    HTML to DataFrame parser that uses lxml under the hood.

    Warning
    -------
    This parser can only handle HTTP, FTP, and FILE urls.

    See Also
    --------
    _HtmlFrameParser
    _BeautifulSoupLxmlFrameParser

    Notes
    -----
    Documentation strings for this class are in the base class
    :class:`_HtmlFrameParser`.
    """

    def _href_getter(self, obj) -> str | None:
        href = obj.xpath(".//a/@href")
        return None if not href else href[0]

    def _text_getter(self, obj):
        return obj.text_content()

    def _parse_td(self, row):
        # Look for direct children only: the "row" element here may be a
        # <thead> or <tfoot> (see _parse_thead_tr).
        return row.xpath("./td|./th")

    def _parse_tables(self, document, match, kwargs):
        pattern = match.pattern

        # 1. check all descendants for the given pattern and only search tables
        # GH 49929
        xpath_expr = f"//table[.//text()[re:test(., {repr(pattern)})]]"

        # if any table attributes were given build an xpath expression to
        # search for them
        if kwargs:
            xpath_expr += _build_xpath_expr(kwargs)

        tables = document.xpath(xpath_expr, namespaces=_re_namespace)

        tables = self._handle_hidden_tables(tables, "attrib")
        if self.displayed_only:
            for table in tables:
                # lxml utilizes XPATH 1.0 which does not have regex
                # support. As a result, we find all elements with a style
                # attribute and iterate them to check for display:none
                for elem in table.xpath(".//style"):
                    elem.drop_tree()
                for elem in table.xpath(".//*[@style]"):
                    if "display:none" in elem.attrib.get("style", "").replace(" ", ""):
                        elem.drop_tree()
        if not tables:
            raise ValueError(f"No tables found matching regex {repr(pattern)}")
        return tables

    def _equals_tag(self, obj, tag) -> bool:
        return obj.tag == tag

    def _build_doc(self):
        """
        Raises
        ------
        ValueError
            * If a URL that lxml cannot parse is passed.

        Exception
            * Any other ``Exception`` thrown. For example, trying to parse a
              URL that is syntactically correct on a machine with no internet
              connection will fail.

        See Also
        --------
        pandas.io.html._HtmlFrameParser._build_doc
        """
        from lxml.etree import XMLSyntaxError
        from lxml.html import (
            HTMLParser,
            fromstring,
            parse,
        )

        parser = HTMLParser(recover=True, encoding=self.encoding)

        try:
            if is_url(self.io):
                with get_handle(
                    self.io, "r", storage_options=self.storage_options
                ) as f:
                    r = parse(f.handle, parser=parser)
            else:
                # try to parse the input in the simplest way
                r = parse(self.io, parser=parser)
            try:
                r = r.getroot()
            except AttributeError:
                pass
        except (UnicodeDecodeError, OSError) as e:
            # if the input is a blob of html goop
            if not is_url(self.io):
                r = fromstring(self.io, parser=parser)

                try:
                    r = r.getroot()
                except AttributeError:
                    pass
            else:
                raise e
        else:
            if not hasattr(r, "text_content"):
                raise XMLSyntaxError("no text parsed from document", 0, 0, 0)

        for br in r.xpath("*//br"):
            br.tail = "\n" + (br.tail or "")

        return r

    def _parse_thead_tr(self, table):
        rows = []

        for thead in table.xpath(".//thead"):
            rows.extend(thead.xpath("./tr"))

            # HACK: lxml does not clean up the clearly-erroneous
            # <thead><th>foo</th><th>bar</th></thead>. (Missing <tr>). Add
            # the <thead> and _pretend_ it's a <tr>; _parse_td() will find its
            # children as though it's a <tr>.
            #
            # Better solution would be to use html5lib.
            elements_at_root = thead.xpath("./td|./th")
            if elements_at_root:
                rows.append(thead)

        return rows

    def _parse_tbody_tr(self, table):
        from_tbody = table.xpath(".//tbody//tr")
        from_root = table.xpath("./tr")
        # HTML spec: at most one of these lists has content
        return from_tbody + from_root

    def _parse_tfoot_tr(self, table):
        return table.xpath(".//tfoot//tr")


def _expand_elements(body) -> None:
    data = [len(elem) for elem in body]
    lens = Series(data)
    lens_max = lens.max()
    not_max = lens[lens != lens_max]

    empty = [""]
    for ind, length in not_max.items():
        body[ind] += empty * (lens_max - length)


def _data_to_frame(**kwargs):
    head, body, foot = kwargs.pop("data")
    header = kwargs.pop("header")
    kwargs["skiprows"] = _get_skiprows(kwargs["skiprows"])
    if head:
        body = head + body

        # Infer header when there is a <thead> or top <th>-only rows
        if header is None:
            if len(head) == 1:
                header = 0
            else:
                # ignore all-empty-text rows
                header = [i for i, row in enumerate(head) if any(text for text in row)]

    if foot:
        body += foot

    # fill out elements of body that are "ragged"
    _expand_elements(body)
    with TextParser(body, header=header, **kwargs) as tp:
        return tp.read()


_valid_parsers = {
    "lxml": _LxmlFrameParser,
    None: _LxmlFrameParser,
    "html5lib": _BeautifulSoupHtml5LibFrameParser,
    "bs4": _BeautifulSoupHtml5LibFrameParser,
}


def _parser_dispatch(flavor: HTMLFlavors | None) -> type[_HtmlFrameParser]:
    """
    Choose the parser based on the input flavor.

    Parameters
    ----------
    flavor : {{"lxml", "html5lib", "bs4"}} or None
        The type of parser to use. This must be a valid backend.

    Returns
    -------
    cls : _HtmlFrameParser subclass
        The parser class based on the requested input flavor.

    Raises
    ------
    ValueError
        * If `flavor` is not a valid backend.
    ImportError
        * If you do not have the requested `flavor`
    """
    valid_parsers = list(_valid_parsers.keys())
    if flavor not in valid_parsers:
        raise ValueError(
            f"{repr(flavor)} is not a valid flavor, valid flavors are {valid_parsers}"
        )

    if flavor in ("bs4", "html5lib"):
        import_optional_dependency("html5lib")
        import_optional_dependency("bs4")
    else:
        import_optional_dependency("lxml.etree")
    return _valid_parsers[flavor]


def _print_as_set(s) -> str:
    arg = ", ".join([pprint_thing(el) for el in s])
    return f"{{{arg}}}"


def _validate_flavor(flavor):
    if flavor is None:
        flavor = "lxml", "bs4"
    elif isinstance(flavor, str):
        flavor = (flavor,)
    elif isinstance(flavor, abc.Iterable):
        if not all(isinstance(flav, str) for flav in flavor):
            raise TypeError(
                f"Object of type {repr(type(flavor).__name__)} "
                f"is not an iterable of strings"
            )
    else:
        msg = repr(flavor) if isinstance(flavor, str) else str(flavor)
        msg += " is not a valid flavor"
        raise ValueError(msg)

    flavor = tuple(flavor)
    valid_flavors = set(_valid_parsers)
    flavor_set = set(flavor)

    if not flavor_set & valid_flavors:
        raise ValueError(
            f"{_print_as_set(flavor_set)} is not a valid set of flavors, valid "
            f"flavors are {_print_as_set(valid_flavors)}"
        )
    return flavor


def _parse(
    flavor,
    io,
    match,
    attrs,
    encoding,
    displayed_only,
    extract_links,
    storage_options,
    **kwargs,
):
    flavor = _validate_flavor(flavor)
    compiled_match = re.compile(match)  # you can pass a compiled regex here

    retained = None
    for flav in flavor:
        parser = _parser_dispatch(flav)
        p = parser(
            io,
            compiled_match,
            attrs,
            encoding,
            displayed_only,
            extract_links,
            storage_options,
        )

        try:
            tables = p.parse_tables()
        except ValueError as caught:
            # if `io` is an io-like object, check if it's seekable
            # and try to rewind it before trying the next parser
            if hasattr(io, "seekable") and io.seekable():
                io.seek(0)
            elif hasattr(io, "seekable") and not io.seekable():
                # if we couldn't rewind it, let the user know
                raise ValueError(
                    f"The flavor {flav} failed to parse your input. "
                    "Since you passed a non-rewindable file "
                    "object, we can't rewind it to try "
                    "another parser. Try read_html() with a different flavor."
                ) from caught

            retained = caught
        else:
            break
    else:
        assert retained is not None  # for mypy
        raise retained

    ret = []
    for table in tables:
        try:
            df = _data_to_frame(data=table, **kwargs)
            # Cast MultiIndex header to an Index of tuples when extracting header
            # links and replace nan with None (therefore can't use mi.to_flat_index()).
            # This maintains consistency of selection (e.g. df.columns.str[1])
            if extract_links in ("all", "header") and isinstance(
                df.columns, MultiIndex
            ):
                df.columns = Index(
                    ((col[0], None if isna(col[1]) else col[1]) for col in df.columns),
                    tupleize_cols=False,
                )

            ret.append(df)
        except EmptyDataError:  # empty table
            continue
    return ret


@doc(storage_options=_shared_docs["storage_options"])
def read_html(
    io: FilePath | ReadBuffer[str],
    *,
    match: str | Pattern = ".+",
    flavor: HTMLFlavors | Sequence[HTMLFlavors] | None = None,
    header: int | Sequence[int] | None = None,
    index_col: int | Sequence[int] | None = None,
    skiprows: int | Sequence[int] | slice | None = None,
    attrs: dict[str, str] | None = None,
    parse_dates: bool = False,
    thousands: str | None = ",",
    encoding: str | None = None,
    decimal: str = ".",
    converters: dict | None = None,
    na_values: Iterable[object] | None = None,
    keep_default_na: bool = True,
    displayed_only: bool = True,
    extract_links: Literal[None, "header", "footer", "body", "all"] = None,
    dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
    storage_options: StorageOptions = None,
) -> list[DataFrame]:
    r"""
    Read HTML tables into a ``list`` of ``DataFrame`` objects.

    Parameters
    ----------
    io : str, path object, or file-like object
        String, path object (implementing ``os.PathLike[str]``), or file-like
        object implementing a string ``read()`` function.
        The string can represent a URL or the HTML itself. Note that
        lxml only accepts the http, ftp and file url protocols. If you have a
        URL that starts with ``'https'`` you might try removing the ``'s'``.

        .. deprecated:: 2.1.0
            Passing html literal strings is deprecated.
            Wrap literal string/bytes input in ``io.StringIO``/``io.BytesIO`` instead.

    match : str or compiled regular expression, optional
        The set of tables containing text matching this regex or string will be
        returned. Unless the HTML is extremely simple you will probably need to
        pass a non-empty string here. Defaults to '.+' (match any non-empty
        string). The default value will return all tables contained on a page.
        This value is converted to a regular expression so that there is
        consistent behavior between Beautiful Soup and lxml.

    flavor : {{"lxml", "html5lib", "bs4"}} or list-like, optional
        The parsing engine (or list of parsing engines) to use. 'bs4' and
        'html5lib' are synonymous with each other, they are both there for
        backwards compatibility. The default of ``None`` tries to use ``lxml``
        to parse and if that fails it falls back on ``bs4`` + ``html5lib``.

    header : int or list-like, optional
        The row (or list of rows for a :class:`~pandas.MultiIndex`) to use to
        make the columns headers.

    index_col : int or list-like, optional
        The column (or list of columns) to use to create the index.

    skiprows : int, list-like or slice, optional
        Number of rows to skip after parsing the column integer. 0-based. If a
        sequence of integers or a slice is given, will skip the rows indexed by
        that sequence.  Note that a single element sequence means 'skip the nth
        row' whereas an integer means 'skip n rows'.

    attrs : dict, optional
        This is a dictionary of attributes that you can pass to use to identify
        the table in the HTML. These are not checked for validity before being
        passed to lxml or Beautiful Soup. However, these attributes must be
        valid HTML table attributes to work correctly. For example, ::

            attrs = {{'id': 'table'}}

        is a valid attribute dictionary because the 'id' HTML tag attribute is
        a valid HTML attribute for *any* HTML tag as per `this document
        <https://html.spec.whatwg.org/multipage/dom.html#global-attributes>`__. ::

            attrs = {{'asdf': 'table'}}

        is *not* a valid attribute dictionary because 'asdf' is not a valid
        HTML attribute even if it is a valid XML attribute.  Valid HTML 4.01
        table attributes can be found `here
        <http://www.w3.org/TR/REC-html40/struct/tables.html#h-11.2>`__. A
        working draft of the HTML 5 spec can be found `here
        <https://html.spec.whatwg.org/multipage/tables.html>`__. It contains the
        latest information on table attributes for the modern web.

    parse_dates : bool, optional
        See :func:`~read_csv` for more details.

    thousands : str, optional
        Separator to use to parse thousands. Defaults to ``','``.

    encoding : str, optional
        The encoding used to decode the web page. Defaults to ``None``.``None``
        preserves the previous encoding behavior, which depends on the
        underlying parser library (e.g., the parser library will try to use
        the encoding provided by the document).

    decimal : str, default '.'
        Character to recognize as decimal point (e.g. use ',' for European
        data).

    converters : dict, default None
        Dict of functions for converting values in certain columns. Keys can
        either be integers or column labels, values are functions that take one
        input argument, the cell (not column) content, and return the
        transformed content.

    na_values : iterable, default None
        Custom NA values.

    keep_default_na : bool, default True
        If na_values are specified and keep_default_na is False the default NaN
        values are overridden, otherwise they're appended to.

    displayed_only : bool, default True
        Whether elements with "display: none" should be parsed.

    extract_links : {{None, "all", "header", "body", "footer"}}
        Table elements in the specified section(s) with <a> tags will have their
        href extracted.

        .. versionadded:: 1.5.0

    dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
        Back-end data type applied to the resultant :class:`DataFrame`
        (still experimental). Behaviour is as follows:

        * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
          (default).
        * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
          DataFrame.

        .. versionadded:: 2.0

    {storage_options}

        .. versionadded:: 2.1.0

    Returns
    -------
    dfs
        A list of DataFrames.

    See Also
    --------
    read_csv : Read a comma-separated values (csv) file into DataFrame.

    Notes
    -----
    Before using this function you should read the :ref:`gotchas about the
    HTML parsing libraries <io.html.gotchas>`.

    Expect to do some cleanup after you call this function. For example, you
    might need to manually assign column names if the column names are
    converted to NaN when you pass the `header=0` argument. We try to assume as
    little as possible about the structure of the table and push the
    idiosyncrasies of the HTML contained in the table to the user.

    This function searches for ``<table>`` elements and only for ``<tr>``
    and ``<th>`` rows and ``<td>`` elements within each ``<tr>`` or ``<th>``
    element in the table. ``<td>`` stands for "table data". This function
    attempts to properly handle ``colspan`` and ``rowspan`` attributes.
    If the function has a ``<thead>`` argument, it is used to construct
    the header, otherwise the function attempts to find the header within
    the body (by putting rows with only ``<th>`` elements into the header).

    Similar to :func:`~read_csv` the `header` argument is applied
    **after** `skiprows` is applied.

    This function will *always* return a list of :class:`DataFrame` *or*
    it will fail, e.g., it will *not* return an empty list.

    Examples
    --------
    See the :ref:`read_html documentation in the IO section of the docs
    <io.read_html>` for some examples of reading in HTML tables.
    """
    # Type check here. We don't want to parse only to fail because of an
    # invalid value of an integer skiprows.
    if isinstance(skiprows, numbers.Integral) and skiprows < 0:
        raise ValueError(
            "cannot skip rows starting from the end of the "
            "data (you passed a negative value)"
        )
    if extract_links not in [None, "header", "footer", "body", "all"]:
        raise ValueError(
            "`extract_links` must be one of "
            '{None, "header", "footer", "body", "all"}, got '
            f'"{extract_links}"'
        )

    validate_header_arg(header)
    check_dtype_backend(dtype_backend)

    io = stringify_path(io)

    if isinstance(io, str) and not any(
        [
            is_file_like(io),
            file_exists(io),
            is_url(io),
            is_fsspec_url(io),
        ]
    ):
        warnings.warn(
            "Passing literal html to 'read_html' is deprecated and "
            "will be removed in a future version. To read from a "
            "literal string, wrap it in a 'StringIO' object.",
            FutureWarning,
            stacklevel=find_stack_level(),
        )

    return _parse(
        flavor=flavor,
        io=io,
        match=match,
        header=header,
        index_col=index_col,
        skiprows=skiprows,
        parse_dates=parse_dates,
        thousands=thousands,
        attrs=attrs,
        encoding=encoding,
        decimal=decimal,
        converters=converters,
        na_values=na_values,
        keep_default_na=keep_default_na,
        displayed_only=displayed_only,
        extract_links=extract_links,
        dtype_backend=dtype_backend,
        storage_options=storage_options,
    )