File size: 10,526 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
"""
Module for formatting output data into CSV files.
"""

from __future__ import annotations

from collections.abc import (
    Hashable,
    Iterable,
    Iterator,
    Sequence,
)
import csv as csvlib
import os
from typing import (
    TYPE_CHECKING,
    Any,
    cast,
)

import numpy as np

from pandas._libs import writers as libwriters
from pandas._typing import SequenceNotStr
from pandas.util._decorators import cache_readonly

from pandas.core.dtypes.generic import (
    ABCDatetimeIndex,
    ABCIndex,
    ABCMultiIndex,
    ABCPeriodIndex,
)
from pandas.core.dtypes.missing import notna

from pandas.core.indexes.api import Index

from pandas.io.common import get_handle

if TYPE_CHECKING:
    from pandas._typing import (
        CompressionOptions,
        FilePath,
        FloatFormatType,
        IndexLabel,
        StorageOptions,
        WriteBuffer,
        npt,
    )

    from pandas.io.formats.format import DataFrameFormatter


_DEFAULT_CHUNKSIZE_CELLS = 100_000


class CSVFormatter:
    cols: npt.NDArray[np.object_]

    def __init__(
        self,
        formatter: DataFrameFormatter,
        path_or_buf: FilePath | WriteBuffer[str] | WriteBuffer[bytes] = "",
        sep: str = ",",
        cols: Sequence[Hashable] | None = None,
        index_label: IndexLabel | None = None,
        mode: str = "w",
        encoding: str | None = None,
        errors: str = "strict",
        compression: CompressionOptions = "infer",
        quoting: int | None = None,
        lineterminator: str | None = "\n",
        chunksize: int | None = None,
        quotechar: str | None = '"',
        date_format: str | None = None,
        doublequote: bool = True,
        escapechar: str | None = None,
        storage_options: StorageOptions | None = None,
    ) -> None:
        self.fmt = formatter

        self.obj = self.fmt.frame

        self.filepath_or_buffer = path_or_buf
        self.encoding = encoding
        self.compression: CompressionOptions = compression
        self.mode = mode
        self.storage_options = storage_options

        self.sep = sep
        self.index_label = self._initialize_index_label(index_label)
        self.errors = errors
        self.quoting = quoting or csvlib.QUOTE_MINIMAL
        self.quotechar = self._initialize_quotechar(quotechar)
        self.doublequote = doublequote
        self.escapechar = escapechar
        self.lineterminator = lineterminator or os.linesep
        self.date_format = date_format
        self.cols = self._initialize_columns(cols)
        self.chunksize = self._initialize_chunksize(chunksize)

    @property
    def na_rep(self) -> str:
        return self.fmt.na_rep

    @property
    def float_format(self) -> FloatFormatType | None:
        return self.fmt.float_format

    @property
    def decimal(self) -> str:
        return self.fmt.decimal

    @property
    def header(self) -> bool | SequenceNotStr[str]:
        return self.fmt.header

    @property
    def index(self) -> bool:
        return self.fmt.index

    def _initialize_index_label(self, index_label: IndexLabel | None) -> IndexLabel:
        if index_label is not False:
            if index_label is None:
                return self._get_index_label_from_obj()
            elif not isinstance(index_label, (list, tuple, np.ndarray, ABCIndex)):
                # given a string for a DF with Index
                return [index_label]
        return index_label

    def _get_index_label_from_obj(self) -> Sequence[Hashable]:
        if isinstance(self.obj.index, ABCMultiIndex):
            return self._get_index_label_multiindex()
        else:
            return self._get_index_label_flat()

    def _get_index_label_multiindex(self) -> Sequence[Hashable]:
        return [name or "" for name in self.obj.index.names]

    def _get_index_label_flat(self) -> Sequence[Hashable]:
        index_label = self.obj.index.name
        return [""] if index_label is None else [index_label]

    def _initialize_quotechar(self, quotechar: str | None) -> str | None:
        if self.quoting != csvlib.QUOTE_NONE:
            # prevents crash in _csv
            return quotechar
        return None

    @property
    def has_mi_columns(self) -> bool:
        return bool(isinstance(self.obj.columns, ABCMultiIndex))

    def _initialize_columns(
        self, cols: Iterable[Hashable] | None
    ) -> npt.NDArray[np.object_]:
        # validate mi options
        if self.has_mi_columns:
            if cols is not None:
                msg = "cannot specify cols with a MultiIndex on the columns"
                raise TypeError(msg)

        if cols is not None:
            if isinstance(cols, ABCIndex):
                cols = cols._get_values_for_csv(**self._number_format)
            else:
                cols = list(cols)
            self.obj = self.obj.loc[:, cols]

        # update columns to include possible multiplicity of dupes
        # and make sure cols is just a list of labels
        new_cols = self.obj.columns
        return new_cols._get_values_for_csv(**self._number_format)

    def _initialize_chunksize(self, chunksize: int | None) -> int:
        if chunksize is None:
            return (_DEFAULT_CHUNKSIZE_CELLS // (len(self.cols) or 1)) or 1
        return int(chunksize)

    @property
    def _number_format(self) -> dict[str, Any]:
        """Dictionary used for storing number formatting settings."""
        return {
            "na_rep": self.na_rep,
            "float_format": self.float_format,
            "date_format": self.date_format,
            "quoting": self.quoting,
            "decimal": self.decimal,
        }

    @cache_readonly
    def data_index(self) -> Index:
        data_index = self.obj.index
        if (
            isinstance(data_index, (ABCDatetimeIndex, ABCPeriodIndex))
            and self.date_format is not None
        ):
            data_index = Index(
                [x.strftime(self.date_format) if notna(x) else "" for x in data_index]
            )
        elif isinstance(data_index, ABCMultiIndex):
            data_index = data_index.remove_unused_levels()
        return data_index

    @property
    def nlevels(self) -> int:
        if self.index:
            return getattr(self.data_index, "nlevels", 1)
        else:
            return 0

    @property
    def _has_aliases(self) -> bool:
        return isinstance(self.header, (tuple, list, np.ndarray, ABCIndex))

    @property
    def _need_to_save_header(self) -> bool:
        return bool(self._has_aliases or self.header)

    @property
    def write_cols(self) -> SequenceNotStr[Hashable]:
        if self._has_aliases:
            assert not isinstance(self.header, bool)
            if len(self.header) != len(self.cols):
                raise ValueError(
                    f"Writing {len(self.cols)} cols but got {len(self.header)} aliases"
                )
            return self.header
        else:
            # self.cols is an ndarray derived from Index._get_values_for_csv,
            #  so its entries are strings, i.e. hashable
            return cast(SequenceNotStr[Hashable], self.cols)

    @property
    def encoded_labels(self) -> list[Hashable]:
        encoded_labels: list[Hashable] = []

        if self.index and self.index_label:
            assert isinstance(self.index_label, Sequence)
            encoded_labels = list(self.index_label)

        if not self.has_mi_columns or self._has_aliases:
            encoded_labels += list(self.write_cols)

        return encoded_labels

    def save(self) -> None:
        """
        Create the writer & save.
        """
        # apply compression and byte/text conversion
        with get_handle(
            self.filepath_or_buffer,
            self.mode,
            encoding=self.encoding,
            errors=self.errors,
            compression=self.compression,
            storage_options=self.storage_options,
        ) as handles:
            # Note: self.encoding is irrelevant here
            self.writer = csvlib.writer(
                handles.handle,
                lineterminator=self.lineterminator,
                delimiter=self.sep,
                quoting=self.quoting,
                doublequote=self.doublequote,
                escapechar=self.escapechar,
                quotechar=self.quotechar,
            )

            self._save()

    def _save(self) -> None:
        if self._need_to_save_header:
            self._save_header()
        self._save_body()

    def _save_header(self) -> None:
        if not self.has_mi_columns or self._has_aliases:
            self.writer.writerow(self.encoded_labels)
        else:
            for row in self._generate_multiindex_header_rows():
                self.writer.writerow(row)

    def _generate_multiindex_header_rows(self) -> Iterator[list[Hashable]]:
        columns = self.obj.columns
        for i in range(columns.nlevels):
            # we need at least 1 index column to write our col names
            col_line = []
            if self.index:
                # name is the first column
                col_line.append(columns.names[i])

                if isinstance(self.index_label, list) and len(self.index_label) > 1:
                    col_line.extend([""] * (len(self.index_label) - 1))

            col_line.extend(columns._get_level_values(i))
            yield col_line

        # Write out the index line if it's not empty.
        # Otherwise, we will print out an extraneous
        # blank line between the mi and the data rows.
        if self.encoded_labels and set(self.encoded_labels) != {""}:
            yield self.encoded_labels + [""] * len(columns)

    def _save_body(self) -> None:
        nrows = len(self.data_index)
        chunks = (nrows // self.chunksize) + 1
        for i in range(chunks):
            start_i = i * self.chunksize
            end_i = min(start_i + self.chunksize, nrows)
            if start_i >= end_i:
                break
            self._save_chunk(start_i, end_i)

    def _save_chunk(self, start_i: int, end_i: int) -> None:
        # create the data for a chunk
        slicer = slice(start_i, end_i)
        df = self.obj.iloc[slicer]

        res = df._get_values_for_csv(**self._number_format)
        data = list(res._iter_column_arrays())

        ix = self.data_index[slicer]._get_values_for_csv(**self._number_format)
        libwriters.write_csv_rows(
            data,
            ix,
            self.nlevels,
            self.cols,
            self.writer,
        )