File size: 7,723 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""
Support pre-0.12 series pickle compatibility.
"""
from __future__ import annotations

import contextlib
import copy
import io
import pickle as pkl
from typing import TYPE_CHECKING

import numpy as np

from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import BaseOffset

from pandas import Index
from pandas.core.arrays import (
    DatetimeArray,
    PeriodArray,
    TimedeltaArray,
)
from pandas.core.internals import BlockManager

if TYPE_CHECKING:
    from collections.abc import Generator


def load_reduce(self) -> None:
    stack = self.stack
    args = stack.pop()
    func = stack[-1]

    try:
        stack[-1] = func(*args)
        return
    except TypeError as err:
        # If we have a deprecated function,
        # try to replace and try again.

        msg = "_reconstruct: First argument must be a sub-type of ndarray"

        if msg in str(err):
            try:
                cls = args[0]
                stack[-1] = object.__new__(cls)
                return
            except TypeError:
                pass
        elif args and isinstance(args[0], type) and issubclass(args[0], BaseOffset):
            # TypeError: object.__new__(Day) is not safe, use Day.__new__()
            cls = args[0]
            stack[-1] = cls.__new__(*args)
            return
        elif args and issubclass(args[0], PeriodArray):
            cls = args[0]
            stack[-1] = NDArrayBacked.__new__(*args)
            return

        raise


# If classes are moved, provide compat here.
_class_locations_map = {
    ("pandas.core.sparse.array", "SparseArray"): ("pandas.core.arrays", "SparseArray"),
    # 15477
    ("pandas.core.base", "FrozenNDArray"): ("numpy", "ndarray"),
    # Re-routing unpickle block logic to go through _unpickle_block instead
    # for pandas <= 1.3.5
    ("pandas.core.internals.blocks", "new_block"): (
        "pandas._libs.internals",
        "_unpickle_block",
    ),
    ("pandas.core.indexes.frozen", "FrozenNDArray"): ("numpy", "ndarray"),
    ("pandas.core.base", "FrozenList"): ("pandas.core.indexes.frozen", "FrozenList"),
    # 10890
    ("pandas.core.series", "TimeSeries"): ("pandas.core.series", "Series"),
    ("pandas.sparse.series", "SparseTimeSeries"): (
        "pandas.core.sparse.series",
        "SparseSeries",
    ),
    # 12588, extensions moving
    ("pandas._sparse", "BlockIndex"): ("pandas._libs.sparse", "BlockIndex"),
    ("pandas.tslib", "Timestamp"): ("pandas._libs.tslib", "Timestamp"),
    # 18543 moving period
    ("pandas._period", "Period"): ("pandas._libs.tslibs.period", "Period"),
    ("pandas._libs.period", "Period"): ("pandas._libs.tslibs.period", "Period"),
    # 18014 moved __nat_unpickle from _libs.tslib-->_libs.tslibs.nattype
    ("pandas.tslib", "__nat_unpickle"): (
        "pandas._libs.tslibs.nattype",
        "__nat_unpickle",
    ),
    ("pandas._libs.tslib", "__nat_unpickle"): (
        "pandas._libs.tslibs.nattype",
        "__nat_unpickle",
    ),
    # 15998 top-level dirs moving
    ("pandas.sparse.array", "SparseArray"): (
        "pandas.core.arrays.sparse",
        "SparseArray",
    ),
    ("pandas.indexes.base", "_new_Index"): ("pandas.core.indexes.base", "_new_Index"),
    ("pandas.indexes.base", "Index"): ("pandas.core.indexes.base", "Index"),
    ("pandas.indexes.numeric", "Int64Index"): (
        "pandas.core.indexes.base",
        "Index",  # updated in 50775
    ),
    ("pandas.indexes.range", "RangeIndex"): ("pandas.core.indexes.range", "RangeIndex"),
    ("pandas.indexes.multi", "MultiIndex"): ("pandas.core.indexes.multi", "MultiIndex"),
    ("pandas.tseries.index", "_new_DatetimeIndex"): (
        "pandas.core.indexes.datetimes",
        "_new_DatetimeIndex",
    ),
    ("pandas.tseries.index", "DatetimeIndex"): (
        "pandas.core.indexes.datetimes",
        "DatetimeIndex",
    ),
    ("pandas.tseries.period", "PeriodIndex"): (
        "pandas.core.indexes.period",
        "PeriodIndex",
    ),
    # 19269, arrays moving
    ("pandas.core.categorical", "Categorical"): ("pandas.core.arrays", "Categorical"),
    # 19939, add timedeltaindex, float64index compat from 15998 move
    ("pandas.tseries.tdi", "TimedeltaIndex"): (
        "pandas.core.indexes.timedeltas",
        "TimedeltaIndex",
    ),
    ("pandas.indexes.numeric", "Float64Index"): (
        "pandas.core.indexes.base",
        "Index",  # updated in 50775
    ),
    # 50775, remove Int64Index, UInt64Index & Float64Index from codabase
    ("pandas.core.indexes.numeric", "Int64Index"): (
        "pandas.core.indexes.base",
        "Index",
    ),
    ("pandas.core.indexes.numeric", "UInt64Index"): (
        "pandas.core.indexes.base",
        "Index",
    ),
    ("pandas.core.indexes.numeric", "Float64Index"): (
        "pandas.core.indexes.base",
        "Index",
    ),
    ("pandas.core.arrays.sparse.dtype", "SparseDtype"): (
        "pandas.core.dtypes.dtypes",
        "SparseDtype",
    ),
}


# our Unpickler sub-class to override methods and some dispatcher
# functions for compat and uses a non-public class of the pickle module.


class Unpickler(pkl._Unpickler):
    def find_class(self, module, name):
        # override superclass
        key = (module, name)
        module, name = _class_locations_map.get(key, key)
        return super().find_class(module, name)


Unpickler.dispatch = copy.copy(Unpickler.dispatch)
Unpickler.dispatch[pkl.REDUCE[0]] = load_reduce


def load_newobj(self) -> None:
    args = self.stack.pop()
    cls = self.stack[-1]

    # compat
    if issubclass(cls, Index):
        obj = object.__new__(cls)
    elif issubclass(cls, DatetimeArray) and not args:
        arr = np.array([], dtype="M8[ns]")
        obj = cls.__new__(cls, arr, arr.dtype)
    elif issubclass(cls, TimedeltaArray) and not args:
        arr = np.array([], dtype="m8[ns]")
        obj = cls.__new__(cls, arr, arr.dtype)
    elif cls is BlockManager and not args:
        obj = cls.__new__(cls, (), [], False)
    else:
        obj = cls.__new__(cls, *args)

    self.stack[-1] = obj


Unpickler.dispatch[pkl.NEWOBJ[0]] = load_newobj


def load_newobj_ex(self) -> None:
    kwargs = self.stack.pop()
    args = self.stack.pop()
    cls = self.stack.pop()

    # compat
    if issubclass(cls, Index):
        obj = object.__new__(cls)
    else:
        obj = cls.__new__(cls, *args, **kwargs)
    self.append(obj)


try:
    Unpickler.dispatch[pkl.NEWOBJ_EX[0]] = load_newobj_ex
except (AttributeError, KeyError):
    pass


def load(fh, encoding: str | None = None, is_verbose: bool = False):
    """
    Load a pickle, with a provided encoding,

    Parameters
    ----------
    fh : a filelike object
    encoding : an optional encoding
    is_verbose : show exception output
    """
    try:
        fh.seek(0)
        if encoding is not None:
            up = Unpickler(fh, encoding=encoding)
        else:
            up = Unpickler(fh)
        # "Unpickler" has no attribute "is_verbose"  [attr-defined]
        up.is_verbose = is_verbose  # type: ignore[attr-defined]

        return up.load()
    except (ValueError, TypeError):
        raise


def loads(
    bytes_object: bytes,
    *,
    fix_imports: bool = True,
    encoding: str = "ASCII",
    errors: str = "strict",
):
    """
    Analogous to pickle._loads.
    """
    fd = io.BytesIO(bytes_object)
    return Unpickler(
        fd, fix_imports=fix_imports, encoding=encoding, errors=errors
    ).load()


@contextlib.contextmanager
def patch_pickle() -> Generator[None, None, None]:
    """
    Temporarily patch pickle to use our unpickler.
    """
    orig_loads = pkl.loads
    try:
        setattr(pkl, "loads", loads)
        yield
    finally:
        setattr(pkl, "loads", orig_loads)