File size: 3,804 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from _typeshed import Incomplete

import numpy as np
from numpy.lib._function_base_impl import average
from numpy.lib._index_tricks_impl import AxisConcatenator

from .core import MaskedArray, dot

__all__ = [
    "apply_along_axis",
    "apply_over_axes",
    "atleast_1d",
    "atleast_2d",
    "atleast_3d",
    "average",
    "clump_masked",
    "clump_unmasked",
    "column_stack",
    "compress_cols",
    "compress_nd",
    "compress_rowcols",
    "compress_rows",
    "corrcoef",
    "count_masked",
    "cov",
    "diagflat",
    "dot",
    "dstack",
    "ediff1d",
    "flatnotmasked_contiguous",
    "flatnotmasked_edges",
    "hsplit",
    "hstack",
    "in1d",
    "intersect1d",
    "isin",
    "mask_cols",
    "mask_rowcols",
    "mask_rows",
    "masked_all",
    "masked_all_like",
    "median",
    "mr_",
    "ndenumerate",
    "notmasked_contiguous",
    "notmasked_edges",
    "polyfit",
    "row_stack",
    "setdiff1d",
    "setxor1d",
    "stack",
    "union1d",
    "unique",
    "vander",
    "vstack",
]

def count_masked(arr, axis=...): ...
def masked_all(shape, dtype = ...): ...
def masked_all_like(arr): ...

class _fromnxfunction:
    __name__: Incomplete
    __doc__: Incomplete
    def __init__(self, funcname) -> None: ...
    def getdoc(self): ...
    def __call__(self, *args, **params): ...

class _fromnxfunction_single(_fromnxfunction):
    def __call__(self, x, *args, **params): ...

class _fromnxfunction_seq(_fromnxfunction):
    def __call__(self, x, *args, **params): ...

class _fromnxfunction_allargs(_fromnxfunction):
    def __call__(self, *args, **params): ...

atleast_1d: _fromnxfunction_allargs
atleast_2d: _fromnxfunction_allargs
atleast_3d: _fromnxfunction_allargs

vstack: _fromnxfunction_seq
row_stack: _fromnxfunction_seq
hstack: _fromnxfunction_seq
column_stack: _fromnxfunction_seq
dstack: _fromnxfunction_seq
stack: _fromnxfunction_seq

hsplit: _fromnxfunction_single
diagflat: _fromnxfunction_single

def apply_along_axis(func1d, axis, arr, *args, **kwargs): ...
def apply_over_axes(func, a, axes): ...
def median(a, axis=..., out=..., overwrite_input=..., keepdims=...): ...
def compress_nd(x, axis=...): ...
def compress_rowcols(x, axis=...): ...
def compress_rows(a): ...
def compress_cols(a): ...
def mask_rows(a, axis = ...): ...
def mask_cols(a, axis = ...): ...
def ediff1d(arr, to_end=..., to_begin=...): ...
def unique(ar1, return_index=..., return_inverse=...): ...
def intersect1d(ar1, ar2, assume_unique=...): ...
def setxor1d(ar1, ar2, assume_unique=...): ...
def in1d(ar1, ar2, assume_unique=..., invert=...): ...
def isin(element, test_elements, assume_unique=..., invert=...): ...
def union1d(ar1, ar2): ...
def setdiff1d(ar1, ar2, assume_unique=...): ...
def cov(x, y=..., rowvar=..., bias=..., allow_masked=..., ddof=...): ...
def corrcoef(x, y=..., rowvar=..., bias = ..., allow_masked=..., ddof = ...): ...

class MAxisConcatenator(AxisConcatenator):
    @staticmethod
    def concatenate(arrays: Incomplete, axis: int = 0) -> Incomplete: ...  # type: ignore[override]  # pyright: ignore[reportIncompatibleMethodOverride]
    @classmethod
    def makemat(cls, arr: Incomplete) -> Incomplete: ...  # type: ignore[override]  # pyright: ignore[reportIncompatibleVariableOverride]

class mr_class(MAxisConcatenator):
    def __init__(self) -> None: ...

mr_: mr_class

def ndenumerate(a, compressed=...): ...
def flatnotmasked_edges(a): ...
def notmasked_edges(a, axis=...): ...
def flatnotmasked_contiguous(a): ...
def notmasked_contiguous(a, axis=...): ...
def clump_unmasked(a): ...
def clump_masked(a): ...
def vander(x, n=...): ...
def polyfit(x, y, deg, rcond=..., full=..., w=..., cov=...): ...

#
def mask_rowcols(a: Incomplete, axis: Incomplete | None = None) -> MaskedArray[Incomplete, np.dtype[Incomplete]]: ...