File size: 3,804 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
from _typeshed import Incomplete
import numpy as np
from numpy.lib._function_base_impl import average
from numpy.lib._index_tricks_impl import AxisConcatenator
from .core import MaskedArray, dot
__all__ = [
"apply_along_axis",
"apply_over_axes",
"atleast_1d",
"atleast_2d",
"atleast_3d",
"average",
"clump_masked",
"clump_unmasked",
"column_stack",
"compress_cols",
"compress_nd",
"compress_rowcols",
"compress_rows",
"corrcoef",
"count_masked",
"cov",
"diagflat",
"dot",
"dstack",
"ediff1d",
"flatnotmasked_contiguous",
"flatnotmasked_edges",
"hsplit",
"hstack",
"in1d",
"intersect1d",
"isin",
"mask_cols",
"mask_rowcols",
"mask_rows",
"masked_all",
"masked_all_like",
"median",
"mr_",
"ndenumerate",
"notmasked_contiguous",
"notmasked_edges",
"polyfit",
"row_stack",
"setdiff1d",
"setxor1d",
"stack",
"union1d",
"unique",
"vander",
"vstack",
]
def count_masked(arr, axis=...): ...
def masked_all(shape, dtype = ...): ...
def masked_all_like(arr): ...
class _fromnxfunction:
__name__: Incomplete
__doc__: Incomplete
def __init__(self, funcname) -> None: ...
def getdoc(self): ...
def __call__(self, *args, **params): ...
class _fromnxfunction_single(_fromnxfunction):
def __call__(self, x, *args, **params): ...
class _fromnxfunction_seq(_fromnxfunction):
def __call__(self, x, *args, **params): ...
class _fromnxfunction_allargs(_fromnxfunction):
def __call__(self, *args, **params): ...
atleast_1d: _fromnxfunction_allargs
atleast_2d: _fromnxfunction_allargs
atleast_3d: _fromnxfunction_allargs
vstack: _fromnxfunction_seq
row_stack: _fromnxfunction_seq
hstack: _fromnxfunction_seq
column_stack: _fromnxfunction_seq
dstack: _fromnxfunction_seq
stack: _fromnxfunction_seq
hsplit: _fromnxfunction_single
diagflat: _fromnxfunction_single
def apply_along_axis(func1d, axis, arr, *args, **kwargs): ...
def apply_over_axes(func, a, axes): ...
def median(a, axis=..., out=..., overwrite_input=..., keepdims=...): ...
def compress_nd(x, axis=...): ...
def compress_rowcols(x, axis=...): ...
def compress_rows(a): ...
def compress_cols(a): ...
def mask_rows(a, axis = ...): ...
def mask_cols(a, axis = ...): ...
def ediff1d(arr, to_end=..., to_begin=...): ...
def unique(ar1, return_index=..., return_inverse=...): ...
def intersect1d(ar1, ar2, assume_unique=...): ...
def setxor1d(ar1, ar2, assume_unique=...): ...
def in1d(ar1, ar2, assume_unique=..., invert=...): ...
def isin(element, test_elements, assume_unique=..., invert=...): ...
def union1d(ar1, ar2): ...
def setdiff1d(ar1, ar2, assume_unique=...): ...
def cov(x, y=..., rowvar=..., bias=..., allow_masked=..., ddof=...): ...
def corrcoef(x, y=..., rowvar=..., bias = ..., allow_masked=..., ddof = ...): ...
class MAxisConcatenator(AxisConcatenator):
@staticmethod
def concatenate(arrays: Incomplete, axis: int = 0) -> Incomplete: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
@classmethod
def makemat(cls, arr: Incomplete) -> Incomplete: ... # type: ignore[override] # pyright: ignore[reportIncompatibleVariableOverride]
class mr_class(MAxisConcatenator):
def __init__(self) -> None: ...
mr_: mr_class
def ndenumerate(a, compressed=...): ...
def flatnotmasked_edges(a): ...
def notmasked_edges(a, axis=...): ...
def flatnotmasked_contiguous(a): ...
def notmasked_contiguous(a, axis=...): ...
def clump_unmasked(a): ...
def clump_masked(a): ...
def vander(x, n=...): ...
def polyfit(x, y, deg, rcond=..., full=..., w=..., cov=...): ...
#
def mask_rowcols(a: Incomplete, axis: Incomplete | None = None) -> MaskedArray[Incomplete, np.dtype[Incomplete]]: ...
|