File size: 22,932 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
from __future__ import absolute_import, division, print_function
import os
import warnings
from random import random
from time import sleep
from uuid import uuid4
import pytest
from .. import Parallel, delayed, parallel_backend, parallel_config
from .._dask import DaskDistributedBackend
from ..parallel import AutoBatchingMixin, ThreadingBackend
from .common import np, with_numpy
from .test_parallel import (
_recursive_backend_info,
_test_deadlock_with_generator,
_test_parallel_unordered_generator_returns_fastest_first, # noqa: E501
)
distributed = pytest.importorskip("distributed")
dask = pytest.importorskip("dask")
# These imports need to be after the pytest.importorskip hence the noqa: E402
from distributed import Client, LocalCluster, get_client # noqa: E402
from distributed.metrics import time # noqa: E402
# Note: pytest requires to manually import all fixtures used in the test
# and their dependencies.
from distributed.utils_test import cleanup, cluster, inc # noqa: E402, F401
@pytest.fixture(scope="function", autouse=True)
def avoid_dask_env_leaks(tmp_path):
# when starting a dask nanny, the environment variable might change.
# this fixture makes sure the environment is reset after the test.
from joblib._parallel_backends import ParallelBackendBase
old_value = {k: os.environ.get(k) for k in ParallelBackendBase.MAX_NUM_THREADS_VARS}
yield
# Reset the environment variables to their original values
for k, v in old_value.items():
if v is None:
os.environ.pop(k, None)
else:
os.environ[k] = v
def noop(*args, **kwargs):
pass
def slow_raise_value_error(condition, duration=0.05):
sleep(duration)
if condition:
raise ValueError("condition evaluated to True")
def count_events(event_name, client):
worker_events = client.run(lambda dask_worker: dask_worker.log)
event_counts = {}
for w, events in worker_events.items():
event_counts[w] = len(
[event for event in list(events) if event[1] == event_name]
)
return event_counts
def test_simple(loop):
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop) as client: # noqa: F841
with parallel_config(backend="dask"):
seq = Parallel()(delayed(inc)(i) for i in range(10))
assert seq == [inc(i) for i in range(10)]
with pytest.raises(ValueError):
Parallel()(
delayed(slow_raise_value_error)(i == 3) for i in range(10)
)
seq = Parallel()(delayed(inc)(i) for i in range(10))
assert seq == [inc(i) for i in range(10)]
def test_dask_backend_uses_autobatching(loop):
assert (
DaskDistributedBackend.compute_batch_size
is AutoBatchingMixin.compute_batch_size
)
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop) as client: # noqa: F841
with parallel_config(backend="dask"):
with Parallel() as parallel:
# The backend should be initialized with a default
# batch size of 1:
backend = parallel._backend
assert isinstance(backend, DaskDistributedBackend)
assert backend.parallel is parallel
assert backend._effective_batch_size == 1
# Launch many short tasks that should trigger
# auto-batching:
parallel(delayed(lambda: None)() for _ in range(int(1e4)))
assert backend._effective_batch_size > 10
@pytest.mark.parametrize("n_jobs", [2, -1])
@pytest.mark.parametrize("context", [parallel_config, parallel_backend])
def test_parallel_unordered_generator_returns_fastest_first_with_dask(n_jobs, context):
with distributed.Client(n_workers=2, threads_per_worker=2), context("dask"):
_test_parallel_unordered_generator_returns_fastest_first(None, n_jobs)
@with_numpy
@pytest.mark.parametrize("n_jobs", [2, -1])
@pytest.mark.parametrize("return_as", ["generator", "generator_unordered"])
@pytest.mark.parametrize("context", [parallel_config, parallel_backend])
def test_deadlock_with_generator_and_dask(context, return_as, n_jobs):
with distributed.Client(n_workers=2, threads_per_worker=2), context("dask"):
_test_deadlock_with_generator(None, return_as, n_jobs)
@with_numpy
@pytest.mark.parametrize("context", [parallel_config, parallel_backend])
def test_nested_parallelism_with_dask(context):
with distributed.Client(n_workers=2, threads_per_worker=2):
# 10 MB of data as argument to trigger implicit scattering
data = np.ones(int(1e7), dtype=np.uint8)
for i in range(2):
with context("dask"):
backend_types_and_levels = _recursive_backend_info(data=data)
assert len(backend_types_and_levels) == 4
assert all(
name == "DaskDistributedBackend" for name, _ in backend_types_and_levels
)
# No argument
with context("dask"):
backend_types_and_levels = _recursive_backend_info()
assert len(backend_types_and_levels) == 4
assert all(
name == "DaskDistributedBackend" for name, _ in backend_types_and_levels
)
def random2():
return random()
def test_dont_assume_function_purity(loop):
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop) as client: # noqa: F841
with parallel_config(backend="dask"):
x, y = Parallel()(delayed(random2)() for i in range(2))
assert x != y
@pytest.mark.parametrize("mixed", [True, False])
def test_dask_funcname(loop, mixed):
from joblib._dask import Batch
if not mixed:
tasks = [delayed(inc)(i) for i in range(4)]
batch_repr = "batch_of_inc_4_calls"
else:
tasks = [delayed(abs)(i) if i % 2 else delayed(inc)(i) for i in range(4)]
batch_repr = "mixed_batch_of_inc_4_calls"
assert repr(Batch(tasks)) == batch_repr
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop) as client:
with parallel_config(backend="dask"):
_ = Parallel(batch_size=2, pre_dispatch="all")(tasks)
def f(dask_scheduler):
return list(dask_scheduler.transition_log)
batch_repr = batch_repr.replace("4", "2")
log = client.run_on_scheduler(f)
assert all("batch_of_inc" in tup[0] for tup in log)
def test_no_undesired_distributed_cache_hit():
# Dask has a pickle cache for callables that are called many times. Because
# the dask backends used to wrap both the functions and the arguments
# under instances of the Batch callable class this caching mechanism could
# lead to bugs as described in: https://github.com/joblib/joblib/pull/1055
# The joblib-dask backend has been refactored to avoid bundling the
# arguments as an attribute of the Batch instance to avoid this problem.
# This test serves as non-regression problem.
# Use a large number of input arguments to give the AutoBatchingMixin
# enough tasks to kick-in.
lists = [[] for _ in range(100)]
np = pytest.importorskip("numpy")
X = np.arange(int(1e6))
def isolated_operation(list_, data=None):
if data is not None:
np.testing.assert_array_equal(data, X)
list_.append(uuid4().hex)
return list_
cluster = LocalCluster(n_workers=1, threads_per_worker=2)
client = Client(cluster)
try:
with parallel_config(backend="dask"):
# dispatches joblib.parallel.BatchedCalls
res = Parallel()(delayed(isolated_operation)(list_) for list_ in lists)
# The original arguments should not have been mutated as the mutation
# happens in the dask worker process.
assert lists == [[] for _ in range(100)]
# Here we did not pass any large numpy array as argument to
# isolated_operation so no scattering event should happen under the
# hood.
counts = count_events("receive-from-scatter", client)
assert sum(counts.values()) == 0
assert all([len(r) == 1 for r in res])
with parallel_config(backend="dask"):
# Append a large array which will be scattered by dask, and
# dispatch joblib._dask.Batch
res = Parallel()(
delayed(isolated_operation)(list_, data=X) for list_ in lists
)
# This time, auto-scattering should have kicked it.
counts = count_events("receive-from-scatter", client)
assert sum(counts.values()) > 0
assert all([len(r) == 1 for r in res])
finally:
client.close(timeout=30)
cluster.close(timeout=30)
class CountSerialized(object):
def __init__(self, x):
self.x = x
self.count = 0
def __add__(self, other):
return self.x + getattr(other, "x", other)
__radd__ = __add__
def __reduce__(self):
self.count += 1
return (CountSerialized, (self.x,))
def add5(a, b, c, d=0, e=0):
return a + b + c + d + e
def test_manual_scatter(loop):
# Let's check that the number of times scattered and non-scattered
# variables are serialized is consistent between `joblib.Parallel` calls
# and equivalent native `client.submit` call.
# Number of serializations can vary from dask to another, so this test only
# checks that `joblib.Parallel` does not add more serialization steps than
# a native `client.submit` call, but does not check for an exact number of
# serialization steps.
w, x, y, z = (CountSerialized(i) for i in range(4))
f = delayed(add5)
tasks = [f(x, y, z, d=4, e=5) for _ in range(10)]
tasks += [
f(x, z, y, d=5, e=4),
f(y, x, z, d=x, e=5),
f(z, z, x, d=z, e=y),
]
expected = [func(*args, **kwargs) for func, args, kwargs in tasks]
with cluster() as (s, _):
with Client(s["address"], loop=loop) as client: # noqa: F841
with parallel_config(backend="dask", scatter=[w, x, y]):
results_parallel = Parallel(batch_size=1)(tasks)
assert results_parallel == expected
# Check that an error is raised for bad arguments, as scatter must
# take a list/tuple
with pytest.raises(TypeError):
with parallel_config(backend="dask", loop=loop, scatter=1):
pass
# Scattered variables only serialized during scatter. Checking with an
# extra variable as this count can vary from one dask version
# to another.
n_serialization_scatter_with_parallel = w.count
assert x.count == n_serialization_scatter_with_parallel
assert y.count == n_serialization_scatter_with_parallel
n_serialization_with_parallel = z.count
# Reset the cluster and the serialization count
for var in (w, x, y, z):
var.count = 0
with cluster() as (s, _):
with Client(s["address"], loop=loop) as client: # noqa: F841
scattered = dict()
for obj in w, x, y:
scattered[id(obj)] = client.scatter(obj, broadcast=True)
results_native = [
client.submit(
func,
*(scattered.get(id(arg), arg) for arg in args),
**dict(
(key, scattered.get(id(value), value))
for (key, value) in kwargs.items()
),
key=str(uuid4()),
).result()
for (func, args, kwargs) in tasks
]
assert results_native == expected
# Now check that the number of serialization steps is the same for joblib
# and native dask calls.
n_serialization_scatter_native = w.count
assert x.count == n_serialization_scatter_native
assert y.count == n_serialization_scatter_native
assert n_serialization_scatter_with_parallel == n_serialization_scatter_native
distributed_version = tuple(int(v) for v in distributed.__version__.split("."))
if distributed_version < (2023, 4):
# Previous to 2023.4, the serialization was adding an extra call to
# __reduce__ for the last job `f(z, z, x, d=z, e=y)`, because `z`
# appears both in the args and kwargs, which is not the case when
# running with joblib. Cope with this discrepancy.
assert z.count == n_serialization_with_parallel + 1
else:
assert z.count == n_serialization_with_parallel
# When the same IOLoop is used for multiple clients in a row, use
# loop_in_thread instead of loop to prevent the Client from closing it. See
# dask/distributed #4112
def test_auto_scatter(loop_in_thread):
np = pytest.importorskip("numpy")
data1 = np.ones(int(1e4), dtype=np.uint8)
data2 = np.ones(int(1e4), dtype=np.uint8)
data_to_process = ([data1] * 3) + ([data2] * 3)
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop_in_thread) as client:
with parallel_config(backend="dask"):
# Passing the same data as arg and kwarg triggers a single
# scatter operation whose result is reused.
Parallel()(
delayed(noop)(data, data, i, opt=data)
for i, data in enumerate(data_to_process)
)
# By default large array are automatically scattered with
# broadcast=1 which means that one worker must directly receive
# the data from the scatter operation once.
counts = count_events("receive-from-scatter", client)
assert counts[a["address"]] + counts[b["address"]] == 2
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop_in_thread) as client:
with parallel_config(backend="dask"):
Parallel()(delayed(noop)(data1[:3], i) for i in range(5))
# Small arrays are passed within the task definition without going
# through a scatter operation.
counts = count_events("receive-from-scatter", client)
assert counts[a["address"]] == 0
assert counts[b["address"]] == 0
@pytest.mark.parametrize("retry_no", list(range(2)))
def test_nested_scatter(loop, retry_no):
np = pytest.importorskip("numpy")
NUM_INNER_TASKS = 10
NUM_OUTER_TASKS = 10
def my_sum(x, i, j):
return np.sum(x)
def outer_function_joblib(array, i):
client = get_client() # noqa
with parallel_config(backend="dask"):
results = Parallel()(
delayed(my_sum)(array[j:], i, j) for j in range(NUM_INNER_TASKS)
)
return sum(results)
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop) as _:
with parallel_config(backend="dask"):
my_array = np.ones(10000)
_ = Parallel()(
delayed(outer_function_joblib)(my_array[i:], i)
for i in range(NUM_OUTER_TASKS)
)
def test_nested_backend_context_manager(loop_in_thread):
def get_nested_pids():
pids = set(Parallel(n_jobs=2)(delayed(os.getpid)() for _ in range(2)))
pids |= set(Parallel(n_jobs=2)(delayed(os.getpid)() for _ in range(2)))
return pids
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop_in_thread) as client:
with parallel_config(backend="dask"):
pid_groups = Parallel(n_jobs=2)(
delayed(get_nested_pids)() for _ in range(10)
)
for pid_group in pid_groups:
assert len(set(pid_group)) <= 2
# No deadlocks
with Client(s["address"], loop=loop_in_thread) as client: # noqa: F841
with parallel_config(backend="dask"):
pid_groups = Parallel(n_jobs=2)(
delayed(get_nested_pids)() for _ in range(10)
)
for pid_group in pid_groups:
assert len(set(pid_group)) <= 2
def test_nested_backend_context_manager_implicit_n_jobs(loop):
# Check that Parallel with no explicit n_jobs value automatically selects
# all the dask workers, including in nested calls.
def _backend_type(p):
return p._backend.__class__.__name__
def get_nested_implicit_n_jobs():
with Parallel() as p:
return _backend_type(p), p.n_jobs
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop) as client: # noqa: F841
with parallel_config(backend="dask"):
with Parallel() as p:
assert _backend_type(p) == "DaskDistributedBackend"
assert p.n_jobs == -1
all_nested_n_jobs = p(
delayed(get_nested_implicit_n_jobs)() for _ in range(2)
)
for backend_type, nested_n_jobs in all_nested_n_jobs:
assert backend_type == "DaskDistributedBackend"
assert nested_n_jobs == -1
def test_errors(loop):
with pytest.raises(ValueError) as info:
with parallel_config(backend="dask"):
pass
assert "create a dask client" in str(info.value).lower()
def test_correct_nested_backend(loop):
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop) as client: # noqa: F841
# No requirement, should be us
with parallel_config(backend="dask"):
result = Parallel(n_jobs=2)(
delayed(outer)(nested_require=None) for _ in range(1)
)
assert isinstance(result[0][0][0], DaskDistributedBackend)
# Require threads, should be threading
with parallel_config(backend="dask"):
result = Parallel(n_jobs=2)(
delayed(outer)(nested_require="sharedmem") for _ in range(1)
)
assert isinstance(result[0][0][0], ThreadingBackend)
def outer(nested_require):
return Parallel(n_jobs=2, prefer="threads")(
delayed(middle)(nested_require) for _ in range(1)
)
def middle(require):
return Parallel(n_jobs=2, require=require)(delayed(inner)() for _ in range(1))
def inner():
return Parallel()._backend
def test_secede_with_no_processes(loop):
# https://github.com/dask/distributed/issues/1775
with Client(loop=loop, processes=False, set_as_default=True):
with parallel_config(backend="dask"):
Parallel(n_jobs=4)(delayed(id)(i) for i in range(2))
def _worker_address(_):
from distributed import get_worker
return get_worker().address
def test_dask_backend_keywords(loop):
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop) as client: # noqa: F841
with parallel_config(backend="dask", workers=a["address"]):
seq = Parallel()(delayed(_worker_address)(i) for i in range(10))
assert seq == [a["address"]] * 10
with parallel_config(backend="dask", workers=b["address"]):
seq = Parallel()(delayed(_worker_address)(i) for i in range(10))
assert seq == [b["address"]] * 10
def test_scheduler_tasks_cleanup(loop):
with Client(processes=False, loop=loop) as client:
with parallel_config(backend="dask"):
Parallel()(delayed(inc)(i) for i in range(10))
start = time()
while client.cluster.scheduler.tasks:
sleep(0.01)
assert time() < start + 5
assert not client.futures
@pytest.mark.parametrize("cluster_strategy", ["adaptive", "late_scaling"])
@pytest.mark.skipif(
distributed.__version__ <= "2.1.1" and distributed.__version__ >= "1.28.0",
reason="distributed bug - https://github.com/dask/distributed/pull/2841",
)
def test_wait_for_workers(cluster_strategy):
cluster = LocalCluster(n_workers=0, processes=False, threads_per_worker=2)
client = Client(cluster)
if cluster_strategy == "adaptive":
cluster.adapt(minimum=0, maximum=2)
elif cluster_strategy == "late_scaling":
# Tell the cluster to start workers but this is a non-blocking call
# and new workers might take time to connect. In this case the Parallel
# call should wait for at least one worker to come up before starting
# to schedule work.
cluster.scale(2)
try:
with parallel_config(backend="dask"):
# The following should wait a bit for at least one worker to
# become available.
Parallel()(delayed(inc)(i) for i in range(10))
finally:
client.close()
cluster.close()
def test_wait_for_workers_timeout():
# Start a cluster with 0 worker:
cluster = LocalCluster(n_workers=0, processes=False, threads_per_worker=2)
client = Client(cluster)
try:
with parallel_config(backend="dask", wait_for_workers_timeout=0.1):
# Short timeout: DaskDistributedBackend
msg = "DaskDistributedBackend has no worker after 0.1 seconds."
with pytest.raises(TimeoutError, match=msg):
Parallel()(delayed(inc)(i) for i in range(10))
with parallel_config(backend="dask", wait_for_workers_timeout=0):
# No timeout: fallback to generic joblib failure:
msg = "DaskDistributedBackend has no active worker"
with pytest.raises(RuntimeError, match=msg):
Parallel()(delayed(inc)(i) for i in range(10))
finally:
client.close()
cluster.close()
@pytest.mark.parametrize("backend", ["loky", "multiprocessing"])
def test_joblib_warning_inside_dask_daemonic_worker(backend):
cluster = LocalCluster(n_workers=2)
client = Client(cluster)
try:
def func_using_joblib_parallel():
# Somehow trying to check the warning type here (e.g. with
# pytest.warns(UserWarning)) make the test hang. Work-around:
# return the warning record to the client and the warning check is
# done client-side.
with warnings.catch_warnings(record=True) as record:
Parallel(n_jobs=2, backend=backend)(delayed(inc)(i) for i in range(10))
return record
fut = client.submit(func_using_joblib_parallel)
record = fut.result()
assert len(record) == 1
warning = record[0].message
assert isinstance(warning, UserWarning)
assert "distributed.worker.daemon" in str(warning)
finally:
client.close(timeout=30)
cluster.close(timeout=30)
|