File size: 45,404 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 |
"""
A context object for caching a function's return value each time it
is called with the same input arguments.
"""
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# Copyright (c) 2009 Gael Varoquaux
# License: BSD Style, 3 clauses.
import asyncio
import datetime
import functools
import inspect
import logging
import os
import pathlib
import pydoc
import re
import textwrap
import time
import tokenize
import traceback
import warnings
import weakref
from . import hashing
from ._store_backends import (
CacheWarning, # noqa
FileSystemStoreBackend,
StoreBackendBase,
)
from .func_inspect import (
filter_args,
format_call,
format_signature,
get_func_code,
get_func_name,
)
from .logger import Logger, format_time, pformat
FIRST_LINE_TEXT = "# first line:"
# TODO: The following object should have a data store object as a sub
# object, and the interface to persist and query should be separated in
# the data store.
#
# This would enable creating 'Memory' objects with a different logic for
# pickling that would simply span a MemorizedFunc with the same
# store (or do we want to copy it to avoid cross-talks?), for instance to
# implement HDF5 pickling.
# TODO: Same remark for the logger, and probably use the Python logging
# mechanism.
def extract_first_line(func_code):
"""Extract the first line information from the function code
text if available.
"""
if func_code.startswith(FIRST_LINE_TEXT):
func_code = func_code.split("\n")
first_line = int(func_code[0][len(FIRST_LINE_TEXT) :])
func_code = "\n".join(func_code[1:])
else:
first_line = -1
return func_code, first_line
class JobLibCollisionWarning(UserWarning):
"""Warn that there might be a collision between names of functions."""
_STORE_BACKENDS = {"local": FileSystemStoreBackend}
def register_store_backend(backend_name, backend):
"""Extend available store backends.
The Memory, MemorizeResult and MemorizeFunc objects are designed to be
agnostic to the type of store used behind. By default, the local file
system is used but this function gives the possibility to extend joblib's
memory pattern with other types of storage such as cloud storage (S3, GCS,
OpenStack, HadoopFS, etc) or blob DBs.
Parameters
----------
backend_name: str
The name identifying the store backend being registered. For example,
'local' is used with FileSystemStoreBackend.
backend: StoreBackendBase subclass
The name of a class that implements the StoreBackendBase interface.
"""
if not isinstance(backend_name, str):
raise ValueError(
"Store backend name should be a string, '{0}' given.".format(backend_name)
)
if backend is None or not issubclass(backend, StoreBackendBase):
raise ValueError(
"Store backend should inherit StoreBackendBase, '{0}' given.".format(
backend
)
)
_STORE_BACKENDS[backend_name] = backend
def _store_backend_factory(backend, location, verbose=0, backend_options=None):
"""Return the correct store object for the given location."""
if backend_options is None:
backend_options = {}
if isinstance(location, pathlib.Path):
location = str(location)
if isinstance(location, StoreBackendBase):
return location
elif isinstance(location, str):
obj = None
location = os.path.expanduser(location)
# The location is not a local file system, we look in the
# registered backends if there's one matching the given backend
# name.
for backend_key, backend_obj in _STORE_BACKENDS.items():
if backend == backend_key:
obj = backend_obj()
# By default, we assume the FileSystemStoreBackend can be used if no
# matching backend could be found.
if obj is None:
raise TypeError(
"Unknown location {0} or backend {1}".format(location, backend)
)
# The store backend is configured with the extra named parameters,
# some of them are specific to the underlying store backend.
obj.configure(location, verbose=verbose, backend_options=backend_options)
return obj
elif location is not None:
warnings.warn(
"Instantiating a backend using a {} as a location is not "
"supported by joblib. Returning None instead.".format(
location.__class__.__name__
),
UserWarning,
)
return None
def _build_func_identifier(func):
"""Build a roughly unique identifier for the cached function."""
modules, funcname = get_func_name(func)
# We reuse historical fs-like way of building a function identifier
return os.path.join(*modules, funcname)
# An in-memory store to avoid looking at the disk-based function
# source code to check if a function definition has changed
_FUNCTION_HASHES = weakref.WeakKeyDictionary()
###############################################################################
# class `MemorizedResult`
###############################################################################
class MemorizedResult(Logger):
"""Object representing a cached value.
Attributes
----------
location: str
The location of joblib cache. Depends on the store backend used.
func: function or str
function whose output is cached. The string case is intended only for
instantiation based on the output of repr() on another instance.
(namely eval(repr(memorized_instance)) works).
argument_hash: str
hash of the function arguments.
backend: str
Type of store backend for reading/writing cache files.
Default is 'local'.
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}
The memmapping mode used when loading from cache numpy arrays. See
numpy.load for the meaning of the different values.
verbose: int
verbosity level (0 means no message).
timestamp, metadata: string
for internal use only.
"""
def __init__(
self,
location,
call_id,
backend="local",
mmap_mode=None,
verbose=0,
timestamp=None,
metadata=None,
):
Logger.__init__(self)
self._call_id = call_id
self.store_backend = _store_backend_factory(backend, location, verbose=verbose)
self.mmap_mode = mmap_mode
if metadata is not None:
self.metadata = metadata
else:
self.metadata = self.store_backend.get_metadata(self._call_id)
self.duration = self.metadata.get("duration", None)
self.verbose = verbose
self.timestamp = timestamp
@property
def func(self):
return self.func_id
@property
def func_id(self):
return self._call_id[0]
@property
def args_id(self):
return self._call_id[1]
def get(self):
"""Read value from cache and return it."""
try:
return self.store_backend.load_item(
self._call_id,
timestamp=self.timestamp,
metadata=self.metadata,
verbose=self.verbose,
)
except ValueError as exc:
new_exc = KeyError(
"Error while trying to load a MemorizedResult's value. "
"It seems that this folder is corrupted : {}".format(
os.path.join(self.store_backend.location, *self._call_id)
)
)
raise new_exc from exc
def clear(self):
"""Clear value from cache"""
self.store_backend.clear_item(self._call_id)
def __repr__(self):
return '{}(location="{}", func="{}", args_id="{}")'.format(
self.__class__.__name__, self.store_backend.location, *self._call_id
)
def __getstate__(self):
state = self.__dict__.copy()
state["timestamp"] = None
return state
class NotMemorizedResult(object):
"""Class representing an arbitrary value.
This class is a replacement for MemorizedResult when there is no cache.
"""
__slots__ = ("value", "valid")
def __init__(self, value):
self.value = value
self.valid = True
def get(self):
if self.valid:
return self.value
else:
raise KeyError("No value stored.")
def clear(self):
self.valid = False
self.value = None
def __repr__(self):
if self.valid:
return "{class_name}({value})".format(
class_name=self.__class__.__name__, value=pformat(self.value)
)
else:
return self.__class__.__name__ + " with no value"
# __getstate__ and __setstate__ are required because of __slots__
def __getstate__(self):
return {"valid": self.valid, "value": self.value}
def __setstate__(self, state):
self.valid = state["valid"]
self.value = state["value"]
###############################################################################
# class `NotMemorizedFunc`
###############################################################################
class NotMemorizedFunc(object):
"""No-op object decorating a function.
This class replaces MemorizedFunc when there is no cache. It provides an
identical API but does not write anything on disk.
Attributes
----------
func: callable
Original undecorated function.
"""
# Should be a light as possible (for speed)
def __init__(self, func):
self.func = func
def __call__(self, *args, **kwargs):
return self.func(*args, **kwargs)
def call_and_shelve(self, *args, **kwargs):
return NotMemorizedResult(self.func(*args, **kwargs))
def __repr__(self):
return "{0}(func={1})".format(self.__class__.__name__, self.func)
def clear(self, warn=True):
# Argument "warn" is for compatibility with MemorizedFunc.clear
pass
def call(self, *args, **kwargs):
return self.func(*args, **kwargs), {}
def check_call_in_cache(self, *args, **kwargs):
return False
###############################################################################
# class `AsyncNotMemorizedFunc`
###############################################################################
class AsyncNotMemorizedFunc(NotMemorizedFunc):
async def call_and_shelve(self, *args, **kwargs):
return NotMemorizedResult(await self.func(*args, **kwargs))
###############################################################################
# class `MemorizedFunc`
###############################################################################
class MemorizedFunc(Logger):
"""Callable object decorating a function for caching its return value
each time it is called.
Methods are provided to inspect the cache or clean it.
Attributes
----------
func: callable
The original, undecorated, function.
location: string
The location of joblib cache. Depends on the store backend used.
backend: str
Type of store backend for reading/writing cache files.
Default is 'local', in which case the location is the path to a
disk storage.
ignore: list or None
List of variable names to ignore when choosing whether to
recompute.
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}
The memmapping mode used when loading from cache
numpy arrays. See numpy.load for the meaning of the different
values.
compress: boolean, or integer
Whether to zip the stored data on disk. If an integer is
given, it should be between 1 and 9, and sets the amount
of compression. Note that compressed arrays cannot be
read by memmapping.
verbose: int, optional
The verbosity flag, controls messages that are issued as
the function is evaluated.
cache_validation_callback: callable, optional
Callable to check if a result in cache is valid or is to be recomputed.
When the function is called with arguments for which a cache exists,
the callback is called with the cache entry's metadata as its sole
argument. If it returns True, the cached result is returned, else the
cache for these arguments is cleared and the result is recomputed.
"""
# ------------------------------------------------------------------------
# Public interface
# ------------------------------------------------------------------------
def __init__(
self,
func,
location,
backend="local",
ignore=None,
mmap_mode=None,
compress=False,
verbose=1,
timestamp=None,
cache_validation_callback=None,
):
Logger.__init__(self)
self.mmap_mode = mmap_mode
self.compress = compress
self.func = func
self.cache_validation_callback = cache_validation_callback
self.func_id = _build_func_identifier(func)
self.ignore = ignore if ignore is not None else []
self._verbose = verbose
# retrieve store object from backend type and location.
self.store_backend = _store_backend_factory(
backend,
location,
verbose=verbose,
backend_options=dict(compress=compress, mmap_mode=mmap_mode),
)
if self.store_backend is not None:
# Create func directory on demand.
self.store_backend.store_cached_func_code([self.func_id])
self.timestamp = timestamp if timestamp is not None else time.time()
try:
functools.update_wrapper(self, func)
except Exception:
pass # Objects like ufunc don't like that
if inspect.isfunction(func):
doc = pydoc.TextDoc().document(func)
# Remove blank line
doc = doc.replace("\n", "\n\n", 1)
# Strip backspace-overprints for compatibility with autodoc
doc = re.sub("\x08.", "", doc)
else:
# Pydoc does a poor job on other objects
doc = func.__doc__
self.__doc__ = "Memoized version of %s" % doc
self._func_code_info = None
self._func_code_id = None
def _is_in_cache_and_valid(self, call_id):
"""Check if the function call is cached and valid for given arguments.
- Compare the function code with the one from the cached function,
asserting if it has changed.
- Check if the function call is present in the cache.
- Call `cache_validation_callback` for user define cache validation.
Returns True if the function call is in cache and can be used, and
returns False otherwise.
"""
# Check if the code of the function has changed
if not self._check_previous_func_code(stacklevel=4):
return False
# Check if this specific call is in the cache
if not self.store_backend.contains_item(call_id):
return False
# Call the user defined cache validation callback
metadata = self.store_backend.get_metadata(call_id)
if (
self.cache_validation_callback is not None
and not self.cache_validation_callback(metadata)
):
self.store_backend.clear_item(call_id)
return False
return True
def _cached_call(self, args, kwargs, shelving):
"""Call wrapped function and cache result, or read cache if available.
This function returns the wrapped function output or a reference to
the cached result.
Arguments:
----------
args, kwargs: list and dict
input arguments for wrapped function
shelving: bool
True when called via the call_and_shelve function.
Returns
-------
output: Output of the wrapped function if shelving is false, or a
MemorizedResult reference to the value if shelving is true.
metadata: dict containing the metadata associated with the call.
"""
args_id = self._get_args_id(*args, **kwargs)
call_id = (self.func_id, args_id)
_, func_name = get_func_name(self.func)
func_info = self.store_backend.get_cached_func_info([self.func_id])
location = func_info["location"]
if self._verbose >= 20:
logging.basicConfig(level=logging.INFO)
_, signature = format_signature(self.func, *args, **kwargs)
self.info(
textwrap.dedent(
f"""
Querying {func_name} with signature
{signature}.
(argument hash {args_id})
The store location is {location}.
"""
)
)
# Compare the function code with the previous to see if the
# function code has changed and check if the results are present in
# the cache.
if self._is_in_cache_and_valid(call_id):
if shelving:
return self._get_memorized_result(call_id), {}
try:
start_time = time.time()
output = self._load_item(call_id)
if self._verbose > 4:
self._print_duration(
time.time() - start_time, context="cache loaded "
)
return output, {}
except Exception:
# XXX: Should use an exception logger
_, signature = format_signature(self.func, *args, **kwargs)
self.warn(
"Exception while loading results for {}\n {}".format(
signature, traceback.format_exc()
)
)
if self._verbose > 10:
self.warn(
f"Computing func {func_name}, argument hash {args_id} "
f"in location {location}"
)
# Returns the output but not the metadata
return self._call(call_id, args, kwargs, shelving)
@property
def func_code_info(self):
# 3-tuple property containing: the function source code, source file,
# and first line of the code inside the source file
if hasattr(self.func, "__code__"):
if self._func_code_id is None:
self._func_code_id = id(self.func.__code__)
elif id(self.func.__code__) != self._func_code_id:
# Be robust to dynamic reassignments of self.func.__code__
self._func_code_info = None
if self._func_code_info is None:
# Cache the source code of self.func . Provided that get_func_code
# (which should be called once on self) gets called in the process
# in which self.func was defined, this caching mechanism prevents
# undesired cache clearing when the cached function is called in
# an environment where the introspection utilities get_func_code
# relies on do not work (typically, in joblib child processes).
# See #1035 for more info
# TODO (pierreglaser): do the same with get_func_name?
self._func_code_info = get_func_code(self.func)
return self._func_code_info
def call_and_shelve(self, *args, **kwargs):
"""Call wrapped function, cache result and return a reference.
This method returns a reference to the cached result instead of the
result itself. The reference object is small and picklable, allowing
to send or store it easily. Call .get() on reference object to get
result.
Returns
-------
cached_result: MemorizedResult or NotMemorizedResult
reference to the value returned by the wrapped function. The
class "NotMemorizedResult" is used when there is no cache
activated (e.g. location=None in Memory).
"""
# Return the wrapped output, without the metadata
return self._cached_call(args, kwargs, shelving=True)[0]
def __call__(self, *args, **kwargs):
# Return the output, without the metadata
return self._cached_call(args, kwargs, shelving=False)[0]
def __getstate__(self):
# Make sure self.func's source is introspected prior to being pickled -
# code introspection utilities typically do not work inside child
# processes
_ = self.func_code_info
# We don't store the timestamp when pickling, to avoid the hash
# depending from it.
state = self.__dict__.copy()
state["timestamp"] = None
# Invalidate the code id as id(obj) will be different in the child
state["_func_code_id"] = None
return state
def check_call_in_cache(self, *args, **kwargs):
"""Check if the function call is cached and valid for given arguments.
Does not call the function or do any work besides function inspection
and argument hashing.
- Compare the function code with the one from the cached function,
asserting if it has changed.
- Check if the function call is present in the cache.
- Call `cache_validation_callback` for user define cache validation.
Returns
-------
is_call_in_cache: bool
Whether or not the function call is in cache and can be used.
"""
call_id = (self.func_id, self._get_args_id(*args, **kwargs))
return self._is_in_cache_and_valid(call_id)
# ------------------------------------------------------------------------
# Private interface
# ------------------------------------------------------------------------
def _get_args_id(self, *args, **kwargs):
"""Return the input parameter hash of a result."""
return hashing.hash(
filter_args(self.func, self.ignore, args, kwargs),
coerce_mmap=self.mmap_mode is not None,
)
def _hash_func(self):
"""Hash a function to key the online cache"""
func_code_h = hash(getattr(self.func, "__code__", None))
return id(self.func), hash(self.func), func_code_h
def _write_func_code(self, func_code, first_line):
"""Write the function code and the filename to a file."""
# We store the first line because the filename and the function
# name is not always enough to identify a function: people
# sometimes have several functions named the same way in a
# file. This is bad practice, but joblib should be robust to bad
# practice.
func_code = "%s %i\n%s" % (FIRST_LINE_TEXT, first_line, func_code)
self.store_backend.store_cached_func_code([self.func_id], func_code)
# Also store in the in-memory store of function hashes
is_named_callable = (
hasattr(self.func, "__name__") and self.func.__name__ != "<lambda>"
)
if is_named_callable:
# Don't do this for lambda functions or strange callable
# objects, as it ends up being too fragile
func_hash = self._hash_func()
try:
_FUNCTION_HASHES[self.func] = func_hash
except TypeError:
# Some callable are not hashable
pass
def _check_previous_func_code(self, stacklevel=2):
"""
stacklevel is the depth a which this function is called, to
issue useful warnings to the user.
"""
# First check if our function is in the in-memory store.
# Using the in-memory store not only makes things faster, but it
# also renders us robust to variations of the files when the
# in-memory version of the code does not vary
try:
if self.func in _FUNCTION_HASHES:
# We use as an identifier the id of the function and its
# hash. This is more likely to falsely change than have hash
# collisions, thus we are on the safe side.
func_hash = self._hash_func()
if func_hash == _FUNCTION_HASHES[self.func]:
return True
except TypeError:
# Some callables are not hashable
pass
# Here, we go through some effort to be robust to dynamically
# changing code and collision. We cannot inspect.getsource
# because it is not reliable when using IPython's magic "%run".
func_code, source_file, first_line = self.func_code_info
try:
old_func_code, old_first_line = extract_first_line(
self.store_backend.get_cached_func_code([self.func_id])
)
except (IOError, OSError): # some backend can also raise OSError
self._write_func_code(func_code, first_line)
return False
if old_func_code == func_code:
return True
# We have differing code, is this because we are referring to
# different functions, or because the function we are referring to has
# changed?
_, func_name = get_func_name(
self.func, resolv_alias=False, win_characters=False
)
if old_first_line == first_line == -1 or func_name == "<lambda>":
if not first_line == -1:
func_description = "{0} ({1}:{2})".format(
func_name, source_file, first_line
)
else:
func_description = func_name
warnings.warn(
JobLibCollisionWarning(
"Cannot detect name collisions for function '{0}'".format(
func_description
)
),
stacklevel=stacklevel,
)
# Fetch the code at the old location and compare it. If it is the
# same than the code store, we have a collision: the code in the
# file has not changed, but the name we have is pointing to a new
# code block.
if not old_first_line == first_line and source_file is not None:
if os.path.exists(source_file):
_, func_name = get_func_name(self.func, resolv_alias=False)
num_lines = len(func_code.split("\n"))
with tokenize.open(source_file) as f:
on_disk_func_code = f.readlines()[
old_first_line - 1 : old_first_line - 1 + num_lines - 1
]
on_disk_func_code = "".join(on_disk_func_code)
possible_collision = (
on_disk_func_code.rstrip() == old_func_code.rstrip()
)
else:
possible_collision = source_file.startswith("<doctest ")
if possible_collision:
warnings.warn(
JobLibCollisionWarning(
"Possible name collisions between functions "
"'%s' (%s:%i) and '%s' (%s:%i)"
% (
func_name,
source_file,
old_first_line,
func_name,
source_file,
first_line,
)
),
stacklevel=stacklevel,
)
# The function has changed, wipe the cache directory.
# XXX: Should be using warnings, and giving stacklevel
if self._verbose > 10:
_, func_name = get_func_name(self.func, resolv_alias=False)
self.warn(
"Function {0} (identified by {1}) has changed.".format(
func_name, self.func_id
)
)
self.clear(warn=True)
return False
def clear(self, warn=True):
"""Empty the function's cache."""
func_id = self.func_id
if self._verbose > 0 and warn:
self.warn("Clearing function cache identified by %s" % func_id)
self.store_backend.clear_path(
[
func_id,
]
)
func_code, _, first_line = self.func_code_info
self._write_func_code(func_code, first_line)
def call(self, *args, **kwargs):
"""Force the execution of the function with the given arguments.
The output values will be persisted, i.e., the cache will be updated
with any new values.
Parameters
----------
*args: arguments
The arguments.
**kwargs: keyword arguments
Keyword arguments.
Returns
-------
output : object
The output of the function call.
metadata : dict
The metadata associated with the call.
"""
call_id = (self.func_id, self._get_args_id(*args, **kwargs))
# Return the output and the metadata
return self._call(call_id, args, kwargs)
def _call(self, call_id, args, kwargs, shelving=False):
# Return the output and the metadata
self._before_call(args, kwargs)
start_time = time.time()
output = self.func(*args, **kwargs)
return self._after_call(call_id, args, kwargs, shelving, output, start_time)
def _before_call(self, args, kwargs):
if self._verbose > 0:
print(format_call(self.func, args, kwargs))
def _after_call(self, call_id, args, kwargs, shelving, output, start_time):
self.store_backend.dump_item(call_id, output, verbose=self._verbose)
duration = time.time() - start_time
if self._verbose > 0:
self._print_duration(duration)
metadata = self._persist_input(duration, call_id, args, kwargs)
if shelving:
return self._get_memorized_result(call_id, metadata), metadata
if self.mmap_mode is not None:
# Memmap the output at the first call to be consistent with
# later calls
output = self._load_item(call_id, metadata)
return output, metadata
def _persist_input(self, duration, call_id, args, kwargs, this_duration_limit=0.5):
"""Save a small summary of the call using json format in the
output directory.
output_dir: string
directory where to write metadata.
duration: float
time taken by hashing input arguments, calling the wrapped
function and persisting its output.
args, kwargs: list and dict
input arguments for wrapped function
this_duration_limit: float
Max execution time for this function before issuing a warning.
"""
start_time = time.time()
argument_dict = filter_args(self.func, self.ignore, args, kwargs)
input_repr = dict((k, repr(v)) for k, v in argument_dict.items())
# This can fail due to race-conditions with multiple
# concurrent joblibs removing the file or the directory
metadata = {
"duration": duration,
"input_args": input_repr,
"time": start_time,
}
self.store_backend.store_metadata(call_id, metadata)
this_duration = time.time() - start_time
if this_duration > this_duration_limit:
# This persistence should be fast. It will not be if repr() takes
# time and its output is large, because json.dump will have to
# write a large file. This should not be an issue with numpy arrays
# for which repr() always output a short representation, but can
# be with complex dictionaries. Fixing the problem should be a
# matter of replacing repr() above by something smarter.
warnings.warn(
"Persisting input arguments took %.2fs to run."
"If this happens often in your code, it can cause "
"performance problems "
"(results will be correct in all cases). "
"The reason for this is probably some large input "
"arguments for a wrapped function." % this_duration,
stacklevel=5,
)
return metadata
def _get_memorized_result(self, call_id, metadata=None):
return MemorizedResult(
self.store_backend,
call_id,
metadata=metadata,
timestamp=self.timestamp,
verbose=self._verbose - 1,
)
def _load_item(self, call_id, metadata=None):
return self.store_backend.load_item(
call_id, metadata=metadata, timestamp=self.timestamp, verbose=self._verbose
)
def _print_duration(self, duration, context=""):
_, name = get_func_name(self.func)
msg = f"{name} {context}- {format_time(duration)}"
print(max(0, (80 - len(msg))) * "_" + msg)
# ------------------------------------------------------------------------
# Private `object` interface
# ------------------------------------------------------------------------
def __repr__(self):
return "{class_name}(func={func}, location={location})".format(
class_name=self.__class__.__name__,
func=self.func,
location=self.store_backend.location,
)
###############################################################################
# class `AsyncMemorizedFunc`
###############################################################################
class AsyncMemorizedFunc(MemorizedFunc):
async def __call__(self, *args, **kwargs):
out = self._cached_call(args, kwargs, shelving=False)
out = await out if asyncio.iscoroutine(out) else out
return out[0] # Don't return metadata
async def call_and_shelve(self, *args, **kwargs):
out = self._cached_call(args, kwargs, shelving=True)
out = await out if asyncio.iscoroutine(out) else out
return out[0] # Don't return metadata
async def call(self, *args, **kwargs):
out = super().call(*args, **kwargs)
return await out if asyncio.iscoroutine(out) else out
async def _call(self, call_id, args, kwargs, shelving=False):
self._before_call(args, kwargs)
start_time = time.time()
output = await self.func(*args, **kwargs)
return self._after_call(call_id, args, kwargs, shelving, output, start_time)
###############################################################################
# class `Memory`
###############################################################################
class Memory(Logger):
"""A context object for caching a function's return value each time it
is called with the same input arguments.
All values are cached on the filesystem, in a deep directory
structure.
Read more in the :ref:`User Guide <memory>`.
Parameters
----------
location: str, pathlib.Path or None
The path of the base directory to use as a data store
or None. If None is given, no caching is done and
the Memory object is completely transparent. This option
replaces cachedir since version 0.12.
backend: str, optional, default='local'
Type of store backend for reading/writing cache files.
The 'local' backend is using regular filesystem operations to
manipulate data (open, mv, etc) in the backend.
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional
The memmapping mode used when loading from cache
numpy arrays. See numpy.load for the meaning of the
arguments.
compress: boolean, or integer, optional
Whether to zip the stored data on disk. If an integer is
given, it should be between 1 and 9, and sets the amount
of compression. Note that compressed arrays cannot be
read by memmapping.
verbose: int, optional
Verbosity flag, controls the debug messages that are issued
as functions are evaluated.
backend_options: dict, optional
Contains a dictionary of named parameters used to configure
the store backend.
"""
# ------------------------------------------------------------------------
# Public interface
# ------------------------------------------------------------------------
def __init__(
self,
location=None,
backend="local",
mmap_mode=None,
compress=False,
verbose=1,
backend_options=None,
):
Logger.__init__(self)
self._verbose = verbose
self.mmap_mode = mmap_mode
self.timestamp = time.time()
self.backend = backend
self.compress = compress
if backend_options is None:
backend_options = {}
self.backend_options = backend_options
if compress and mmap_mode is not None:
warnings.warn("Compressed results cannot be memmapped", stacklevel=2)
self.location = location
if isinstance(location, str):
location = os.path.join(location, "joblib")
self.store_backend = _store_backend_factory(
backend,
location,
verbose=self._verbose,
backend_options=dict(
compress=compress, mmap_mode=mmap_mode, **backend_options
),
)
def cache(
self,
func=None,
ignore=None,
verbose=None,
mmap_mode=False,
cache_validation_callback=None,
):
"""Decorates the given function func to only compute its return
value for input arguments not cached on disk.
Parameters
----------
func: callable, optional
The function to be decorated
ignore: list of strings
A list of arguments name to ignore in the hashing
verbose: integer, optional
The verbosity mode of the function. By default that
of the memory object is used.
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional
The memmapping mode used when loading from cache
numpy arrays. See numpy.load for the meaning of the
arguments. By default that of the memory object is used.
cache_validation_callback: callable, optional
Callable to validate whether or not the cache is valid. When
the cached function is called with arguments for which a cache
exists, this callable is called with the metadata of the cached
result as its sole argument. If it returns True, then the
cached result is returned, else the cache for these arguments
is cleared and recomputed.
Returns
-------
decorated_func: MemorizedFunc object
The returned object is a MemorizedFunc object, that is
callable (behaves like a function), but offers extra
methods for cache lookup and management. See the
documentation for :class:`joblib.memory.MemorizedFunc`.
"""
if cache_validation_callback is not None and not callable(
cache_validation_callback
):
raise ValueError(
"cache_validation_callback needs to be callable. "
f"Got {cache_validation_callback}."
)
if func is None:
# Partial application, to be able to specify extra keyword
# arguments in decorators
return functools.partial(
self.cache,
ignore=ignore,
mmap_mode=mmap_mode,
verbose=verbose,
cache_validation_callback=cache_validation_callback,
)
if self.store_backend is None:
cls = (
AsyncNotMemorizedFunc
if asyncio.iscoroutinefunction(func)
else NotMemorizedFunc
)
return cls(func)
if verbose is None:
verbose = self._verbose
if mmap_mode is False:
mmap_mode = self.mmap_mode
if isinstance(func, MemorizedFunc):
func = func.func
cls = AsyncMemorizedFunc if asyncio.iscoroutinefunction(func) else MemorizedFunc
return cls(
func,
location=self.store_backend,
backend=self.backend,
ignore=ignore,
mmap_mode=mmap_mode,
compress=self.compress,
verbose=verbose,
timestamp=self.timestamp,
cache_validation_callback=cache_validation_callback,
)
def clear(self, warn=True):
"""Erase the complete cache directory."""
if warn:
self.warn("Flushing completely the cache")
if self.store_backend is not None:
self.store_backend.clear()
# As the cache is completely clear, make sure the _FUNCTION_HASHES
# cache is also reset. Else, for a function that is present in this
# table, results cached after this clear will be have cache miss
# as the function code is not re-written.
_FUNCTION_HASHES.clear()
def reduce_size(self, bytes_limit=None, items_limit=None, age_limit=None):
"""Remove cache elements to make the cache fit its limits.
The limitation can impose that the cache size fits in ``bytes_limit``,
that the number of cache items is no more than ``items_limit``, and
that all files in cache are not older than ``age_limit``.
Parameters
----------
bytes_limit: int | str, optional
Limit in bytes of the size of the cache. By default, the size of
the cache is unlimited. When reducing the size of the cache,
``joblib`` keeps the most recently accessed items first. If a
str is passed, it is converted to a number of bytes using units
{ K | M | G} for kilo, mega, giga.
items_limit: int, optional
Number of items to limit the cache to. By default, the number of
items in the cache is unlimited. When reducing the size of the
cache, ``joblib`` keeps the most recently accessed items first.
age_limit: datetime.timedelta, optional
Maximum age of items to limit the cache to. When reducing the size
of the cache, any items last accessed more than the given length of
time ago are deleted. Example: to remove files older than 5 days,
use datetime.timedelta(days=5). Negative timedelta are not
accepted.
"""
if self.store_backend is None:
# No cached results, this function does nothing.
return
if bytes_limit is None and items_limit is None and age_limit is None:
# No limitation to impose, returning
return
# Defers the actual limits enforcing to the store backend.
self.store_backend.enforce_store_limits(bytes_limit, items_limit, age_limit)
def eval(self, func, *args, **kwargs):
"""Eval function func with arguments `*args` and `**kwargs`,
in the context of the memory.
This method works similarly to the builtin `apply`, except
that the function is called only if the cache is not
up to date.
"""
if self.store_backend is None:
return func(*args, **kwargs)
return self.cache(func)(*args, **kwargs)
# ------------------------------------------------------------------------
# Private `object` interface
# ------------------------------------------------------------------------
def __repr__(self):
return "{class_name}(location={location})".format(
class_name=self.__class__.__name__,
location=(
None if self.store_backend is None else self.store_backend.location
),
)
def __getstate__(self):
"""We don't store the timestamp when pickling, to avoid the hash
depending from it.
"""
state = self.__dict__.copy()
state["timestamp"] = None
return state
###############################################################################
# cache_validation_callback helpers
###############################################################################
def expires_after(
days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0
):
"""Helper cache_validation_callback to force recompute after a duration.
Parameters
----------
days, seconds, microseconds, milliseconds, minutes, hours, weeks: numbers
argument passed to a timedelta.
"""
delta = datetime.timedelta(
days=days,
seconds=seconds,
microseconds=microseconds,
milliseconds=milliseconds,
minutes=minutes,
hours=hours,
weeks=weeks,
)
def cache_validation_callback(metadata):
computation_age = time.time() - metadata["time"]
return computation_age < delta.total_seconds()
return cache_validation_callback
|