File size: 79,279 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
"""Tests for input validation functions"""

import numbers
import re
import warnings
from itertools import product
from operator import itemgetter
from tempfile import NamedTemporaryFile

import numpy as np
import pytest
import scipy.sparse as sp
from pytest import importorskip

import sklearn
from sklearn._config import config_context
from sklearn._min_dependencies import dependent_packages
from sklearn.base import BaseEstimator
from sklearn.datasets import make_blobs
from sklearn.ensemble import RandomForestRegressor
from sklearn.exceptions import NotFittedError, PositiveSpectrumWarning
from sklearn.linear_model import ARDRegression

# TODO: add this estimator into the _mocking module in a further refactoring
from sklearn.metrics.tests.test_score_objects import EstimatorWithFit
from sklearn.neighbors import KNeighborsClassifier
from sklearn.random_projection import _sparse_random_matrix
from sklearn.svm import SVR
from sklearn.utils import (
    _safe_indexing,
    as_float_array,
    check_array,
    check_symmetric,
    check_X_y,
    deprecated,
)
from sklearn.utils._mocking import (
    MockDataFrame,
    _MockEstimatorOnOffPrediction,
)
from sklearn.utils._testing import (
    SkipTest,
    TempMemmap,
    _convert_container,
    assert_allclose,
    assert_allclose_dense_sparse,
    assert_array_equal,
    create_memmap_backed_data,
    skip_if_array_api_compat_not_configured,
)
from sklearn.utils.estimator_checks import _NotAnArray
from sklearn.utils.fixes import (
    COO_CONTAINERS,
    CSC_CONTAINERS,
    CSR_CONTAINERS,
    DIA_CONTAINERS,
    DOK_CONTAINERS,
    parse_version,
)
from sklearn.utils.validation import (
    FLOAT_DTYPES,
    _allclose_dense_sparse,
    _check_feature_names_in,
    _check_method_params,
    _check_psd_eigenvalues,
    _check_response_method,
    _check_sample_weight,
    _check_y,
    _deprecate_positional_args,
    _estimator_has,
    _get_feature_names,
    _is_fitted,
    _is_pandas_df,
    _is_polars_df,
    _num_features,
    _num_samples,
    _to_object_array,
    assert_all_finite,
    check_consistent_length,
    check_is_fitted,
    check_memory,
    check_non_negative,
    check_random_state,
    check_scalar,
    column_or_1d,
    has_fit_parameter,
    validate_data,
)


def test_make_rng():
    # Check the check_random_state utility function behavior
    assert check_random_state(None) is np.random.mtrand._rand
    assert check_random_state(np.random) is np.random.mtrand._rand

    rng_42 = np.random.RandomState(42)
    assert check_random_state(42).randint(100) == rng_42.randint(100)

    rng_42 = np.random.RandomState(42)
    assert check_random_state(rng_42) is rng_42

    rng_42 = np.random.RandomState(42)
    assert check_random_state(43).randint(100) != rng_42.randint(100)

    with pytest.raises(ValueError):
        check_random_state("some invalid seed")


def test_as_float_array():
    # Test function for as_float_array
    X = np.ones((3, 10), dtype=np.int32)
    X = X + np.arange(10, dtype=np.int32)
    X2 = as_float_array(X, copy=False)
    assert X2.dtype == np.float32
    # Another test
    X = X.astype(np.int64)
    X2 = as_float_array(X, copy=True)
    # Checking that the array wasn't overwritten
    assert as_float_array(X, copy=False) is not X
    assert X2.dtype == np.float64
    # Test int dtypes <= 32bit
    tested_dtypes = [bool, np.int8, np.int16, np.int32, np.uint8, np.uint16, np.uint32]
    for dtype in tested_dtypes:
        X = X.astype(dtype)
        X2 = as_float_array(X)
        assert X2.dtype == np.float32

    # Test object dtype
    X = X.astype(object)
    X2 = as_float_array(X, copy=True)
    assert X2.dtype == np.float64

    # Here, X is of the right type, it shouldn't be modified
    X = np.ones((3, 2), dtype=np.float32)
    assert as_float_array(X, copy=False) is X
    # Test that if X is fortran ordered it stays
    X = np.asfortranarray(X)
    assert np.isfortran(as_float_array(X, copy=True))

    # Test the copy parameter with some matrices
    matrices = [
        sp.csc_matrix(np.arange(5)).toarray(),
        _sparse_random_matrix(10, 10, density=0.10).toarray(),
    ]
    for M in matrices:
        N = as_float_array(M, copy=True)
        N[0, 0] = np.nan
        assert not np.isnan(M).any()


@pytest.mark.parametrize("X", [(np.random.random((10, 2))), (sp.rand(10, 2).tocsr())])
def test_as_float_array_nan(X):
    X[5, 0] = np.nan
    X[6, 1] = np.nan
    X_converted = as_float_array(X, ensure_all_finite="allow-nan")
    assert_allclose_dense_sparse(X_converted, X)


def test_np_matrix():
    # Confirm that input validation code does not return np.matrix
    X = np.arange(12).reshape(3, 4)

    assert not isinstance(as_float_array(X), np.matrix)
    assert not isinstance(as_float_array(sp.csc_matrix(X)), np.matrix)


def test_memmap():
    # Confirm that input validation code doesn't copy memory mapped arrays

    asflt = lambda x: as_float_array(x, copy=False)

    with NamedTemporaryFile(prefix="sklearn-test") as tmp:
        M = np.memmap(tmp, shape=(10, 10), dtype=np.float32)
        M[:] = 0

        for f in (check_array, np.asarray, asflt):
            X = f(M)
            X[:] = 1
            assert_array_equal(X.ravel(), M.ravel())
            X[:] = 0


def test_ordering():
    # Check that ordering is enforced correctly by validation utilities.
    # We need to check each validation utility, because a 'copy' without
    # 'order=K' will kill the ordering.
    X = np.ones((10, 5))
    for A in X, X.T:
        for copy in (True, False):
            B = check_array(A, order="C", copy=copy)
            assert B.flags["C_CONTIGUOUS"]
            B = check_array(A, order="F", copy=copy)
            assert B.flags["F_CONTIGUOUS"]
            if copy:
                assert A is not B

    X = sp.csr_matrix(X)
    X.data = X.data[::-1]
    assert not X.data.flags["C_CONTIGUOUS"]


@pytest.mark.parametrize(
    "value, ensure_all_finite",
    [(np.inf, False), (np.nan, "allow-nan"), (np.nan, False)],
)
@pytest.mark.parametrize("retype", [np.asarray, sp.csr_matrix])
def test_check_array_ensure_all_finite_valid(value, ensure_all_finite, retype):
    X = retype(np.arange(4).reshape(2, 2).astype(float))
    X[0, 0] = value
    X_checked = check_array(X, ensure_all_finite=ensure_all_finite, accept_sparse=True)
    assert_allclose_dense_sparse(X, X_checked)


@pytest.mark.parametrize(
    "value, input_name, ensure_all_finite, match_msg",
    [
        (np.inf, "", True, "Input contains infinity"),
        (np.inf, "X", True, "Input X contains infinity"),
        (np.inf, "sample_weight", True, "Input sample_weight contains infinity"),
        (np.inf, "X", "allow-nan", "Input X contains infinity"),
        (np.nan, "", True, "Input contains NaN"),
        (np.nan, "X", True, "Input X contains NaN"),
        (np.nan, "y", True, "Input y contains NaN"),
        (
            np.nan,
            "",
            "allow-inf",
            "ensure_all_finite should be a bool or 'allow-nan'",
        ),
        (np.nan, "", 1, "Input contains NaN"),
    ],
)
@pytest.mark.parametrize("retype", [np.asarray, sp.csr_matrix])
def test_check_array_ensure_all_finite_invalid(
    value, input_name, ensure_all_finite, match_msg, retype
):
    X = retype(np.arange(4).reshape(2, 2).astype(np.float64))
    X[0, 0] = value
    with pytest.raises(ValueError, match=match_msg):
        check_array(
            X,
            input_name=input_name,
            ensure_all_finite=ensure_all_finite,
            accept_sparse=True,
        )


@pytest.mark.parametrize("input_name", ["X", "y", "sample_weight"])
@pytest.mark.parametrize("retype", [np.asarray, sp.csr_matrix])
def test_check_array_links_to_imputer_doc_only_for_X(input_name, retype):
    data = retype(np.arange(4).reshape(2, 2).astype(np.float64))
    data[0, 0] = np.nan
    estimator = SVR()
    extended_msg = (
        f"\n{estimator.__class__.__name__} does not accept missing values"
        " encoded as NaN natively. For supervised learning, you might want"
        " to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor"
        " which accept missing values encoded as NaNs natively."
        " Alternatively, it is possible to preprocess the"
        " data, for instance by using an imputer transformer in a pipeline"
        " or drop samples with missing values. See"
        " https://scikit-learn.org/stable/modules/impute.html"
        " You can find a list of all estimators that handle NaN values"
        " at the following page:"
        " https://scikit-learn.org/stable/modules/impute.html"
        "#estimators-that-handle-nan-values"
    )

    with pytest.raises(ValueError, match=f"Input {input_name} contains NaN") as ctx:
        check_array(
            data,
            estimator=estimator,
            input_name=input_name,
            accept_sparse=True,
        )

    if input_name == "X":
        assert extended_msg in ctx.value.args[0]
    else:
        assert extended_msg not in ctx.value.args[0]

    if input_name == "X":
        # Veriy that _validate_data is automatically called with the right argument
        # to generate the same exception:
        with pytest.raises(ValueError, match=f"Input {input_name} contains NaN") as ctx:
            SVR().fit(data, np.ones(data.shape[0]))
        assert extended_msg in ctx.value.args[0]


def test_check_array_ensure_all_finite_object():
    X = np.array([["a", "b", np.nan]], dtype=object).T

    X_checked = check_array(X, dtype=None, ensure_all_finite="allow-nan")
    assert X is X_checked

    X_checked = check_array(X, dtype=None, ensure_all_finite=False)
    assert X is X_checked

    with pytest.raises(ValueError, match="Input contains NaN"):
        check_array(X, dtype=None, ensure_all_finite=True)


@pytest.mark.parametrize(
    "X, err_msg",
    [
        (
            np.array([[1, np.nan]]),
            "Input contains NaN.",
        ),
        (
            np.array([[1, np.nan]]),
            "Input contains NaN.",
        ),
        (
            np.array([[1, np.inf]]),
            "Input contains infinity or a value too large for.*int",
        ),
        (np.array([[1, np.nan]], dtype=object), "cannot convert float NaN to integer"),
    ],
)
@pytest.mark.parametrize("ensure_all_finite", [True, False])
def test_check_array_ensure_all_finite_object_unsafe_casting(
    X, err_msg, ensure_all_finite
):
    # casting a float array containing NaN or inf to int dtype should
    # raise an error irrespective of the ensure_all_finite parameter.
    with pytest.raises(ValueError, match=err_msg):
        check_array(X, dtype=int, ensure_all_finite=ensure_all_finite)


def test_check_array_series_err_msg():
    """
    Check that we raise a proper error message when passing a Series and we expect a
    2-dimensional container.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/27498
    """
    pd = pytest.importorskip("pandas")
    ser = pd.Series([1, 2, 3])
    msg = f"Expected a 2-dimensional container but got {type(ser)} instead."
    with pytest.raises(ValueError, match=msg):
        check_array(ser, ensure_2d=True)


@pytest.mark.filterwarnings("ignore:Can't check dok sparse matrix for nan or inf")
def test_check_array():
    # accept_sparse == False
    # raise error on sparse inputs
    X = [[1, 2], [3, 4]]
    X_csr = sp.csr_matrix(X)
    with pytest.raises(TypeError):
        check_array(X_csr)

    # ensure_2d=False
    X_array = check_array([0, 1, 2], ensure_2d=False)
    assert X_array.ndim == 1
    # ensure_2d=True with 1d array
    with pytest.raises(ValueError, match="Expected 2D array, got 1D array instead"):
        check_array([0, 1, 2], ensure_2d=True)

    # ensure_2d=True with scalar array
    with pytest.raises(ValueError, match="Expected 2D array, got scalar array instead"):
        check_array(10, ensure_2d=True)

    # ensure_2d=True with 1d sparse array
    if hasattr(sp, "csr_array"):
        sparse_row = next(iter(sp.csr_array(X)))
        if sparse_row.ndim == 1:
            # In scipy 1.14 and later, sparse row is 1D while it was 2D before.
            with pytest.raises(ValueError, match="Expected 2D input, got"):
                check_array(sparse_row, accept_sparse=True, ensure_2d=True)

    # don't allow ndim > 3
    X_ndim = np.arange(8).reshape(2, 2, 2)
    with pytest.raises(ValueError):
        check_array(X_ndim)
    check_array(X_ndim, allow_nd=True)  # doesn't raise

    # dtype and order enforcement.
    X_C = np.arange(4).reshape(2, 2).copy("C")
    X_F = X_C.copy("F")
    X_int = X_C.astype(int)
    X_float = X_C.astype(float)
    Xs = [X_C, X_F, X_int, X_float]
    dtypes = [np.int32, int, float, np.float32, None, bool, object]
    orders = ["C", "F", None]
    copys = [True, False]

    for X, dtype, order, copy in product(Xs, dtypes, orders, copys):
        X_checked = check_array(X, dtype=dtype, order=order, copy=copy)
        if dtype is not None:
            assert X_checked.dtype == dtype
        else:
            assert X_checked.dtype == X.dtype
        if order == "C":
            assert X_checked.flags["C_CONTIGUOUS"]
            assert not X_checked.flags["F_CONTIGUOUS"]
        elif order == "F":
            assert X_checked.flags["F_CONTIGUOUS"]
            assert not X_checked.flags["C_CONTIGUOUS"]
        if copy:
            assert X is not X_checked
        else:
            # doesn't copy if it was already good
            if (
                X.dtype == X_checked.dtype
                and X_checked.flags["C_CONTIGUOUS"] == X.flags["C_CONTIGUOUS"]
                and X_checked.flags["F_CONTIGUOUS"] == X.flags["F_CONTIGUOUS"]
            ):
                assert X is X_checked

    # allowed sparse != None

    # try different type of sparse format
    Xs = []
    Xs.extend(
        [
            sparse_container(X_C)
            for sparse_container in CSR_CONTAINERS
            + CSC_CONTAINERS
            + COO_CONTAINERS
            + DOK_CONTAINERS
        ]
    )
    Xs.extend([Xs[0].astype(np.int64), Xs[0].astype(np.float64)])

    accept_sparses = [["csr", "coo"], ["coo", "dok"]]
    # scipy sparse matrices do not support the object dtype so
    # this dtype is skipped in this loop
    non_object_dtypes = [dt for dt in dtypes if dt is not object]
    for X, dtype, accept_sparse, copy in product(
        Xs, non_object_dtypes, accept_sparses, copys
    ):
        X_checked = check_array(X, dtype=dtype, accept_sparse=accept_sparse, copy=copy)
        if dtype is not None:
            assert X_checked.dtype == dtype
        else:
            assert X_checked.dtype == X.dtype
        if X.format in accept_sparse:
            # no change if allowed
            assert X.format == X_checked.format
        else:
            # got converted
            assert X_checked.format == accept_sparse[0]
        if copy:
            assert X is not X_checked
        else:
            # doesn't copy if it was already good
            if X.dtype == X_checked.dtype and X.format == X_checked.format:
                assert X is X_checked

    # other input formats
    # convert lists to arrays
    X_dense = check_array([[1, 2], [3, 4]])
    assert isinstance(X_dense, np.ndarray)
    # raise on too deep lists
    with pytest.raises(ValueError):
        check_array(X_ndim.tolist())
    check_array(X_ndim.tolist(), allow_nd=True)  # doesn't raise

    # convert weird stuff to arrays
    X_no_array = _NotAnArray(X_dense)
    result = check_array(X_no_array)
    assert isinstance(result, np.ndarray)

    # check negative values when ensure_non_negative=True
    X_neg = check_array([[1, 2], [-3, 4]])
    err_msg = "Negative values in data passed to X in RandomForestRegressor"
    with pytest.raises(ValueError, match=err_msg):
        check_array(
            X_neg,
            ensure_non_negative=True,
            input_name="X",
            estimator=RandomForestRegressor(),
        )


@pytest.mark.parametrize(
    "X",
    [
        [["1", "2"], ["3", "4"]],
        np.array([["1", "2"], ["3", "4"]], dtype="U"),
        np.array([["1", "2"], ["3", "4"]], dtype="S"),
        [[b"1", b"2"], [b"3", b"4"]],
        np.array([[b"1", b"2"], [b"3", b"4"]], dtype="V1"),
    ],
)
def test_check_array_numeric_error(X):
    """Test that check_array errors when it receives an array of bytes/string
    while a numeric dtype is required."""
    expected_msg = r"dtype='numeric' is not compatible with arrays of bytes/strings"
    with pytest.raises(ValueError, match=expected_msg):
        check_array(X, dtype="numeric")


@pytest.mark.parametrize(
    "pd_dtype", ["Int8", "Int16", "UInt8", "UInt16", "Float32", "Float64"]
)
@pytest.mark.parametrize(
    "dtype, expected_dtype",
    [
        ([np.float32, np.float64], np.float32),
        (np.float64, np.float64),
        ("numeric", np.float64),
    ],
)
def test_check_array_pandas_na_support(pd_dtype, dtype, expected_dtype):
    # Test pandas numerical extension arrays with pd.NA
    pd = pytest.importorskip("pandas")

    if pd_dtype in {"Float32", "Float64"}:
        # Extension dtypes with Floats was added in 1.2
        pd = pytest.importorskip("pandas", minversion="1.2")

    X_np = np.array(
        [[1, 2, 3, np.nan, np.nan], [np.nan, np.nan, 8, 4, 6], [1, 2, 3, 4, 5]]
    ).T

    # Creates dataframe with numerical extension arrays with pd.NA
    X = pd.DataFrame(X_np, dtype=pd_dtype, columns=["a", "b", "c"])
    # column c has no nans
    X["c"] = X["c"].astype("float")
    X_checked = check_array(X, ensure_all_finite="allow-nan", dtype=dtype)
    assert_allclose(X_checked, X_np)
    assert X_checked.dtype == expected_dtype

    X_checked = check_array(X, ensure_all_finite=False, dtype=dtype)
    assert_allclose(X_checked, X_np)
    assert X_checked.dtype == expected_dtype

    msg = "Input contains NaN"
    with pytest.raises(ValueError, match=msg):
        check_array(X, ensure_all_finite=True)


def test_check_array_panadas_na_support_series():
    """Check check_array is correct with pd.NA in a series."""
    pd = pytest.importorskip("pandas")

    X_int64 = pd.Series([1, 2, pd.NA], dtype="Int64")

    msg = "Input contains NaN"
    with pytest.raises(ValueError, match=msg):
        check_array(X_int64, ensure_all_finite=True, ensure_2d=False)

    X_out = check_array(X_int64, ensure_all_finite=False, ensure_2d=False)
    assert_allclose(X_out, [1, 2, np.nan])
    assert X_out.dtype == np.float64

    X_out = check_array(
        X_int64, ensure_all_finite=False, ensure_2d=False, dtype=np.float32
    )
    assert_allclose(X_out, [1, 2, np.nan])
    assert X_out.dtype == np.float32


def test_check_array_pandas_dtype_casting():
    # test that data-frames with homogeneous dtype are not upcast
    pd = pytest.importorskip("pandas")
    X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32)
    X_df = pd.DataFrame(X)
    assert check_array(X_df).dtype == np.float32
    assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float32

    X_df = X_df.astype({0: np.float16})
    assert_array_equal(X_df.dtypes, (np.float16, np.float32, np.float32))
    assert check_array(X_df).dtype == np.float32
    assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float32

    X_df = X_df.astype({0: np.int16})
    # float16, int16, float32 casts to float32
    assert check_array(X_df).dtype == np.float32
    assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float32

    X_df = X_df.astype({2: np.float16})
    # float16, int16, float16 casts to float32
    assert check_array(X_df).dtype == np.float32
    assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float32

    X_df = X_df.astype(np.int16)
    assert check_array(X_df).dtype == np.int16
    # we're not using upcasting rules for determining
    # the target type yet, so we cast to the default of float64
    assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float64

    # check that we handle pandas dtypes in a semi-reasonable way
    # this is actually tricky because we can't really know that this
    # should be integer ahead of converting it.
    cat_df = pd.DataFrame({"cat_col": pd.Categorical([1, 2, 3])})
    assert check_array(cat_df).dtype == np.int64
    assert check_array(cat_df, dtype=FLOAT_DTYPES).dtype == np.float64


def test_check_array_on_mock_dataframe():
    arr = np.array([[0.2, 0.7], [0.6, 0.5], [0.4, 0.1], [0.7, 0.2]])
    mock_df = MockDataFrame(arr)
    checked_arr = check_array(mock_df)
    assert checked_arr.dtype == arr.dtype
    checked_arr = check_array(mock_df, dtype=np.float32)
    assert checked_arr.dtype == np.dtype(np.float32)


def test_check_array_dtype_stability():
    # test that lists with ints don't get converted to floats
    X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    assert check_array(X).dtype.kind == "i"
    assert check_array(X, ensure_2d=False).dtype.kind == "i"


def test_check_array_dtype_warning():
    X_int_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    X_float32 = np.asarray(X_int_list, dtype=np.float32)
    X_int64 = np.asarray(X_int_list, dtype=np.int64)
    X_csr_float32 = sp.csr_matrix(X_float32)
    X_csc_float32 = sp.csc_matrix(X_float32)
    X_csc_int32 = sp.csc_matrix(X_int64, dtype=np.int32)
    integer_data = [X_int64, X_csc_int32]
    float32_data = [X_float32, X_csr_float32, X_csc_float32]
    with warnings.catch_warnings():
        warnings.simplefilter("error")

        for X in integer_data:
            X_checked = check_array(X, dtype=np.float64, accept_sparse=True)
            assert X_checked.dtype == np.float64

        for X in float32_data:
            X_checked = check_array(
                X, dtype=[np.float64, np.float32], accept_sparse=True
            )
            assert X_checked.dtype == np.float32
            assert X_checked is X

            X_checked = check_array(
                X,
                dtype=[np.float64, np.float32],
                accept_sparse=["csr", "dok"],
                copy=True,
            )
            assert X_checked.dtype == np.float32
            assert X_checked is not X

        X_checked = check_array(
            X_csc_float32,
            dtype=[np.float64, np.float32],
            accept_sparse=["csr", "dok"],
            copy=False,
        )
        assert X_checked.dtype == np.float32
        assert X_checked is not X_csc_float32
        assert X_checked.format == "csr"


def test_check_array_accept_sparse_type_exception():
    X = [[1, 2], [3, 4]]
    X_csr = sp.csr_matrix(X)
    invalid_type = SVR()

    msg = (
        "Sparse data was passed, but dense data is required. "
        r"Use '.toarray\(\)' to convert to a dense numpy array."
    )
    with pytest.raises(TypeError, match=msg):
        check_array(X_csr, accept_sparse=False)

    msg = (
        "Parameter 'accept_sparse' should be a string, "
        "boolean or list of strings. You provided 'accept_sparse=.*'."
    )
    with pytest.raises(ValueError, match=msg):
        check_array(X_csr, accept_sparse=invalid_type)

    msg = (
        "When providing 'accept_sparse' as a tuple or list, "
        "it must contain at least one string value."
    )
    with pytest.raises(ValueError, match=msg):
        check_array(X_csr, accept_sparse=[])
    with pytest.raises(ValueError, match=msg):
        check_array(X_csr, accept_sparse=())
    with pytest.raises(TypeError, match="SVR"):
        check_array(X_csr, accept_sparse=[invalid_type])


def test_check_array_accept_sparse_no_exception():
    X = [[1, 2], [3, 4]]
    X_csr = sp.csr_matrix(X)

    check_array(X_csr, accept_sparse=True)
    check_array(X_csr, accept_sparse="csr")
    check_array(X_csr, accept_sparse=["csr"])
    check_array(X_csr, accept_sparse=("csr",))


@pytest.fixture(params=["csr", "csc", "coo", "bsr"])
def X_64bit(request):
    X = sp.rand(20, 10, format=request.param)

    if request.param == "coo":
        if hasattr(X, "coords"):
            # for scipy >= 1.13 .coords is a new attribute and is a tuple. The
            # .col and .row attributes do not seem to be able to change the
            # dtype, for more details see https://github.com/scipy/scipy/pull/18530/
            # and https://github.com/scipy/scipy/pull/20003 where .indices was
            # renamed to .coords
            X.coords = tuple(v.astype("int64") for v in X.coords)
        else:
            # scipy < 1.13
            X.row = X.row.astype("int64")
            X.col = X.col.astype("int64")
    else:
        X.indices = X.indices.astype("int64")
        X.indptr = X.indptr.astype("int64")

    yield X


def test_check_array_accept_large_sparse_no_exception(X_64bit):
    # When large sparse are allowed
    check_array(X_64bit, accept_large_sparse=True, accept_sparse=True)


def test_check_array_accept_large_sparse_raise_exception(X_64bit):
    # When large sparse are not allowed
    msg = (
        "Only sparse matrices with 32-bit integer indices "
        "are accepted. Got int64 indices. Please do report"
    )
    with pytest.raises(ValueError, match=msg):
        check_array(X_64bit, accept_sparse=True, accept_large_sparse=False)


def test_check_array_min_samples_and_features_messages():
    # empty list is considered 2D by default:
    msg = r"0 feature\(s\) \(shape=\(1, 0\)\) while a minimum of 1 is" " required."
    with pytest.raises(ValueError, match=msg):
        check_array([[]])

    # If considered a 1D collection when ensure_2d=False, then the minimum
    # number of samples will break:
    msg = r"0 sample\(s\) \(shape=\(0,\)\) while a minimum of 1 is required."
    with pytest.raises(ValueError, match=msg):
        check_array([], ensure_2d=False)

    # Invalid edge case when checking the default minimum sample of a scalar
    msg = re.escape(
        (
            "Input should have at least 1 dimension i.e. satisfy "
            "`len(x.shape) > 0`, got scalar `array(42)` instead."
        )
    )
    with pytest.raises(TypeError, match=msg):
        check_array(42, ensure_2d=False)

    # Simulate a model that would need at least 2 samples to be well defined
    X = np.ones((1, 10))
    y = np.ones(1)
    msg = r"1 sample\(s\) \(shape=\(1, 10\)\) while a minimum of 2 is" " required."
    with pytest.raises(ValueError, match=msg):
        check_X_y(X, y, ensure_min_samples=2)

    # The same message is raised if the data has 2 dimensions even if this is
    # not mandatory
    with pytest.raises(ValueError, match=msg):
        check_X_y(X, y, ensure_min_samples=2, ensure_2d=False)

    # Simulate a model that would require at least 3 features (e.g. SelectKBest
    # with k=3)
    X = np.ones((10, 2))
    y = np.ones(2)
    msg = r"2 feature\(s\) \(shape=\(10, 2\)\) while a minimum of 3 is" " required."
    with pytest.raises(ValueError, match=msg):
        check_X_y(X, y, ensure_min_features=3)

    # Only the feature check is enabled whenever the number of dimensions is 2
    # even if allow_nd is enabled:
    with pytest.raises(ValueError, match=msg):
        check_X_y(X, y, ensure_min_features=3, allow_nd=True)

    # Simulate a case where a pipeline stage as trimmed all the features of a
    # 2D dataset.
    X = np.empty(0).reshape(10, 0)
    y = np.ones(10)
    msg = r"0 feature\(s\) \(shape=\(10, 0\)\) while a minimum of 1 is" " required."
    with pytest.raises(ValueError, match=msg):
        check_X_y(X, y)

    # nd-data is not checked for any minimum number of features by default:
    X = np.ones((10, 0, 28, 28))
    y = np.ones(10)
    X_checked, y_checked = check_X_y(X, y, allow_nd=True)
    assert_array_equal(X, X_checked)
    assert_array_equal(y, y_checked)


def test_check_array_complex_data_error():
    X = np.array([[1 + 2j, 3 + 4j, 5 + 7j], [2 + 3j, 4 + 5j, 6 + 7j]])
    with pytest.raises(ValueError, match="Complex data not supported"):
        check_array(X)

    # list of lists
    X = [[1 + 2j, 3 + 4j, 5 + 7j], [2 + 3j, 4 + 5j, 6 + 7j]]
    with pytest.raises(ValueError, match="Complex data not supported"):
        check_array(X)

    # tuple of tuples
    X = ((1 + 2j, 3 + 4j, 5 + 7j), (2 + 3j, 4 + 5j, 6 + 7j))
    with pytest.raises(ValueError, match="Complex data not supported"):
        check_array(X)

    # list of np arrays
    X = [np.array([1 + 2j, 3 + 4j, 5 + 7j]), np.array([2 + 3j, 4 + 5j, 6 + 7j])]
    with pytest.raises(ValueError, match="Complex data not supported"):
        check_array(X)

    # tuple of np arrays
    X = (np.array([1 + 2j, 3 + 4j, 5 + 7j]), np.array([2 + 3j, 4 + 5j, 6 + 7j]))
    with pytest.raises(ValueError, match="Complex data not supported"):
        check_array(X)

    # dataframe
    X = MockDataFrame(np.array([[1 + 2j, 3 + 4j, 5 + 7j], [2 + 3j, 4 + 5j, 6 + 7j]]))
    with pytest.raises(ValueError, match="Complex data not supported"):
        check_array(X)

    # sparse matrix
    X = sp.coo_matrix([[0, 1 + 2j], [0, 0]])
    with pytest.raises(ValueError, match="Complex data not supported"):
        check_array(X)

    # target variable does not always go through check_array but should
    # never accept complex data either.
    y = np.array([1 + 2j, 3 + 4j, 5 + 7j, 2 + 3j, 4 + 5j, 6 + 7j])
    with pytest.raises(ValueError, match="Complex data not supported"):
        _check_y(y)


def test_has_fit_parameter():
    assert not has_fit_parameter(KNeighborsClassifier, "sample_weight")
    assert has_fit_parameter(RandomForestRegressor, "sample_weight")
    assert has_fit_parameter(SVR, "sample_weight")
    assert has_fit_parameter(SVR(), "sample_weight")

    class TestClassWithDeprecatedFitMethod:
        @deprecated("Deprecated for the purpose of testing has_fit_parameter")
        def fit(self, X, y, sample_weight=None):
            pass

    assert has_fit_parameter(
        TestClassWithDeprecatedFitMethod, "sample_weight"
    ), "has_fit_parameter fails for class with deprecated fit method."


def test_check_symmetric():
    arr_sym = np.array([[0, 1], [1, 2]])
    arr_bad = np.ones(2)
    arr_asym = np.array([[0, 2], [0, 2]])

    test_arrays = {
        "dense": arr_asym,
        "dok": sp.dok_matrix(arr_asym),
        "csr": sp.csr_matrix(arr_asym),
        "csc": sp.csc_matrix(arr_asym),
        "coo": sp.coo_matrix(arr_asym),
        "lil": sp.lil_matrix(arr_asym),
        "bsr": sp.bsr_matrix(arr_asym),
    }

    # check error for bad inputs
    with pytest.raises(ValueError):
        check_symmetric(arr_bad)

    # check that asymmetric arrays are properly symmetrized
    for arr_format, arr in test_arrays.items():
        # Check for warnings and errors
        with pytest.warns(UserWarning):
            check_symmetric(arr)
        with pytest.raises(ValueError):
            check_symmetric(arr, raise_exception=True)

        output = check_symmetric(arr, raise_warning=False)
        if sp.issparse(output):
            assert output.format == arr_format
            assert_array_equal(output.toarray(), arr_sym)
        else:
            assert_array_equal(output, arr_sym)


def test_check_is_fitted_with_is_fitted():
    class Estimator(BaseEstimator):
        def fit(self, **kwargs):
            self._is_fitted = True
            return self

        def __sklearn_is_fitted__(self):
            return hasattr(self, "_is_fitted") and self._is_fitted

    with pytest.raises(NotFittedError):
        check_is_fitted(Estimator())
    check_is_fitted(Estimator().fit())


def test_check_is_fitted_stateless():
    """Check that check_is_fitted passes for stateless estimators."""

    class StatelessEstimator(BaseEstimator):
        def fit(self, **kwargs):
            return self  # pragma: no cover

        def __sklearn_tags__(self):
            tags = super().__sklearn_tags__()
            tags.requires_fit = False
            return tags

    check_is_fitted(StatelessEstimator())


def test_check_is_fitted():
    # Check is TypeError raised when non estimator instance passed
    with pytest.raises(TypeError):
        check_is_fitted(ARDRegression)
    with pytest.raises(TypeError):
        check_is_fitted("SVR")

    ard = ARDRegression()
    svr = SVR()

    try:
        with pytest.raises(NotFittedError):
            check_is_fitted(ard)
        with pytest.raises(NotFittedError):
            check_is_fitted(svr)
    except ValueError:
        assert False, "check_is_fitted failed with ValueError"

    # NotFittedError is a subclass of both ValueError and AttributeError
    msg = "Random message %(name)s, %(name)s"
    match = "Random message ARDRegression, ARDRegression"
    with pytest.raises(ValueError, match=match):
        check_is_fitted(ard, msg=msg)

    msg = "Another message %(name)s, %(name)s"
    match = "Another message SVR, SVR"
    with pytest.raises(AttributeError, match=match):
        check_is_fitted(svr, msg=msg)

    ard.fit(*make_blobs())
    svr.fit(*make_blobs())

    assert check_is_fitted(ard) is None
    assert check_is_fitted(svr) is None


def test_check_is_fitted_attributes():
    class MyEstimator(BaseEstimator):
        def fit(self, X, y):
            return self

    msg = "not fitted"
    est = MyEstimator()

    assert not _is_fitted(est, attributes=["a_", "b_"])
    with pytest.raises(NotFittedError, match=msg):
        check_is_fitted(est, attributes=["a_", "b_"])
    assert not _is_fitted(est, attributes=["a_", "b_"], all_or_any=all)
    with pytest.raises(NotFittedError, match=msg):
        check_is_fitted(est, attributes=["a_", "b_"], all_or_any=all)
    assert not _is_fitted(est, attributes=["a_", "b_"], all_or_any=any)
    with pytest.raises(NotFittedError, match=msg):
        check_is_fitted(est, attributes=["a_", "b_"], all_or_any=any)

    est.a_ = "a"
    assert not _is_fitted(est, attributes=["a_", "b_"])
    with pytest.raises(NotFittedError, match=msg):
        check_is_fitted(est, attributes=["a_", "b_"])
    assert not _is_fitted(est, attributes=["a_", "b_"], all_or_any=all)
    with pytest.raises(NotFittedError, match=msg):
        check_is_fitted(est, attributes=["a_", "b_"], all_or_any=all)
    assert _is_fitted(est, attributes=["a_", "b_"], all_or_any=any)
    check_is_fitted(est, attributes=["a_", "b_"], all_or_any=any)

    est.b_ = "b"
    assert _is_fitted(est, attributes=["a_", "b_"])
    check_is_fitted(est, attributes=["a_", "b_"])
    assert _is_fitted(est, attributes=["a_", "b_"], all_or_any=all)
    check_is_fitted(est, attributes=["a_", "b_"], all_or_any=all)
    assert _is_fitted(est, attributes=["a_", "b_"], all_or_any=any)
    check_is_fitted(est, attributes=["a_", "b_"], all_or_any=any)


@pytest.mark.parametrize(
    "wrap", [itemgetter(0), list, tuple], ids=["single", "list", "tuple"]
)
def test_check_is_fitted_with_attributes(wrap):
    ard = ARDRegression()
    with pytest.raises(NotFittedError, match="is not fitted yet"):
        check_is_fitted(ard, wrap(["coef_"]))

    ard.fit(*make_blobs())

    # Does not raise
    check_is_fitted(ard, wrap(["coef_"]))

    # Raises when using attribute that is not defined
    with pytest.raises(NotFittedError, match="is not fitted yet"):
        check_is_fitted(ard, wrap(["coef_bad_"]))


def test_check_consistent_length():
    check_consistent_length([1], [2], [3], [4], [5])
    check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ["a", "b"])
    check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2)))
    with pytest.raises(ValueError, match="inconsistent numbers of samples"):
        check_consistent_length([1, 2], [1])
    with pytest.raises(TypeError, match=r"got <\w+ 'int'>"):
        check_consistent_length([1, 2], 1)
    with pytest.raises(TypeError, match=r"got <\w+ 'object'>"):
        check_consistent_length([1, 2], object())

    with pytest.raises(TypeError):
        check_consistent_length([1, 2], np.array(1))

    # Despite ensembles having __len__ they must raise TypeError
    with pytest.raises(TypeError, match="Expected sequence or array-like"):
        check_consistent_length([1, 2], RandomForestRegressor())
    # XXX: We should have a test with a string, but what is correct behaviour?


def test_check_dataframe_fit_attribute():
    # check pandas dataframe with 'fit' column does not raise error
    # https://github.com/scikit-learn/scikit-learn/issues/8415
    try:
        import pandas as pd

        X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
        X_df = pd.DataFrame(X, columns=["a", "b", "fit"])
        check_consistent_length(X_df)
    except ImportError:
        raise SkipTest("Pandas not found")


def test_suppress_validation():
    X = np.array([0, np.inf])
    with pytest.raises(ValueError):
        assert_all_finite(X)
    sklearn.set_config(assume_finite=True)
    assert_all_finite(X)
    sklearn.set_config(assume_finite=False)
    with pytest.raises(ValueError):
        assert_all_finite(X)


def test_check_array_series():
    # regression test that check_array works on pandas Series
    pd = importorskip("pandas")
    res = check_array(pd.Series([1, 2, 3]), ensure_2d=False)
    assert_array_equal(res, np.array([1, 2, 3]))

    # with categorical dtype (not a numpy dtype) (GH12699)
    s = pd.Series(["a", "b", "c"]).astype("category")
    res = check_array(s, dtype=None, ensure_2d=False)
    assert_array_equal(res, np.array(["a", "b", "c"], dtype=object))


@pytest.mark.parametrize(
    "dtype", ((np.float64, np.float32), np.float64, None, "numeric")
)
@pytest.mark.parametrize("bool_dtype", ("bool", "boolean"))
def test_check_dataframe_mixed_float_dtypes(dtype, bool_dtype):
    # pandas dataframe will coerce a boolean into a object, this is a mismatch
    # with np.result_type which will return a float
    # check_array needs to explicitly check for bool dtype in a dataframe for
    # this situation
    # https://github.com/scikit-learn/scikit-learn/issues/15787

    if bool_dtype == "boolean":
        # boolean extension arrays was introduced in 1.0
        pd = importorskip("pandas", minversion="1.0")
    else:
        pd = importorskip("pandas")

    df = pd.DataFrame(
        {
            "int": [1, 2, 3],
            "float": [0, 0.1, 2.1],
            "bool": pd.Series([True, False, True], dtype=bool_dtype),
        },
        columns=["int", "float", "bool"],
    )

    array = check_array(df, dtype=dtype)
    assert array.dtype == np.float64
    expected_array = np.array(
        [[1.0, 0.0, 1.0], [2.0, 0.1, 0.0], [3.0, 2.1, 1.0]], dtype=float
    )
    assert_allclose_dense_sparse(array, expected_array)


def test_check_dataframe_with_only_bool():
    """Check that dataframe with bool return a boolean arrays."""
    pd = importorskip("pandas")
    df = pd.DataFrame({"bool": [True, False, True]})

    array = check_array(df, dtype=None)
    assert array.dtype == np.bool_
    assert_array_equal(array, [[True], [False], [True]])

    # common dtype is int for bool + int
    df = pd.DataFrame(
        {"bool": [True, False, True], "int": [1, 2, 3]},
        columns=["bool", "int"],
    )
    array = check_array(df, dtype="numeric")
    assert array.dtype == np.int64
    assert_array_equal(array, [[1, 1], [0, 2], [1, 3]])


def test_check_dataframe_with_only_boolean():
    """Check that dataframe with boolean return a float array with dtype=None"""
    pd = importorskip("pandas", minversion="1.0")
    df = pd.DataFrame({"bool": pd.Series([True, False, True], dtype="boolean")})

    array = check_array(df, dtype=None)
    assert array.dtype == np.float64
    assert_array_equal(array, [[True], [False], [True]])


class DummyMemory:
    def cache(self, func):
        return func


class WrongDummyMemory:
    pass


def test_check_memory():
    memory = check_memory("cache_directory")
    assert memory.location == "cache_directory"

    memory = check_memory(None)
    assert memory.location is None

    dummy = DummyMemory()
    memory = check_memory(dummy)
    assert memory is dummy

    msg = (
        "'memory' should be None, a string or have the same interface as"
        " joblib.Memory. Got memory='1' instead."
    )
    with pytest.raises(ValueError, match=msg):
        check_memory(1)
    dummy = WrongDummyMemory()
    msg = (
        "'memory' should be None, a string or have the same interface as"
        " joblib.Memory. Got memory='{}' instead.".format(dummy)
    )
    with pytest.raises(ValueError, match=msg):
        check_memory(dummy)


@pytest.mark.parametrize("copy", [True, False])
def test_check_array_memmap(copy):
    X = np.ones((4, 4))
    with TempMemmap(X, mmap_mode="r") as X_memmap:
        X_checked = check_array(X_memmap, copy=copy)
        assert np.may_share_memory(X_memmap, X_checked) == (not copy)
        assert X_checked.flags["WRITEABLE"] == copy


@pytest.mark.parametrize(
    "estimator_name, estimator_value, delegates, expected_result, expected_exception",
    [
        (
            "estimator_",
            type("SubEstimator", (), {"attribute_present": True}),
            None,  # default delegates - ["estimator_", "estimator"]
            True,  # expected_result is True b/c delegate and attribute are present
            None,  # expected_exception not relevant for this case
        ),
        (
            "estimator",
            type("SubEstimator", (), {"attribute_present": True}),
            None,  # default delegates - ["estimator_", "estimator"]
            True,  # expected_result is True b/c delegate and attribute are present
            None,  # expected_exception not relevant for this case
        ),
        (
            "estimators_",
            [
                type("SubEstimator", (), {"attribute_present": True})
            ],  # list of sub-estimators
            ["estimators_"],
            True,  # expected_result is True b/c delegate and attribute are present
            None,  # expected_exception not relevant for this case
        ),
        (
            "custom_estimator",  # custom estimator attribute name
            type("SubEstimator", (), {"attribute_present": True}),
            ["custom_estimator"],  # custom delegates
            True,  # expected_result is True b/c delegate and attribute are present
            None,  # expected_exception not relevant for this case
        ),
        (
            "no_estimator",  # no estimator attribute name
            type("SubEstimator", (), {"attribute_present": True}),
            None,  # default delegates - ["estimator_", "estimator"]
            None,  # expected_result is not relevant for this case
            ValueError,  # should raise ValueError b/c no estimator found from delegates
        ),
        (
            "estimator",
            type("SubEstimator", (), {"attribute_absent": True}),  # attribute_absent
            None,  # default delegates - ["estimator_", "estimator"]
            None,  # expected_result is not relevant for this case
            AttributeError,  # should raise AttributeError b/c attribute is absent
        ),
    ],
    ids=[
        "fitted_estimator_with_default_delegates",
        "estimator_with_default_delegates",
        "list_of_estimators_with_estimators_",
        "custom_estimator_with_custom_delegates",
        "no_estimator_with_default_delegates",
        "estimator_with_default_delegates_but_absent_attribute",
    ],
)
def test_estimator_has(
    estimator_name, estimator_value, delegates, expected_result, expected_exception
):
    """
    Tests the _estimator_has function by verifying:
    - Functionality with default and custom delegates.
    - Raises ValueError if delegates are missing.
    - Raises AttributeError if the specified attribute is missing.
    """

    # always checks for attribute - "attribute_present"
    # ["estimator_", "estimator"] is default value for delegates
    if delegates is None:
        check = _estimator_has("attribute_present")
    else:
        check = _estimator_has("attribute_present", delegates=delegates)

    class MockEstimator:
        pass

    a = MockEstimator()
    setattr(a, estimator_name, estimator_value)

    if expected_exception:
        with pytest.raises(expected_exception):
            check(a)
    else:
        assert check(a) == expected_result


@pytest.mark.parametrize(
    "retype",
    [
        np.asarray,
        sp.csr_matrix,
        sp.csc_matrix,
        sp.coo_matrix,
        sp.lil_matrix,
        sp.bsr_matrix,
        sp.dok_matrix,
        sp.dia_matrix,
    ],
)
def test_check_non_negative(retype):
    A = np.array([[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])
    X = retype(A)
    check_non_negative(X, "")
    X = retype([[0, 0], [0, 0]])
    check_non_negative(X, "")

    A[0, 0] = -1
    X = retype(A)
    with pytest.raises(ValueError, match="Negative "):
        check_non_negative(X, "")


def test_check_X_y_informative_error():
    X = np.ones((2, 2))
    y = None
    msg = "estimator requires y to be passed, but the target y is None"
    with pytest.raises(ValueError, match=msg):
        check_X_y(X, y)

    msg = "RandomForestRegressor requires y to be passed, but the target y is None"
    with pytest.raises(ValueError, match=msg):
        check_X_y(X, y, estimator=RandomForestRegressor())


def test_retrieve_samples_from_non_standard_shape():
    class TestNonNumericShape:
        def __init__(self):
            self.shape = ("not numeric",)

        def __len__(self):
            return len([1, 2, 3])

    X = TestNonNumericShape()
    assert _num_samples(X) == len(X)

    # check that it gives a good error if there's no __len__
    class TestNoLenWeirdShape:
        def __init__(self):
            self.shape = ("not numeric",)

    with pytest.raises(TypeError, match="Expected sequence or array-like"):
        _num_samples(TestNoLenWeirdShape())


@pytest.mark.parametrize("x", [2, 3, 2.5, 5])
def test_check_scalar_valid(x):
    """Test that check_scalar returns no error/warning if valid inputs are
    provided"""
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        scalar = check_scalar(
            x,
            "test_name",
            target_type=numbers.Real,
            min_val=2,
            max_val=5,
            include_boundaries="both",
        )
    assert scalar == x


@pytest.mark.parametrize(
    "x, target_name, target_type, min_val, max_val, include_boundaries, err_msg",
    [
        (
            1,
            "test_name1",
            float,
            2,
            4,
            "neither",
            TypeError("test_name1 must be an instance of float, not int."),
        ),
        (
            None,
            "test_name1",
            numbers.Real,
            2,
            4,
            "neither",
            TypeError("test_name1 must be an instance of float, not NoneType."),
        ),
        (
            None,
            "test_name1",
            numbers.Integral,
            2,
            4,
            "neither",
            TypeError("test_name1 must be an instance of int, not NoneType."),
        ),
        (
            1,
            "test_name1",
            (float, bool),
            2,
            4,
            "neither",
            TypeError("test_name1 must be an instance of {float, bool}, not int."),
        ),
        (
            1,
            "test_name2",
            int,
            2,
            4,
            "neither",
            ValueError("test_name2 == 1, must be > 2."),
        ),
        (
            5,
            "test_name3",
            int,
            2,
            4,
            "neither",
            ValueError("test_name3 == 5, must be < 4."),
        ),
        (
            2,
            "test_name4",
            int,
            2,
            4,
            "right",
            ValueError("test_name4 == 2, must be > 2."),
        ),
        (
            4,
            "test_name5",
            int,
            2,
            4,
            "left",
            ValueError("test_name5 == 4, must be < 4."),
        ),
        (
            4,
            "test_name6",
            int,
            2,
            4,
            "bad parameter value",
            ValueError(
                "Unknown value for `include_boundaries`: 'bad parameter value'. "
                "Possible values are: ('left', 'right', 'both', 'neither')."
            ),
        ),
        (
            4,
            "test_name7",
            int,
            None,
            4,
            "left",
            ValueError(
                "`include_boundaries`='left' without specifying explicitly `min_val` "
                "is inconsistent."
            ),
        ),
        (
            4,
            "test_name8",
            int,
            2,
            None,
            "right",
            ValueError(
                "`include_boundaries`='right' without specifying explicitly `max_val` "
                "is inconsistent."
            ),
        ),
    ],
)
def test_check_scalar_invalid(
    x, target_name, target_type, min_val, max_val, include_boundaries, err_msg
):
    """Test that check_scalar returns the right error if a wrong input is
    given"""
    with pytest.raises(Exception) as raised_error:
        check_scalar(
            x,
            target_name,
            target_type=target_type,
            min_val=min_val,
            max_val=max_val,
            include_boundaries=include_boundaries,
        )
    assert str(raised_error.value) == str(err_msg)
    assert isinstance(raised_error.value, type(err_msg))


_psd_cases_valid = {
    "nominal": ((1, 2), np.array([1, 2]), None, ""),
    "nominal_np_array": (np.array([1, 2]), np.array([1, 2]), None, ""),
    "insignificant_imag": (
        (5, 5e-5j),
        np.array([5, 0]),
        PositiveSpectrumWarning,
        "There are imaginary parts in eigenvalues \\(1e\\-05 of the maximum real part",
    ),
    "insignificant neg": ((5, -5e-5), np.array([5, 0]), PositiveSpectrumWarning, ""),
    "insignificant neg float32": (
        np.array([1, -1e-6], dtype=np.float32),
        np.array([1, 0], dtype=np.float32),
        PositiveSpectrumWarning,
        "There are negative eigenvalues \\(1e\\-06 of the maximum positive",
    ),
    "insignificant neg float64": (
        np.array([1, -1e-10], dtype=np.float64),
        np.array([1, 0], dtype=np.float64),
        PositiveSpectrumWarning,
        "There are negative eigenvalues \\(1e\\-10 of the maximum positive",
    ),
    "insignificant pos": (
        (5, 4e-12),
        np.array([5, 0]),
        PositiveSpectrumWarning,
        "the largest eigenvalue is more than 1e\\+12 times the smallest",
    ),
}


@pytest.mark.parametrize(
    "lambdas, expected_lambdas, w_type, w_msg",
    list(_psd_cases_valid.values()),
    ids=list(_psd_cases_valid.keys()),
)
@pytest.mark.parametrize("enable_warnings", [True, False])
def test_check_psd_eigenvalues_valid(
    lambdas, expected_lambdas, w_type, w_msg, enable_warnings
):
    # Test that ``_check_psd_eigenvalues`` returns the right output for valid
    # input, possibly raising the right warning

    if not enable_warnings:
        w_type = None

    if w_type is None:
        with warnings.catch_warnings():
            warnings.simplefilter("error", PositiveSpectrumWarning)
            lambdas_fixed = _check_psd_eigenvalues(
                lambdas, enable_warnings=enable_warnings
            )
    else:
        with pytest.warns(w_type, match=w_msg):
            lambdas_fixed = _check_psd_eigenvalues(
                lambdas, enable_warnings=enable_warnings
            )

    assert_allclose(expected_lambdas, lambdas_fixed)


_psd_cases_invalid = {
    "significant_imag": (
        (5, 5j),
        ValueError,
        "There are significant imaginary parts in eigenv",
    ),
    "all negative": (
        (-5, -1),
        ValueError,
        "All eigenvalues are negative \\(maximum is -1",
    ),
    "significant neg": (
        (5, -1),
        ValueError,
        "There are significant negative eigenvalues",
    ),
    "significant neg float32": (
        np.array([3e-4, -2e-6], dtype=np.float32),
        ValueError,
        "There are significant negative eigenvalues",
    ),
    "significant neg float64": (
        np.array([1e-5, -2e-10], dtype=np.float64),
        ValueError,
        "There are significant negative eigenvalues",
    ),
}


@pytest.mark.parametrize(
    "lambdas, err_type, err_msg",
    list(_psd_cases_invalid.values()),
    ids=list(_psd_cases_invalid.keys()),
)
def test_check_psd_eigenvalues_invalid(lambdas, err_type, err_msg):
    # Test that ``_check_psd_eigenvalues`` raises the right error for invalid
    # input

    with pytest.raises(err_type, match=err_msg):
        _check_psd_eigenvalues(lambdas)


def test_check_sample_weight():
    # check array order
    sample_weight = np.ones(10)[::2]
    assert not sample_weight.flags["C_CONTIGUOUS"]
    sample_weight = _check_sample_weight(sample_weight, X=np.ones((5, 1)))
    assert sample_weight.flags["C_CONTIGUOUS"]

    # check None input
    sample_weight = _check_sample_weight(None, X=np.ones((5, 2)))
    assert_allclose(sample_weight, np.ones(5))

    # check numbers input
    sample_weight = _check_sample_weight(2.0, X=np.ones((5, 2)))
    assert_allclose(sample_weight, 2 * np.ones(5))

    # check wrong number of dimensions
    with pytest.raises(ValueError, match="Sample weights must be 1D array or scalar"):
        _check_sample_weight(np.ones((2, 4)), X=np.ones((2, 2)))

    # check incorrect n_samples
    msg = r"sample_weight.shape == \(4,\), expected \(2,\)!"
    with pytest.raises(ValueError, match=msg):
        _check_sample_weight(np.ones(4), X=np.ones((2, 2)))

    # float32 dtype is preserved
    X = np.ones((5, 2))
    sample_weight = np.ones(5, dtype=np.float32)
    sample_weight = _check_sample_weight(sample_weight, X)
    assert sample_weight.dtype == np.float32

    # int dtype will be converted to float64 instead
    X = np.ones((5, 2), dtype=int)
    sample_weight = _check_sample_weight(None, X, dtype=X.dtype)
    assert sample_weight.dtype == np.float64

    # check negative weight when ensure_non_negative=True
    X = np.ones((5, 2))
    sample_weight = np.ones(_num_samples(X))
    sample_weight[-1] = -10
    err_msg = "Negative values in data passed to `sample_weight`"
    with pytest.raises(ValueError, match=err_msg):
        _check_sample_weight(sample_weight, X, ensure_non_negative=True)


@pytest.mark.parametrize("toarray", [np.array, sp.csr_matrix, sp.csc_matrix])
def test_allclose_dense_sparse_equals(toarray):
    base = np.arange(9).reshape(3, 3)
    x, y = toarray(base), toarray(base)
    assert _allclose_dense_sparse(x, y)


@pytest.mark.parametrize("toarray", [np.array, sp.csr_matrix, sp.csc_matrix])
def test_allclose_dense_sparse_not_equals(toarray):
    base = np.arange(9).reshape(3, 3)
    x, y = toarray(base), toarray(base + 1)
    assert not _allclose_dense_sparse(x, y)


@pytest.mark.parametrize("toarray", [sp.csr_matrix, sp.csc_matrix])
def test_allclose_dense_sparse_raise(toarray):
    x = np.arange(9).reshape(3, 3)
    y = toarray(x + 1)

    msg = "Can only compare two sparse matrices, not a sparse matrix and an array"
    with pytest.raises(ValueError, match=msg):
        _allclose_dense_sparse(x, y)


def test_deprecate_positional_args_warns_for_function():
    @_deprecate_positional_args
    def f1(a, b, *, c=1, d=1):
        pass

    with pytest.warns(FutureWarning, match=r"Pass c=3 as keyword args"):
        f1(1, 2, 3)

    with pytest.warns(FutureWarning, match=r"Pass c=3, d=4 as keyword args"):
        f1(1, 2, 3, 4)

    @_deprecate_positional_args
    def f2(a=1, *, b=1, c=1, d=1):
        pass

    with pytest.warns(FutureWarning, match=r"Pass b=2 as keyword args"):
        f2(1, 2)

    # The * is place before a keyword only argument without a default value
    @_deprecate_positional_args
    def f3(a, *, b, c=1, d=1):
        pass

    with pytest.warns(FutureWarning, match=r"Pass b=2 as keyword args"):
        f3(1, 2)


def test_deprecate_positional_args_warns_for_function_version():
    @_deprecate_positional_args(version="1.1")
    def f1(a, *, b):
        pass

    with pytest.warns(
        FutureWarning, match=r"From version 1.1 passing these as positional"
    ):
        f1(1, 2)


def test_deprecate_positional_args_warns_for_class():
    class A1:
        @_deprecate_positional_args
        def __init__(self, a, b, *, c=1, d=1):
            pass

    with pytest.warns(FutureWarning, match=r"Pass c=3 as keyword args"):
        A1(1, 2, 3)

    with pytest.warns(FutureWarning, match=r"Pass c=3, d=4 as keyword args"):
        A1(1, 2, 3, 4)

    class A2:
        @_deprecate_positional_args
        def __init__(self, a=1, b=1, *, c=1, d=1):
            pass

    with pytest.warns(FutureWarning, match=r"Pass c=3 as keyword args"):
        A2(1, 2, 3)

    with pytest.warns(FutureWarning, match=r"Pass c=3, d=4 as keyword args"):
        A2(1, 2, 3, 4)


@pytest.mark.parametrize("indices", [None, [1, 3]])
def test_check_method_params(indices):
    X = np.random.randn(4, 2)
    _params = {
        "list": [1, 2, 3, 4],
        "array": np.array([1, 2, 3, 4]),
        "sparse-col": sp.csc_matrix([1, 2, 3, 4]).T,
        "sparse-row": sp.csc_matrix([1, 2, 3, 4]),
        "scalar-int": 1,
        "scalar-str": "xxx",
        "None": None,
    }
    result = _check_method_params(X, params=_params, indices=indices)
    indices_ = indices if indices is not None else list(range(X.shape[0]))

    for key in ["sparse-row", "scalar-int", "scalar-str", "None"]:
        assert result[key] is _params[key]

    assert result["list"] == _safe_indexing(_params["list"], indices_)
    assert_array_equal(result["array"], _safe_indexing(_params["array"], indices_))
    assert_allclose_dense_sparse(
        result["sparse-col"], _safe_indexing(_params["sparse-col"], indices_)
    )


@pytest.mark.parametrize("sp_format", [True, "csr", "csc", "coo", "bsr"])
def test_check_sparse_pandas_sp_format(sp_format):
    # check_array converts pandas dataframe with only sparse arrays into
    # sparse matrix
    pd = pytest.importorskip("pandas")
    sp_mat = _sparse_random_matrix(10, 3)

    sdf = pd.DataFrame.sparse.from_spmatrix(sp_mat)
    result = check_array(sdf, accept_sparse=sp_format)

    if sp_format is True:
        # by default pandas converts to coo when accept_sparse is True
        sp_format = "coo"

    assert sp.issparse(result)
    assert result.format == sp_format
    assert_allclose_dense_sparse(sp_mat, result)


@pytest.mark.parametrize(
    "ntype1, ntype2",
    [
        ("longdouble", "float16"),
        ("float16", "float32"),
        ("float32", "double"),
        ("int16", "int32"),
        ("int32", "long"),
        ("byte", "uint16"),
        ("ushort", "uint32"),
        ("uint32", "uint64"),
        ("uint8", "int8"),
    ],
)
def test_check_pandas_sparse_invalid(ntype1, ntype2):
    """check that we raise an error with dataframe having
    sparse extension arrays with unsupported mixed dtype
    and pandas version below 1.1. pandas versions 1.1 and
    above fixed this issue so no error will be raised."""
    pd = pytest.importorskip("pandas")
    df = pd.DataFrame(
        {
            "col1": pd.arrays.SparseArray([0, 1, 0], dtype=ntype1, fill_value=0),
            "col2": pd.arrays.SparseArray([1, 0, 1], dtype=ntype2, fill_value=0),
        }
    )

    if parse_version(pd.__version__) < parse_version("1.1"):
        err_msg = "Pandas DataFrame with mixed sparse extension arrays"
        with pytest.raises(ValueError, match=err_msg):
            check_array(df, accept_sparse=["csr", "csc"])
    else:
        # pandas fixed this issue at 1.1 so from here on,
        # no error will be raised.
        check_array(df, accept_sparse=["csr", "csc"])


@pytest.mark.parametrize(
    "ntype1, ntype2, expected_subtype",
    [
        ("double", "longdouble", np.floating),
        ("single", "float32", np.floating),
        ("double", "float64", np.floating),
        ("int8", "byte", np.integer),
        ("short", "int16", np.integer),
        ("intc", "int32", np.integer),
        ("intp", "long", np.integer),
        ("int", "long", np.integer),
        ("int64", "longlong", np.integer),
        ("int_", "intp", np.integer),
        ("ubyte", "uint8", np.unsignedinteger),
        ("uint16", "ushort", np.unsignedinteger),
        ("uintc", "uint32", np.unsignedinteger),
        ("uint", "uint64", np.unsignedinteger),
        ("uintp", "ulonglong", np.unsignedinteger),
    ],
)
def test_check_pandas_sparse_valid(ntype1, ntype2, expected_subtype):
    # check that we support the conversion of sparse dataframe with mixed
    # type which can be converted safely.
    pd = pytest.importorskip("pandas")
    df = pd.DataFrame(
        {
            "col1": pd.arrays.SparseArray([0, 1, 0], dtype=ntype1, fill_value=0),
            "col2": pd.arrays.SparseArray([1, 0, 1], dtype=ntype2, fill_value=0),
        }
    )
    arr = check_array(df, accept_sparse=["csr", "csc"])
    assert np.issubdtype(arr.dtype, expected_subtype)


@pytest.mark.parametrize(
    "constructor_name",
    ["list", "tuple", "array", "dataframe", "sparse_csr", "sparse_csc"],
)
def test_num_features(constructor_name):
    """Check _num_features for array-likes."""
    X = [[1, 2, 3], [4, 5, 6]]
    X = _convert_container(X, constructor_name)
    assert _num_features(X) == 3


@pytest.mark.parametrize(
    "X",
    [
        [1, 2, 3],
        ["a", "b", "c"],
        [False, True, False],
        [1.0, 3.4, 4.0],
        [{"a": 1}, {"b": 2}, {"c": 3}],
    ],
    ids=["int", "str", "bool", "float", "dict"],
)
@pytest.mark.parametrize("constructor_name", ["list", "tuple", "array", "series"])
def test_num_features_errors_1d_containers(X, constructor_name):
    X = _convert_container(X, constructor_name)
    if constructor_name == "array":
        expected_type_name = "numpy.ndarray"
    elif constructor_name == "series":
        expected_type_name = "pandas.*Series"
    else:
        expected_type_name = constructor_name
    message = (
        f"Unable to find the number of features from X of type {expected_type_name}"
    )
    if hasattr(X, "shape"):
        message += re.escape(" with shape (3,)")
    elif isinstance(X[0], str):
        message += " where the samples are of type str"
    elif isinstance(X[0], dict):
        message += " where the samples are of type dict"
    with pytest.raises(TypeError, match=message):
        _num_features(X)


@pytest.mark.parametrize("X", [1, "b", False, 3.0], ids=["int", "str", "bool", "float"])
def test_num_features_errors_scalars(X):
    msg = f"Unable to find the number of features from X of type {type(X).__qualname__}"
    with pytest.raises(TypeError, match=msg):
        _num_features(X)


@pytest.mark.parametrize(
    "names",
    [list(range(2)), range(2), None, [["a", "b"], ["c", "d"]]],
    ids=["list-int", "range", "default", "MultiIndex"],
)
def test_get_feature_names_pandas_with_ints_no_warning(names):
    """Get feature names with pandas dataframes without warning.

    Column names with consistent dtypes will not warn, such as int or MultiIndex.
    """
    pd = pytest.importorskip("pandas")
    X = pd.DataFrame([[1, 2], [4, 5], [5, 6]], columns=names)

    with warnings.catch_warnings():
        warnings.simplefilter("error", FutureWarning)
        names = _get_feature_names(X)
    assert names is None


def test_get_feature_names_pandas():
    """Get feature names with pandas dataframes."""
    pd = pytest.importorskip("pandas")
    columns = [f"col_{i}" for i in range(3)]
    X = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=columns)
    feature_names = _get_feature_names(X)

    assert_array_equal(feature_names, columns)


@pytest.mark.parametrize(
    "constructor_name, minversion",
    [("pyarrow", "12.0.0"), ("dataframe", "1.5.0"), ("polars", "0.18.2")],
)
def test_get_feature_names_dataframe_protocol(constructor_name, minversion):
    """Uses the dataframe exchange protocol to get feature names."""
    data = [[1, 4, 2], [3, 3, 6]]
    columns = ["col_0", "col_1", "col_2"]
    df = _convert_container(
        data, constructor_name, columns_name=columns, minversion=minversion
    )
    feature_names = _get_feature_names(df)

    assert_array_equal(feature_names, columns)


@pytest.mark.parametrize("constructor_name", ["pyarrow", "dataframe", "polars"])
def test_is_pandas_df_other_libraries(constructor_name):
    df = _convert_container([[1, 4, 2], [3, 3, 6]], constructor_name)
    if constructor_name in ("pyarrow", "polars"):
        assert not _is_pandas_df(df)
    else:
        assert _is_pandas_df(df)


def test_is_pandas_df():
    """Check behavior of is_pandas_df when pandas is installed."""
    pd = pytest.importorskip("pandas")
    df = pd.DataFrame([[1, 2, 3]])
    assert _is_pandas_df(df)
    assert not _is_pandas_df(np.asarray([1, 2, 3]))
    assert not _is_pandas_df(1)


def test_is_pandas_df_pandas_not_installed(hide_available_pandas):
    """Check _is_pandas_df when pandas is not installed."""

    assert not _is_pandas_df(np.asarray([1, 2, 3]))
    assert not _is_pandas_df(1)


@pytest.mark.parametrize(
    "constructor_name, minversion",
    [
        ("pyarrow", dependent_packages["pyarrow"][0]),
        ("dataframe", dependent_packages["pandas"][0]),
        ("polars", dependent_packages["polars"][0]),
    ],
)
def test_is_polars_df_other_libraries(constructor_name, minversion):
    df = _convert_container(
        [[1, 4, 2], [3, 3, 6]],
        constructor_name,
        minversion=minversion,
    )
    if constructor_name in ("pyarrow", "dataframe"):
        assert not _is_polars_df(df)
    else:
        assert _is_polars_df(df)


def test_is_polars_df_for_duck_typed_polars_dataframe():
    """Check _is_polars_df for object that looks like a polars dataframe"""

    class NotAPolarsDataFrame:
        def __init__(self):
            self.columns = [1, 2, 3]
            self.schema = "my_schema"

    not_a_polars_df = NotAPolarsDataFrame()
    assert not _is_polars_df(not_a_polars_df)


def test_get_feature_names_numpy():
    """Get feature names return None for numpy arrays."""
    X = np.array([[1, 2, 3], [4, 5, 6]])
    names = _get_feature_names(X)
    assert names is None


@pytest.mark.parametrize(
    "names, dtypes",
    [
        (["a", 1], "['int', 'str']"),
        (["pizza", ["a", "b"]], "['list', 'str']"),
    ],
    ids=["int-str", "list-str"],
)
def test_get_feature_names_invalid_dtypes(names, dtypes):
    """Get feature names errors when the feature names have mixed dtypes"""
    pd = pytest.importorskip("pandas")
    X = pd.DataFrame([[1, 2], [4, 5], [5, 6]], columns=names)

    msg = re.escape(
        "Feature names are only supported if all input features have string names, "
        f"but your input has {dtypes} as feature name / column name types. "
        "If you want feature names to be stored and validated, you must convert "
        "them all to strings, by using X.columns = X.columns.astype(str) for "
        "example. Otherwise you can remove feature / column names from your input "
        "data, or convert them all to a non-string data type."
    )
    with pytest.raises(TypeError, match=msg):
        names = _get_feature_names(X)


class PassthroughTransformer(BaseEstimator):
    def fit(self, X, y=None):
        validate_data(self, X, reset=True)
        return self

    def transform(self, X):
        return X

    def get_feature_names_out(self, input_features=None):
        return _check_feature_names_in(self, input_features)


def test_check_feature_names_in():
    """Check behavior of check_feature_names_in for arrays."""
    X = np.array([[0.0, 1.0, 2.0]])
    est = PassthroughTransformer().fit(X)

    names = est.get_feature_names_out()
    assert_array_equal(names, ["x0", "x1", "x2"])

    incorrect_len_names = ["x10", "x1"]
    with pytest.raises(ValueError, match="input_features should have length equal to"):
        est.get_feature_names_out(incorrect_len_names)

    # remove n_feature_in_
    del est.n_features_in_
    with pytest.raises(ValueError, match="Unable to generate feature names"):
        est.get_feature_names_out()


def test_check_feature_names_in_pandas():
    """Check behavior of check_feature_names_in for pandas dataframes."""
    pd = pytest.importorskip("pandas")
    names = ["a", "b", "c"]
    df = pd.DataFrame([[0.0, 1.0, 2.0]], columns=names)
    est = PassthroughTransformer().fit(df)

    names = est.get_feature_names_out()
    assert_array_equal(names, ["a", "b", "c"])

    with pytest.raises(ValueError, match="input_features is not equal to"):
        est.get_feature_names_out(["x1", "x2", "x3"])


def test_check_response_method_unknown_method():
    """Check the error message when passing an unknown response method."""
    err_msg = (
        "RandomForestRegressor has none of the following attributes: unknown_method."
    )
    with pytest.raises(AttributeError, match=err_msg):
        _check_response_method(RandomForestRegressor(), "unknown_method")


@pytest.mark.parametrize(
    "response_method", ["decision_function", "predict_proba", "predict"]
)
def test_check_response_method_not_supported_response_method(response_method):
    """Check the error message when a response method is not supported by the
    estimator."""
    err_msg = (
        f"EstimatorWithFit has none of the following attributes: {response_method}."
    )
    with pytest.raises(AttributeError, match=err_msg):
        _check_response_method(EstimatorWithFit(), response_method)


def test_check_response_method_list_str():
    """Check that we can pass a list of ordered method."""
    method_implemented = ["predict_proba"]
    my_estimator = _MockEstimatorOnOffPrediction(method_implemented)

    X = "mocking_data"

    # raise an error when no methods are defined
    response_method = ["decision_function", "predict"]
    err_msg = (
        "_MockEstimatorOnOffPrediction has none of the following attributes: "
        f"{', '.join(response_method)}."
    )
    with pytest.raises(AttributeError, match=err_msg):
        _check_response_method(my_estimator, response_method)(X)

    # check that we don't get issue when one of the method is defined
    response_method = ["decision_function", "predict_proba"]
    method_name_predicting = _check_response_method(my_estimator, response_method)(X)
    assert method_name_predicting == "predict_proba"

    # check the order of the methods returned
    method_implemented = ["predict_proba", "predict"]
    my_estimator = _MockEstimatorOnOffPrediction(method_implemented)
    response_method = ["decision_function", "predict", "predict_proba"]
    method_name_predicting = _check_response_method(my_estimator, response_method)(X)
    assert method_name_predicting == "predict"


def test_boolean_series_remains_boolean():
    """Regression test for gh-25145"""
    pd = importorskip("pandas")
    res = check_array(pd.Series([True, False]), ensure_2d=False)
    expected = np.array([True, False])

    assert res.dtype == expected.dtype
    assert_array_equal(res, expected)


@pytest.mark.parametrize("input_values", [[0, 1, 0, 1, 0, np.nan], [0, 1, 0, 1, 0, 1]])
def test_pandas_array_returns_ndarray(input_values):
    """Check pandas array with extensions dtypes returns a numeric ndarray.

    Non-regression test for gh-25637.
    """
    pd = importorskip("pandas")
    input_series = pd.array(input_values, dtype="Int32")
    result = check_array(
        input_series,
        dtype=None,
        ensure_2d=False,
        allow_nd=False,
        ensure_all_finite=False,
    )
    assert np.issubdtype(result.dtype.kind, np.floating)
    assert_allclose(result, input_values)


@skip_if_array_api_compat_not_configured
def test_check_array_array_api_has_non_finite():
    """Checks that Array API arrays checks non-finite correctly."""
    xp = pytest.importorskip("array_api_strict")

    X_nan = xp.asarray([[xp.nan, 1, 0], [0, xp.nan, 3]], dtype=xp.float32)
    with config_context(array_api_dispatch=True):
        with pytest.raises(ValueError, match="Input contains NaN."):
            check_array(X_nan)

    X_inf = xp.asarray([[xp.inf, 1, 0], [0, xp.inf, 3]], dtype=xp.float32)
    with config_context(array_api_dispatch=True):
        with pytest.raises(ValueError, match="infinity or a value too large"):
            check_array(X_inf)


@pytest.mark.parametrize(
    "extension_dtype, regular_dtype",
    [
        ("boolean", "bool"),
        ("Int64", "int64"),
        ("Float64", "float64"),
        ("category", "object"),
    ],
)
@pytest.mark.parametrize("include_object", [True, False])
def test_check_array_multiple_extensions(
    extension_dtype, regular_dtype, include_object
):
    """Check pandas extension arrays give the same result as non-extension arrays."""
    pd = pytest.importorskip("pandas")
    X_regular = pd.DataFrame(
        {
            "a": pd.Series([1, 0, 1, 0], dtype=regular_dtype),
            "c": pd.Series([9, 8, 7, 6], dtype="int64"),
        }
    )
    if include_object:
        X_regular["b"] = pd.Series(["a", "b", "c", "d"], dtype="object")

    X_extension = X_regular.assign(a=X_regular["a"].astype(extension_dtype))

    X_regular_checked = check_array(X_regular, dtype=None)
    X_extension_checked = check_array(X_extension, dtype=None)
    assert_array_equal(X_regular_checked, X_extension_checked)


def test_num_samples_dataframe_protocol():
    """Use the DataFrame interchange protocol to get n_samples from polars."""
    pl = pytest.importorskip("polars")

    df = pl.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
    assert _num_samples(df) == 3


@pytest.mark.parametrize(
    "sparse_container",
    CSR_CONTAINERS + CSC_CONTAINERS + COO_CONTAINERS + DIA_CONTAINERS,
)
@pytest.mark.parametrize("output_format", ["csr", "csc", "coo"])
def test_check_array_dia_to_int32_indexed_csr_csc_coo(sparse_container, output_format):
    """Check the consistency of the indices dtype with sparse matrices/arrays."""
    X = sparse_container([[0, 1], [1, 0]], dtype=np.float64)

    # Explicitly set the dtype of the indexing arrays
    if hasattr(X, "offsets"):  # DIA matrix
        X.offsets = X.offsets.astype(np.int32)
    elif hasattr(X, "row") and hasattr(X, "col"):  # COO matrix
        X.row = X.row.astype(np.int32)
    elif hasattr(X, "indices") and hasattr(X, "indptr"):  # CSR or CSC matrix
        X.indices = X.indices.astype(np.int32)
        X.indptr = X.indptr.astype(np.int32)

    X_checked = check_array(X, accept_sparse=output_format)
    if output_format == "coo":
        assert X_checked.row.dtype == np.int32
        assert X_checked.col.dtype == np.int32
    else:  # output_format in ["csr", "csc"]
        assert X_checked.indices.dtype == np.int32
        assert X_checked.indptr.dtype == np.int32


@pytest.mark.parametrize("sequence", [[np.array(1), np.array(2)], [[1, 2], [3, 4]]])
def test_to_object_array(sequence):
    out = _to_object_array(sequence)
    assert isinstance(out, np.ndarray)
    assert out.dtype.kind == "O"
    assert out.ndim == 1


def test_column_or_1d():
    EXAMPLES = [
        ("binary", ["spam", "egg", "spam"]),
        ("binary", [0, 1, 0, 1]),
        ("continuous", np.arange(10) / 20.0),
        ("multiclass", [1, 2, 3]),
        ("multiclass", [0, 1, 2, 2, 0]),
        ("multiclass", [[1], [2], [3]]),
        ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]),
        ("multiclass-multioutput", [[1, 2, 3]]),
        ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]),
        ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]),
        ("multiclass-multioutput", [[1, 2, 3]]),
        ("continuous-multioutput", np.arange(30).reshape((-1, 3))),
    ]

    for y_type, y in EXAMPLES:
        if y_type in ["binary", "multiclass", "continuous"]:
            assert_array_equal(column_or_1d(y), np.ravel(y))
        else:
            with pytest.raises(ValueError):
                column_or_1d(y)


def test__is_polars_df():
    """Check that _is_polars_df return False for non-dataframe objects."""

    class LooksLikePolars:
        def __init__(self):
            self.columns = ["a", "b"]
            self.schema = ["a", "b"]

    assert not _is_polars_df(LooksLikePolars())


def test_check_array_writeable_np():
    """Check the behavior of check_array when a writeable array is requested
    without copy if possible, on numpy arrays.
    """
    X = np.random.uniform(size=(10, 10))

    out = check_array(X, copy=False, force_writeable=True)
    # X is already writeable, no copy is needed
    assert np.may_share_memory(out, X)
    assert out.flags.writeable

    X.flags.writeable = False

    out = check_array(X, copy=False, force_writeable=True)
    # X is not writeable, a copy is made
    assert not np.may_share_memory(out, X)
    assert out.flags.writeable


def test_check_array_writeable_mmap():
    """Check the behavior of check_array when a writeable array is requested
    without copy if possible, on a memory-map.

    A common situation is when a meta-estimators run in parallel using multiprocessing
    with joblib, which creates read-only memory-maps of large arrays.
    """
    X = np.random.uniform(size=(10, 10))

    mmap = create_memmap_backed_data(X, mmap_mode="w+")
    out = check_array(mmap, copy=False, force_writeable=True)
    # mmap is already writeable, no copy is needed
    assert np.may_share_memory(out, mmap)
    assert out.flags.writeable

    mmap = create_memmap_backed_data(X, mmap_mode="r")
    out = check_array(mmap, copy=False, force_writeable=True)
    # mmap is read-only, a copy is made
    assert not np.may_share_memory(out, mmap)
    assert out.flags.writeable


def test_check_array_writeable_df():
    """Check the behavior of check_array when a writeable array is requested
    without copy if possible, on a dataframe.
    """
    pd = pytest.importorskip("pandas")

    X = np.random.uniform(size=(10, 10))
    df = pd.DataFrame(X, copy=False)

    out = check_array(df, copy=False, force_writeable=True)
    # df is backed by a writeable array, no copy is needed
    assert np.may_share_memory(out, df)
    assert out.flags.writeable

    X.flags.writeable = False
    df = pd.DataFrame(X, copy=False)

    out = check_array(df, copy=False, force_writeable=True)
    # df is backed by a read-only array, a copy is made
    assert not np.may_share_memory(out, df)
    assert out.flags.writeable


@skip_if_array_api_compat_not_configured
def test_check_array_on_sparse_inputs_with_array_api_enabled():
    X_sp = sp.csr_array([[0, 1, 0], [1, 0, 1]])
    with config_context(array_api_dispatch=True):
        assert sp.issparse(check_array(X_sp, accept_sparse=True))

        with pytest.raises(TypeError):
            check_array(X_sp)


# TODO(1.8): remove
def test_force_all_finite_rename_warning():
    X = np.random.uniform(size=(10, 10))
    y = np.random.randint(1, size=(10,))

    msg = "'force_all_finite' was renamed to 'ensure_all_finite'"

    with pytest.warns(FutureWarning, match=msg):
        check_array(X, force_all_finite=True)

    with pytest.warns(FutureWarning, match=msg):
        check_X_y(X, y, force_all_finite=True)

    with pytest.warns(FutureWarning, match=msg):
        as_float_array(X, force_all_finite=True)