File size: 5,258 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
import pytest
from scipy.optimize import fmin_ncg

from sklearn.exceptions import ConvergenceWarning
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils.optimize import _newton_cg


def test_newton_cg():
    # Test that newton_cg gives same result as scipy's fmin_ncg

    rng = np.random.RandomState(0)
    A = rng.normal(size=(10, 10))
    x0 = np.ones(10)

    def func(x):
        Ax = A.dot(x)
        return 0.5 * (Ax).dot(Ax)

    def grad(x):
        return A.T.dot(A.dot(x))

    def hess(x, p):
        return p.dot(A.T.dot(A.dot(x.all())))

    def grad_hess(x):
        return grad(x), lambda x: A.T.dot(A.dot(x))

    assert_array_almost_equal(
        _newton_cg(grad_hess, func, grad, x0, tol=1e-10)[0],
        fmin_ncg(f=func, x0=x0, fprime=grad, fhess_p=hess),
    )


@pytest.mark.parametrize("verbose", [0, 1, 2])
def test_newton_cg_verbosity(capsys, verbose):
    """Test the std output of verbose newton_cg solver."""
    A = np.eye(2)
    b = np.array([1, 2], dtype=float)

    _newton_cg(
        grad_hess=lambda x: (A @ x - b, lambda z: A @ z),
        func=lambda x: 0.5 * x @ A @ x - b @ x,
        grad=lambda x: A @ x - b,
        x0=np.zeros(A.shape[0]),
        verbose=verbose,
    )  # returns array([1., 2])
    captured = capsys.readouterr()

    if verbose == 0:
        assert captured.out == ""
    else:
        msg = [
            "Newton-CG iter = 1",
            "Check Convergence",
            "max |gradient|",
            "Solver did converge at loss = ",
        ]
        for m in msg:
            assert m in captured.out

    if verbose >= 2:
        msg = [
            "Inner CG solver iteration 1 stopped with",
            "sum(|residuals|) <= tol",
            "Line Search",
            "try line search wolfe1",
            "wolfe1 line search was successful",
        ]
        for m in msg:
            assert m in captured.out

    if verbose >= 2:
        # Set up a badly scaled singular Hessian with a completely wrong starting
        # position. This should trigger 2nd line search check
        A = np.array([[1.0, 2], [2, 4]]) * 1e30  # collinear columns
        b = np.array([1.0, 2.0])
        # Note that scipy.optimize._linesearch LineSearchWarning inherits from
        # RuntimeWarning, but we do not want to import from non public APIs.
        with pytest.warns(RuntimeWarning):
            _newton_cg(
                grad_hess=lambda x: (A @ x - b, lambda z: A @ z),
                func=lambda x: 0.5 * x @ A @ x - b @ x,
                grad=lambda x: A @ x - b,
                x0=np.array([-2.0, 1]),  # null space of hessian
                verbose=verbose,
            )
        captured = capsys.readouterr()
        msg = [
            "wolfe1 line search was not successful",
            "check loss |improvement| <= eps * |loss_old|:",
            "check sum(|gradient|) < sum(|gradient_old|):",
            "last resort: try line search wolfe2",
        ]
        for m in msg:
            assert m in captured.out

        # Set up a badly conditioned Hessian that leads to tiny curvature.
        # X.T @ X have singular values array([1.00000400e+01, 1.00008192e-11])
        A = np.array([[1.0, 2], [1, 2 + 1e-15]])
        b = np.array([-2.0, 1])
        with pytest.warns(ConvergenceWarning):
            _newton_cg(
                grad_hess=lambda x: (A @ x - b, lambda z: A @ z),
                func=lambda x: 0.5 * x @ A @ x - b @ x,
                grad=lambda x: A @ x - b,
                x0=b,
                verbose=verbose,
                maxiter=2,
            )
        captured = capsys.readouterr()
        msg = [
            "tiny_|p| = eps * ||p||^2",
        ]
        for m in msg:
            assert m in captured.out

        # Test for a case with negative Hessian.
        # We do not trigger "Inner CG solver iteration {i} stopped with negative
        # curvature", but that is very hard to trigger.
        A = np.eye(2)
        b = np.array([-2.0, 1])
        with pytest.warns(RuntimeWarning):
            _newton_cg(
                # Note the wrong sign in the hessian product.
                grad_hess=lambda x: (A @ x - b, lambda z: -A @ z),
                func=lambda x: 0.5 * x @ A @ x - b @ x,
                grad=lambda x: A @ x - b,
                x0=np.array([1.0, 1.0]),
                verbose=verbose,
                maxiter=3,
            )
        captured = capsys.readouterr()
        msg = [
            "Inner CG solver iteration 0 fell back to steepest descent",
        ]
        for m in msg:
            assert m in captured.out

        A = np.diag([1e-3, 1, 1e3])
        b = np.array([-2.0, 1, 2.0])
        with pytest.warns(ConvergenceWarning):
            _newton_cg(
                grad_hess=lambda x: (A @ x - b, lambda z: A @ z),
                func=lambda x: 0.5 * x @ A @ x - b @ x,
                grad=lambda x: A @ x - b,
                x0=np.ones_like(b),
                verbose=verbose,
                maxiter=2,
                maxinner=1,
            )
        captured = capsys.readouterr()
        msg = [
            "Inner CG solver stopped reaching maxiter=1",
        ]
        for m in msg:
            assert m in captured.out