File size: 28,502 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import functools
import math
import operator
import re
from abc import ABC, abstractmethod
from collections.abc import Iterable
from inspect import signature
from numbers import Integral, Real

import numpy as np
from scipy.sparse import csr_matrix, issparse

from .._config import config_context, get_config
from .validation import _is_arraylike_not_scalar


class InvalidParameterError(ValueError, TypeError):
    """Custom exception to be raised when the parameter of a class/method/function
    does not have a valid type or value.
    """

    # Inherits from ValueError and TypeError to keep backward compatibility.


def validate_parameter_constraints(parameter_constraints, params, caller_name):
    """Validate types and values of given parameters.

    Parameters
    ----------
    parameter_constraints : dict or {"no_validation"}
        If "no_validation", validation is skipped for this parameter.

        If a dict, it must be a dictionary `param_name: list of constraints`.
        A parameter is valid if it satisfies one of the constraints from the list.
        Constraints can be:
        - an Interval object, representing a continuous or discrete range of numbers
        - the string "array-like"
        - the string "sparse matrix"
        - the string "random_state"
        - callable
        - None, meaning that None is a valid value for the parameter
        - any type, meaning that any instance of this type is valid
        - an Options object, representing a set of elements of a given type
        - a StrOptions object, representing a set of strings
        - the string "boolean"
        - the string "verbose"
        - the string "cv_object"
        - the string "nan"
        - a MissingValues object representing markers for missing values
        - a HasMethods object, representing method(s) an object must have
        - a Hidden object, representing a constraint not meant to be exposed to the user

    params : dict
        A dictionary `param_name: param_value`. The parameters to validate against the
        constraints.

    caller_name : str
        The name of the estimator or function or method that called this function.
    """
    for param_name, param_val in params.items():
        # We allow parameters to not have a constraint so that third party estimators
        # can inherit from sklearn estimators without having to necessarily use the
        # validation tools.
        if param_name not in parameter_constraints:
            continue

        constraints = parameter_constraints[param_name]

        if constraints == "no_validation":
            continue

        constraints = [make_constraint(constraint) for constraint in constraints]

        for constraint in constraints:
            if constraint.is_satisfied_by(param_val):
                # this constraint is satisfied, no need to check further.
                break
        else:
            # No constraint is satisfied, raise with an informative message.

            # Ignore constraints that we don't want to expose in the error message,
            # i.e. options that are for internal purpose or not officially supported.
            constraints = [
                constraint for constraint in constraints if not constraint.hidden
            ]

            if len(constraints) == 1:
                constraints_str = f"{constraints[0]}"
            else:
                constraints_str = (
                    f"{', '.join([str(c) for c in constraints[:-1]])} or"
                    f" {constraints[-1]}"
                )

            raise InvalidParameterError(
                f"The {param_name!r} parameter of {caller_name} must be"
                f" {constraints_str}. Got {param_val!r} instead."
            )


def make_constraint(constraint):
    """Convert the constraint into the appropriate Constraint object.

    Parameters
    ----------
    constraint : object
        The constraint to convert.

    Returns
    -------
    constraint : instance of _Constraint
        The converted constraint.
    """
    if isinstance(constraint, str) and constraint == "array-like":
        return _ArrayLikes()
    if isinstance(constraint, str) and constraint == "sparse matrix":
        return _SparseMatrices()
    if isinstance(constraint, str) and constraint == "random_state":
        return _RandomStates()
    if constraint is callable:
        return _Callables()
    if constraint is None:
        return _NoneConstraint()
    if isinstance(constraint, type):
        return _InstancesOf(constraint)
    if isinstance(
        constraint, (Interval, StrOptions, Options, HasMethods, MissingValues)
    ):
        return constraint
    if isinstance(constraint, str) and constraint == "boolean":
        return _Booleans()
    if isinstance(constraint, str) and constraint == "verbose":
        return _VerboseHelper()
    if isinstance(constraint, str) and constraint == "cv_object":
        return _CVObjects()
    if isinstance(constraint, Hidden):
        constraint = make_constraint(constraint.constraint)
        constraint.hidden = True
        return constraint
    if isinstance(constraint, str) and constraint == "nan":
        return _NanConstraint()
    raise ValueError(f"Unknown constraint type: {constraint}")


def validate_params(parameter_constraints, *, prefer_skip_nested_validation):
    """Decorator to validate types and values of functions and methods.

    Parameters
    ----------
    parameter_constraints : dict
        A dictionary `param_name: list of constraints`. See the docstring of
        `validate_parameter_constraints` for a description of the accepted constraints.

        Note that the *args and **kwargs parameters are not validated and must not be
        present in the parameter_constraints dictionary.

    prefer_skip_nested_validation : bool
        If True, the validation of parameters of inner estimators or functions
        called by the decorated function will be skipped.

        This is useful to avoid validating many times the parameters passed by the
        user from the public facing API. It's also useful to avoid validating
        parameters that we pass internally to inner functions that are guaranteed to
        be valid by the test suite.

        It should be set to True for most functions, except for those that receive
        non-validated objects as parameters or that are just wrappers around classes
        because they only perform a partial validation.

    Returns
    -------
    decorated_function : function or method
        The decorated function.
    """

    def decorator(func):
        # The dict of parameter constraints is set as an attribute of the function
        # to make it possible to dynamically introspect the constraints for
        # automatic testing.
        setattr(func, "_skl_parameter_constraints", parameter_constraints)

        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            global_skip_validation = get_config()["skip_parameter_validation"]
            if global_skip_validation:
                return func(*args, **kwargs)

            func_sig = signature(func)

            # Map *args/**kwargs to the function signature
            params = func_sig.bind(*args, **kwargs)
            params.apply_defaults()

            # ignore self/cls and positional/keyword markers
            to_ignore = [
                p.name
                for p in func_sig.parameters.values()
                if p.kind in (p.VAR_POSITIONAL, p.VAR_KEYWORD)
            ]
            to_ignore += ["self", "cls"]
            params = {k: v for k, v in params.arguments.items() if k not in to_ignore}

            validate_parameter_constraints(
                parameter_constraints, params, caller_name=func.__qualname__
            )

            try:
                with config_context(
                    skip_parameter_validation=(
                        prefer_skip_nested_validation or global_skip_validation
                    )
                ):
                    return func(*args, **kwargs)
            except InvalidParameterError as e:
                # When the function is just a wrapper around an estimator, we allow
                # the function to delegate validation to the estimator, but we replace
                # the name of the estimator by the name of the function in the error
                # message to avoid confusion.
                msg = re.sub(
                    r"parameter of \w+ must be",
                    f"parameter of {func.__qualname__} must be",
                    str(e),
                )
                raise InvalidParameterError(msg) from e

        return wrapper

    return decorator


class RealNotInt(Real):
    """A type that represents reals that are not instances of int.

    Behaves like float, but also works with values extracted from numpy arrays.
    isintance(1, RealNotInt) -> False
    isinstance(1.0, RealNotInt) -> True
    """


RealNotInt.register(float)


def _type_name(t):
    """Convert type into human readable string."""
    module = t.__module__
    qualname = t.__qualname__
    if module == "builtins":
        return qualname
    elif t == Real:
        return "float"
    elif t == Integral:
        return "int"
    return f"{module}.{qualname}"


class _Constraint(ABC):
    """Base class for the constraint objects."""

    def __init__(self):
        self.hidden = False

    @abstractmethod
    def is_satisfied_by(self, val):
        """Whether or not a value satisfies the constraint.

        Parameters
        ----------
        val : object
            The value to check.

        Returns
        -------
        is_satisfied : bool
            Whether or not the constraint is satisfied by this value.
        """

    @abstractmethod
    def __str__(self):
        """A human readable representational string of the constraint."""


class _InstancesOf(_Constraint):
    """Constraint representing instances of a given type.

    Parameters
    ----------
    type : type
        The valid type.
    """

    def __init__(self, type):
        super().__init__()
        self.type = type

    def is_satisfied_by(self, val):
        return isinstance(val, self.type)

    def __str__(self):
        return f"an instance of {_type_name(self.type)!r}"


class _NoneConstraint(_Constraint):
    """Constraint representing the None singleton."""

    def is_satisfied_by(self, val):
        return val is None

    def __str__(self):
        return "None"


class _NanConstraint(_Constraint):
    """Constraint representing the indicator `np.nan`."""

    def is_satisfied_by(self, val):
        return (
            not isinstance(val, Integral) and isinstance(val, Real) and math.isnan(val)
        )

    def __str__(self):
        return "numpy.nan"


class _PandasNAConstraint(_Constraint):
    """Constraint representing the indicator `pd.NA`."""

    def is_satisfied_by(self, val):
        try:
            import pandas as pd

            return isinstance(val, type(pd.NA)) and pd.isna(val)
        except ImportError:
            return False

    def __str__(self):
        return "pandas.NA"


class Options(_Constraint):
    """Constraint representing a finite set of instances of a given type.

    Parameters
    ----------
    type : type

    options : set
        The set of valid scalars.

    deprecated : set or None, default=None
        A subset of the `options` to mark as deprecated in the string
        representation of the constraint.
    """

    def __init__(self, type, options, *, deprecated=None):
        super().__init__()
        self.type = type
        self.options = options
        self.deprecated = deprecated or set()

        if self.deprecated - self.options:
            raise ValueError("The deprecated options must be a subset of the options.")

    def is_satisfied_by(self, val):
        return isinstance(val, self.type) and val in self.options

    def _mark_if_deprecated(self, option):
        """Add a deprecated mark to an option if needed."""
        option_str = f"{option!r}"
        if option in self.deprecated:
            option_str = f"{option_str} (deprecated)"
        return option_str

    def __str__(self):
        options_str = (
            f"{', '.join([self._mark_if_deprecated(o) for o in self.options])}"
        )
        return f"a {_type_name(self.type)} among {{{options_str}}}"


class StrOptions(Options):
    """Constraint representing a finite set of strings.

    Parameters
    ----------
    options : set of str
        The set of valid strings.

    deprecated : set of str or None, default=None
        A subset of the `options` to mark as deprecated in the string
        representation of the constraint.
    """

    def __init__(self, options, *, deprecated=None):
        super().__init__(type=str, options=options, deprecated=deprecated)


class Interval(_Constraint):
    """Constraint representing a typed interval.

    Parameters
    ----------
    type : {numbers.Integral, numbers.Real, RealNotInt}
        The set of numbers in which to set the interval.

        If RealNotInt, only reals that don't have the integer type
        are allowed. For example 1.0 is allowed but 1 is not.

    left : float or int or None
        The left bound of the interval. None means left bound is -∞.

    right : float, int or None
        The right bound of the interval. None means right bound is +∞.

    closed : {"left", "right", "both", "neither"}
        Whether the interval is open or closed. Possible choices are:

        - `"left"`: the interval is closed on the left and open on the right.
          It is equivalent to the interval `[ left, right )`.
        - `"right"`: the interval is closed on the right and open on the left.
          It is equivalent to the interval `( left, right ]`.
        - `"both"`: the interval is closed.
          It is equivalent to the interval `[ left, right ]`.
        - `"neither"`: the interval is open.
          It is equivalent to the interval `( left, right )`.

    Notes
    -----
    Setting a bound to `None` and setting the interval closed is valid. For instance,
    strictly speaking, `Interval(Real, 0, None, closed="both")` corresponds to
    `[0, +∞) U {+∞}`.
    """

    def __init__(self, type, left, right, *, closed):
        super().__init__()
        self.type = type
        self.left = left
        self.right = right
        self.closed = closed

        self._check_params()

    def _check_params(self):
        if self.type not in (Integral, Real, RealNotInt):
            raise ValueError(
                "type must be either numbers.Integral, numbers.Real or RealNotInt."
                f" Got {self.type} instead."
            )

        if self.closed not in ("left", "right", "both", "neither"):
            raise ValueError(
                "closed must be either 'left', 'right', 'both' or 'neither'. "
                f"Got {self.closed} instead."
            )

        if self.type is Integral:
            suffix = "for an interval over the integers."
            if self.left is not None and not isinstance(self.left, Integral):
                raise TypeError(f"Expecting left to be an int {suffix}")
            if self.right is not None and not isinstance(self.right, Integral):
                raise TypeError(f"Expecting right to be an int {suffix}")
            if self.left is None and self.closed in ("left", "both"):
                raise ValueError(
                    f"left can't be None when closed == {self.closed} {suffix}"
                )
            if self.right is None and self.closed in ("right", "both"):
                raise ValueError(
                    f"right can't be None when closed == {self.closed} {suffix}"
                )
        else:
            if self.left is not None and not isinstance(self.left, Real):
                raise TypeError("Expecting left to be a real number.")
            if self.right is not None and not isinstance(self.right, Real):
                raise TypeError("Expecting right to be a real number.")

        if self.right is not None and self.left is not None and self.right <= self.left:
            raise ValueError(
                f"right can't be less than left. Got left={self.left} and "
                f"right={self.right}"
            )

    def __contains__(self, val):
        if not isinstance(val, Integral) and np.isnan(val):
            return False

        left_cmp = operator.lt if self.closed in ("left", "both") else operator.le
        right_cmp = operator.gt if self.closed in ("right", "both") else operator.ge

        left = -np.inf if self.left is None else self.left
        right = np.inf if self.right is None else self.right

        if left_cmp(val, left):
            return False
        if right_cmp(val, right):
            return False
        return True

    def is_satisfied_by(self, val):
        if not isinstance(val, self.type):
            return False

        return val in self

    def __str__(self):
        type_str = "an int" if self.type is Integral else "a float"
        left_bracket = "[" if self.closed in ("left", "both") else "("
        left_bound = "-inf" if self.left is None else self.left
        right_bound = "inf" if self.right is None else self.right
        right_bracket = "]" if self.closed in ("right", "both") else ")"

        # better repr if the bounds were given as integers
        if not self.type == Integral and isinstance(self.left, Real):
            left_bound = float(left_bound)
        if not self.type == Integral and isinstance(self.right, Real):
            right_bound = float(right_bound)

        return (
            f"{type_str} in the range "
            f"{left_bracket}{left_bound}, {right_bound}{right_bracket}"
        )


class _ArrayLikes(_Constraint):
    """Constraint representing array-likes"""

    def is_satisfied_by(self, val):
        return _is_arraylike_not_scalar(val)

    def __str__(self):
        return "an array-like"


class _SparseMatrices(_Constraint):
    """Constraint representing sparse matrices."""

    def is_satisfied_by(self, val):
        return issparse(val)

    def __str__(self):
        return "a sparse matrix"


class _Callables(_Constraint):
    """Constraint representing callables."""

    def is_satisfied_by(self, val):
        return callable(val)

    def __str__(self):
        return "a callable"


class _RandomStates(_Constraint):
    """Constraint representing random states.

    Convenience class for
    [Interval(Integral, 0, 2**32 - 1, closed="both"), np.random.RandomState, None]
    """

    def __init__(self):
        super().__init__()
        self._constraints = [
            Interval(Integral, 0, 2**32 - 1, closed="both"),
            _InstancesOf(np.random.RandomState),
            _NoneConstraint(),
        ]

    def is_satisfied_by(self, val):
        return any(c.is_satisfied_by(val) for c in self._constraints)

    def __str__(self):
        return (
            f"{', '.join([str(c) for c in self._constraints[:-1]])} or"
            f" {self._constraints[-1]}"
        )


class _Booleans(_Constraint):
    """Constraint representing boolean likes.

    Convenience class for
    [bool, np.bool_]
    """

    def __init__(self):
        super().__init__()
        self._constraints = [
            _InstancesOf(bool),
            _InstancesOf(np.bool_),
        ]

    def is_satisfied_by(self, val):
        return any(c.is_satisfied_by(val) for c in self._constraints)

    def __str__(self):
        return (
            f"{', '.join([str(c) for c in self._constraints[:-1]])} or"
            f" {self._constraints[-1]}"
        )


class _VerboseHelper(_Constraint):
    """Helper constraint for the verbose parameter.

    Convenience class for
    [Interval(Integral, 0, None, closed="left"), bool, numpy.bool_]
    """

    def __init__(self):
        super().__init__()
        self._constraints = [
            Interval(Integral, 0, None, closed="left"),
            _InstancesOf(bool),
            _InstancesOf(np.bool_),
        ]

    def is_satisfied_by(self, val):
        return any(c.is_satisfied_by(val) for c in self._constraints)

    def __str__(self):
        return (
            f"{', '.join([str(c) for c in self._constraints[:-1]])} or"
            f" {self._constraints[-1]}"
        )


class MissingValues(_Constraint):
    """Helper constraint for the `missing_values` parameters.

    Convenience for
    [
        Integral,
        Interval(Real, None, None, closed="both"),
        str,   # when numeric_only is False
        None,  # when numeric_only is False
        _NanConstraint(),
        _PandasNAConstraint(),
    ]

    Parameters
    ----------
    numeric_only : bool, default=False
        Whether to consider only numeric missing value markers.

    """

    def __init__(self, numeric_only=False):
        super().__init__()

        self.numeric_only = numeric_only

        self._constraints = [
            _InstancesOf(Integral),
            # we use an interval of Real to ignore np.nan that has its own constraint
            Interval(Real, None, None, closed="both"),
            _NanConstraint(),
            _PandasNAConstraint(),
        ]
        if not self.numeric_only:
            self._constraints.extend([_InstancesOf(str), _NoneConstraint()])

    def is_satisfied_by(self, val):
        return any(c.is_satisfied_by(val) for c in self._constraints)

    def __str__(self):
        return (
            f"{', '.join([str(c) for c in self._constraints[:-1]])} or"
            f" {self._constraints[-1]}"
        )


class HasMethods(_Constraint):
    """Constraint representing objects that expose specific methods.

    It is useful for parameters following a protocol and where we don't want to impose
    an affiliation to a specific module or class.

    Parameters
    ----------
    methods : str or list of str
        The method(s) that the object is expected to expose.
    """

    @validate_params(
        {"methods": [str, list]},
        prefer_skip_nested_validation=True,
    )
    def __init__(self, methods):
        super().__init__()
        if isinstance(methods, str):
            methods = [methods]
        self.methods = methods

    def is_satisfied_by(self, val):
        return all(callable(getattr(val, method, None)) for method in self.methods)

    def __str__(self):
        if len(self.methods) == 1:
            methods = f"{self.methods[0]!r}"
        else:
            methods = (
                f"{', '.join([repr(m) for m in self.methods[:-1]])} and"
                f" {self.methods[-1]!r}"
            )
        return f"an object implementing {methods}"


class _IterablesNotString(_Constraint):
    """Constraint representing iterables that are not strings."""

    def is_satisfied_by(self, val):
        return isinstance(val, Iterable) and not isinstance(val, str)

    def __str__(self):
        return "an iterable"


class _CVObjects(_Constraint):
    """Constraint representing cv objects.

    Convenient class for
    [
        Interval(Integral, 2, None, closed="left"),
        HasMethods(["split", "get_n_splits"]),
        _IterablesNotString(),
        None,
    ]
    """

    def __init__(self):
        super().__init__()
        self._constraints = [
            Interval(Integral, 2, None, closed="left"),
            HasMethods(["split", "get_n_splits"]),
            _IterablesNotString(),
            _NoneConstraint(),
        ]

    def is_satisfied_by(self, val):
        return any(c.is_satisfied_by(val) for c in self._constraints)

    def __str__(self):
        return (
            f"{', '.join([str(c) for c in self._constraints[:-1]])} or"
            f" {self._constraints[-1]}"
        )


class Hidden:
    """Class encapsulating a constraint not meant to be exposed to the user.

    Parameters
    ----------
    constraint : str or _Constraint instance
        The constraint to be used internally.
    """

    def __init__(self, constraint):
        self.constraint = constraint


def generate_invalid_param_val(constraint):
    """Return a value that does not satisfy the constraint.

    Raises a NotImplementedError if there exists no invalid value for this constraint.

    This is only useful for testing purpose.

    Parameters
    ----------
    constraint : _Constraint instance
        The constraint to generate a value for.

    Returns
    -------
    val : object
        A value that does not satisfy the constraint.
    """
    if isinstance(constraint, StrOptions):
        return f"not {' or '.join(constraint.options)}"

    if isinstance(constraint, MissingValues):
        return np.array([1, 2, 3])

    if isinstance(constraint, _VerboseHelper):
        return -1

    if isinstance(constraint, HasMethods):
        return type("HasNotMethods", (), {})()

    if isinstance(constraint, _IterablesNotString):
        return "a string"

    if isinstance(constraint, _CVObjects):
        return "not a cv object"

    if isinstance(constraint, Interval) and constraint.type is Integral:
        if constraint.left is not None:
            return constraint.left - 1
        if constraint.right is not None:
            return constraint.right + 1

        # There's no integer outside (-inf, +inf)
        raise NotImplementedError

    if isinstance(constraint, Interval) and constraint.type in (Real, RealNotInt):
        if constraint.left is not None:
            return constraint.left - 1e-6
        if constraint.right is not None:
            return constraint.right + 1e-6

        # bounds are -inf, +inf
        if constraint.closed in ("right", "neither"):
            return -np.inf
        if constraint.closed in ("left", "neither"):
            return np.inf

        # interval is [-inf, +inf]
        return np.nan

    raise NotImplementedError


def generate_valid_param(constraint):
    """Return a value that does satisfy a constraint.

    This is only useful for testing purpose.

    Parameters
    ----------
    constraint : Constraint instance
        The constraint to generate a value for.

    Returns
    -------
    val : object
        A value that does satisfy the constraint.
    """
    if isinstance(constraint, _ArrayLikes):
        return np.array([1, 2, 3])

    if isinstance(constraint, _SparseMatrices):
        return csr_matrix([[0, 1], [1, 0]])

    if isinstance(constraint, _RandomStates):
        return np.random.RandomState(42)

    if isinstance(constraint, _Callables):
        return lambda x: x

    if isinstance(constraint, _NoneConstraint):
        return None

    if isinstance(constraint, _InstancesOf):
        if constraint.type is np.ndarray:
            # special case for ndarray since it can't be instantiated without arguments
            return np.array([1, 2, 3])

        if constraint.type in (Integral, Real):
            # special case for Integral and Real since they are abstract classes
            return 1

        return constraint.type()

    if isinstance(constraint, _Booleans):
        return True

    if isinstance(constraint, _VerboseHelper):
        return 1

    if isinstance(constraint, MissingValues) and constraint.numeric_only:
        return np.nan

    if isinstance(constraint, MissingValues) and not constraint.numeric_only:
        return "missing"

    if isinstance(constraint, HasMethods):
        return type(
            "ValidHasMethods", (), {m: lambda self: None for m in constraint.methods}
        )()

    if isinstance(constraint, _IterablesNotString):
        return [1, 2, 3]

    if isinstance(constraint, _CVObjects):
        return 5

    if isinstance(constraint, Options):  # includes StrOptions
        for option in constraint.options:
            return option

    if isinstance(constraint, Interval):
        interval = constraint
        if interval.left is None and interval.right is None:
            return 0
        elif interval.left is None:
            return interval.right - 1
        elif interval.right is None:
            return interval.left + 1
        else:
            if interval.type is Real:
                return (interval.left + interval.right) / 2
            else:
                return interval.left + 1

    raise ValueError(f"Unknown constraint type: {constraint}")