File size: 13,636 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import numpy as np

from ..base import BaseEstimator, ClassifierMixin
from ..utils._metadata_requests import RequestMethod
from .metaestimators import available_if
from .validation import (
    _check_sample_weight,
    _num_samples,
    check_array,
    check_is_fitted,
    check_random_state,
)


class ArraySlicingWrapper:
    """
    Parameters
    ----------
    array
    """

    def __init__(self, array):
        self.array = array

    def __getitem__(self, aslice):
        return MockDataFrame(self.array[aslice])


class MockDataFrame:
    """
    Parameters
    ----------
    array
    """

    # have shape and length but don't support indexing.

    def __init__(self, array):
        self.array = array
        self.values = array
        self.shape = array.shape
        self.ndim = array.ndim
        # ugly hack to make iloc work.
        self.iloc = ArraySlicingWrapper(array)

    def __len__(self):
        return len(self.array)

    def __array__(self, dtype=None):
        # Pandas data frames also are array-like: we want to make sure that
        # input validation in cross-validation does not try to call that
        # method.
        return self.array

    def __eq__(self, other):
        return MockDataFrame(self.array == other.array)

    def __ne__(self, other):
        return not self == other

    def take(self, indices, axis=0):
        return MockDataFrame(self.array.take(indices, axis=axis))


class CheckingClassifier(ClassifierMixin, BaseEstimator):
    """Dummy classifier to test pipelining and meta-estimators.

    Checks some property of `X` and `y`in fit / predict.
    This allows testing whether pipelines / cross-validation or metaestimators
    changed the input.

    Can also be used to check if `fit_params` are passed correctly, and
    to force a certain score to be returned.

    Parameters
    ----------
    check_y, check_X : callable, default=None
        The callable used to validate `X` and `y`. These callable should return
        a bool where `False` will trigger an `AssertionError`. If `None`, the
        data is not validated. Default is `None`.

    check_y_params, check_X_params : dict, default=None
        The optional parameters to pass to `check_X` and `check_y`. If `None`,
        then no parameters are passed in.

    methods_to_check : "all" or list of str, default="all"
        The methods in which the checks should be applied. By default,
        all checks will be done on all methods (`fit`, `predict`,
        `predict_proba`, `decision_function` and `score`).

    foo_param : int, default=0
        A `foo` param. When `foo > 1`, the output of :meth:`score` will be 1
        otherwise it is 0.

    expected_sample_weight : bool, default=False
        Whether to check if a valid `sample_weight` was passed to `fit`.

    expected_fit_params : list of str, default=None
        A list of the expected parameters given when calling `fit`.

    Attributes
    ----------
    classes_ : int
        The classes seen during `fit`.

    n_features_in_ : int
        The number of features seen during `fit`.

    Examples
    --------
    >>> from sklearn.utils._mocking import CheckingClassifier

    This helper allow to assert to specificities regarding `X` or `y`. In this
    case we expect `check_X` or `check_y` to return a boolean.

    >>> from sklearn.datasets import load_iris
    >>> X, y = load_iris(return_X_y=True)
    >>> clf = CheckingClassifier(check_X=lambda x: x.shape == (150, 4))
    >>> clf.fit(X, y)
    CheckingClassifier(...)

    We can also provide a check which might raise an error. In this case, we
    expect `check_X` to return `X` and `check_y` to return `y`.

    >>> from sklearn.utils import check_array
    >>> clf = CheckingClassifier(check_X=check_array)
    >>> clf.fit(X, y)
    CheckingClassifier(...)
    """

    def __init__(
        self,
        *,
        check_y=None,
        check_y_params=None,
        check_X=None,
        check_X_params=None,
        methods_to_check="all",
        foo_param=0,
        expected_sample_weight=None,
        expected_fit_params=None,
        random_state=None,
    ):
        self.check_y = check_y
        self.check_y_params = check_y_params
        self.check_X = check_X
        self.check_X_params = check_X_params
        self.methods_to_check = methods_to_check
        self.foo_param = foo_param
        self.expected_sample_weight = expected_sample_weight
        self.expected_fit_params = expected_fit_params
        self.random_state = random_state

    def _check_X_y(self, X, y=None, should_be_fitted=True):
        """Validate X and y and make extra check.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The data set.
            `X` is checked only if `check_X` is not `None` (default is None).
        y : array-like of shape (n_samples), default=None
            The corresponding target, by default `None`.
            `y` is checked only if `check_y` is not `None` (default is None).
        should_be_fitted : bool, default=True
            Whether or not the classifier should be already fitted.
            By default True.

        Returns
        -------
        X, y
        """
        if should_be_fitted:
            check_is_fitted(self)
        if self.check_X is not None:
            params = {} if self.check_X_params is None else self.check_X_params
            checked_X = self.check_X(X, **params)
            if isinstance(checked_X, (bool, np.bool_)):
                assert checked_X
            else:
                X = checked_X
        if y is not None and self.check_y is not None:
            params = {} if self.check_y_params is None else self.check_y_params
            checked_y = self.check_y(y, **params)
            if isinstance(checked_y, (bool, np.bool_)):
                assert checked_y
            else:
                y = checked_y
        return X, y

    def fit(self, X, y, sample_weight=None, **fit_params):
        """Fit classifier.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training vector, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        y : array-like of shape (n_samples, n_outputs) or (n_samples,), \
                default=None
            Target relative to X for classification or regression;
            None for unsupervised learning.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted.

        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of the estimator

        Returns
        -------
        self
        """
        assert _num_samples(X) == _num_samples(y)
        if self.methods_to_check == "all" or "fit" in self.methods_to_check:
            X, y = self._check_X_y(X, y, should_be_fitted=False)
        self.n_features_in_ = np.shape(X)[1]
        self.classes_ = np.unique(check_array(y, ensure_2d=False, allow_nd=True))
        if self.expected_fit_params:
            missing = set(self.expected_fit_params) - set(fit_params)
            if missing:
                raise AssertionError(
                    f"Expected fit parameter(s) {list(missing)} not seen."
                )
            for key, value in fit_params.items():
                if _num_samples(value) != _num_samples(X):
                    raise AssertionError(
                        f"Fit parameter {key} has length {_num_samples(value)}"
                        f"; expected {_num_samples(X)}."
                    )
        if self.expected_sample_weight:
            if sample_weight is None:
                raise AssertionError("Expected sample_weight to be passed")
            _check_sample_weight(sample_weight, X)

        return self

    def predict(self, X):
        """Predict the first class seen in `classes_`.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        preds : ndarray of shape (n_samples,)
            Predictions of the first class seens in `classes_`.
        """
        if self.methods_to_check == "all" or "predict" in self.methods_to_check:
            X, y = self._check_X_y(X)
        rng = check_random_state(self.random_state)
        return rng.choice(self.classes_, size=_num_samples(X))

    def predict_proba(self, X):
        """Predict probabilities for each class.

        Here, the dummy classifier will provide a probability of 1 for the
        first class of `classes_` and 0 otherwise.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        proba : ndarray of shape (n_samples, n_classes)
            The probabilities for each sample and class.
        """
        if self.methods_to_check == "all" or "predict_proba" in self.methods_to_check:
            X, y = self._check_X_y(X)
        rng = check_random_state(self.random_state)
        proba = rng.randn(_num_samples(X), len(self.classes_))
        proba = np.abs(proba, out=proba)
        proba /= np.sum(proba, axis=1)[:, np.newaxis]
        return proba

    def decision_function(self, X):
        """Confidence score.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        decision : ndarray of shape (n_samples,) if n_classes == 2\
                else (n_samples, n_classes)
            Confidence score.
        """
        if (
            self.methods_to_check == "all"
            or "decision_function" in self.methods_to_check
        ):
            X, y = self._check_X_y(X)
        rng = check_random_state(self.random_state)
        if len(self.classes_) == 2:
            # for binary classifier, the confidence score is related to
            # classes_[1] and therefore should be null.
            return rng.randn(_num_samples(X))
        else:
            return rng.randn(_num_samples(X), len(self.classes_))

    def score(self, X=None, Y=None):
        """Fake score.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input data, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        Y : array-like of shape (n_samples, n_output) or (n_samples,)
            Target relative to X for classification or regression;
            None for unsupervised learning.

        Returns
        -------
        score : float
            Either 0 or 1 depending of `foo_param` (i.e. `foo_param > 1 =>
            score=1` otherwise `score=0`).
        """
        if self.methods_to_check == "all" or "score" in self.methods_to_check:
            self._check_X_y(X, Y)
        if self.foo_param > 1:
            score = 1.0
        else:
            score = 0.0
        return score

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags._skip_test = True
        tags.input_tags.two_d_array = False
        tags.target_tags.one_d_labels = True
        return tags


# Deactivate key validation for CheckingClassifier because we want to be able to
# call fit with arbitrary fit_params and record them. Without this change, we
# would get an error because those arbitrary params are not expected.
CheckingClassifier.set_fit_request = RequestMethod(  # type: ignore
    name="fit", keys=[], validate_keys=False
)


class NoSampleWeightWrapper(BaseEstimator):
    """Wrap estimator which will not expose `sample_weight`.

    Parameters
    ----------
    est : estimator, default=None
        The estimator to wrap.
    """

    def __init__(self, est=None):
        self.est = est

    def fit(self, X, y):
        return self.est.fit(X, y)

    def predict(self, X):
        return self.est.predict(X)

    def predict_proba(self, X):
        return self.est.predict_proba(X)

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags._skip_test = True
        return tags


def _check_response(method):
    def check(self):
        return self.response_methods is not None and method in self.response_methods

    return check


class _MockEstimatorOnOffPrediction(BaseEstimator):
    """Estimator for which we can turn on/off the prediction methods.

    Parameters
    ----------
    response_methods: list of \
            {"predict", "predict_proba", "decision_function"}, default=None
        List containing the response implemented by the estimator. When, the
        response is in the list, it will return the name of the response method
        when called. Otherwise, an `AttributeError` is raised. It allows to
        use `getattr` as any conventional estimator. By default, no response
        methods are mocked.
    """

    def __init__(self, response_methods=None):
        self.response_methods = response_methods

    def fit(self, X, y):
        self.classes_ = np.unique(y)
        return self

    @available_if(_check_response("predict"))
    def predict(self, X):
        return "predict"

    @available_if(_check_response("predict_proba"))
    def predict_proba(self, X):
        return "predict_proba"

    @available_if(_check_response("decision_function"))
    def decision_function(self, X):
        return "decision_function"