File size: 16,738 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
from importlib import import_module
from inspect import signature
from numbers import Integral, Real

import pytest

from sklearn.utils._param_validation import (
    Interval,
    InvalidParameterError,
    generate_invalid_param_val,
    generate_valid_param,
    make_constraint,
)


def _get_func_info(func_module):
    module_name, func_name = func_module.rsplit(".", 1)
    module = import_module(module_name)
    func = getattr(module, func_name)

    func_sig = signature(func)
    func_params = [
        p.name
        for p in func_sig.parameters.values()
        if p.kind not in (p.VAR_POSITIONAL, p.VAR_KEYWORD)
    ]

    # The parameters `*args` and `**kwargs` are ignored since we cannot generate
    # constraints.
    required_params = [
        p.name
        for p in func_sig.parameters.values()
        if p.default is p.empty and p.kind not in (p.VAR_POSITIONAL, p.VAR_KEYWORD)
    ]

    return func, func_name, func_params, required_params


def _check_function_param_validation(
    func, func_name, func_params, required_params, parameter_constraints
):
    """Check that an informative error is raised when the value of a parameter does not
    have an appropriate type or value.
    """
    # generate valid values for the required parameters
    valid_required_params = {}
    for param_name in required_params:
        if parameter_constraints[param_name] == "no_validation":
            valid_required_params[param_name] = 1
        else:
            valid_required_params[param_name] = generate_valid_param(
                make_constraint(parameter_constraints[param_name][0])
            )

    # check that there is a constraint for each parameter
    if func_params:
        validation_params = parameter_constraints.keys()
        unexpected_params = set(validation_params) - set(func_params)
        missing_params = set(func_params) - set(validation_params)
        err_msg = (
            "Mismatch between _parameter_constraints and the parameters of"
            f" {func_name}.\nConsider the unexpected parameters {unexpected_params} and"
            f" expected but missing parameters {missing_params}\n"
        )
        assert set(validation_params) == set(func_params), err_msg

    # this object does not have a valid type for sure for all params
    param_with_bad_type = type("BadType", (), {})()

    for param_name in func_params:
        constraints = parameter_constraints[param_name]

        if constraints == "no_validation":
            # This parameter is not validated
            continue

        # Mixing an interval of reals and an interval of integers must be avoided.
        if any(
            isinstance(constraint, Interval) and constraint.type == Integral
            for constraint in constraints
        ) and any(
            isinstance(constraint, Interval) and constraint.type == Real
            for constraint in constraints
        ):
            raise ValueError(
                f"The constraint for parameter {param_name} of {func_name} can't have a"
                " mix of intervals of Integral and Real types. Use the type"
                " RealNotInt instead of Real."
            )

        match = (
            rf"The '{param_name}' parameter of {func_name} must be .* Got .* instead."
        )

        err_msg = (
            f"{func_name} does not raise an informative error message when the "
            f"parameter {param_name} does not have a valid type. If any Python type "
            "is valid, the constraint should be 'no_validation'."
        )

        # First, check that the error is raised if param doesn't match any valid type.
        with pytest.raises(InvalidParameterError, match=match):
            func(**{**valid_required_params, param_name: param_with_bad_type})
            pytest.fail(err_msg)

        # Then, for constraints that are more than a type constraint, check that the
        # error is raised if param does match a valid type but does not match any valid
        # value for this type.
        constraints = [make_constraint(constraint) for constraint in constraints]

        for constraint in constraints:
            try:
                bad_value = generate_invalid_param_val(constraint)
            except NotImplementedError:
                continue

            err_msg = (
                f"{func_name} does not raise an informative error message when the "
                f"parameter {param_name} does not have a valid value.\n"
                "Constraints should be disjoint. For instance "
                "[StrOptions({'a_string'}), str] is not a acceptable set of "
                "constraint because generating an invalid string for the first "
                "constraint will always produce a valid string for the second "
                "constraint."
            )

            with pytest.raises(InvalidParameterError, match=match):
                func(**{**valid_required_params, param_name: bad_value})
                pytest.fail(err_msg)


PARAM_VALIDATION_FUNCTION_LIST = [
    "sklearn.calibration.calibration_curve",
    "sklearn.cluster.cluster_optics_dbscan",
    "sklearn.cluster.compute_optics_graph",
    "sklearn.cluster.estimate_bandwidth",
    "sklearn.cluster.kmeans_plusplus",
    "sklearn.cluster.cluster_optics_xi",
    "sklearn.cluster.ward_tree",
    "sklearn.covariance.empirical_covariance",
    "sklearn.covariance.ledoit_wolf_shrinkage",
    "sklearn.covariance.log_likelihood",
    "sklearn.covariance.shrunk_covariance",
    "sklearn.datasets.clear_data_home",
    "sklearn.datasets.dump_svmlight_file",
    "sklearn.datasets.fetch_20newsgroups",
    "sklearn.datasets.fetch_20newsgroups_vectorized",
    "sklearn.datasets.fetch_california_housing",
    "sklearn.datasets.fetch_covtype",
    "sklearn.datasets.fetch_kddcup99",
    "sklearn.datasets.fetch_lfw_pairs",
    "sklearn.datasets.fetch_lfw_people",
    "sklearn.datasets.fetch_olivetti_faces",
    "sklearn.datasets.fetch_rcv1",
    "sklearn.datasets.fetch_openml",
    "sklearn.datasets.fetch_species_distributions",
    "sklearn.datasets.get_data_home",
    "sklearn.datasets.load_breast_cancer",
    "sklearn.datasets.load_diabetes",
    "sklearn.datasets.load_digits",
    "sklearn.datasets.load_files",
    "sklearn.datasets.load_iris",
    "sklearn.datasets.load_linnerud",
    "sklearn.datasets.load_sample_image",
    "sklearn.datasets.load_svmlight_file",
    "sklearn.datasets.load_svmlight_files",
    "sklearn.datasets.load_wine",
    "sklearn.datasets.make_biclusters",
    "sklearn.datasets.make_blobs",
    "sklearn.datasets.make_checkerboard",
    "sklearn.datasets.make_circles",
    "sklearn.datasets.make_classification",
    "sklearn.datasets.make_friedman1",
    "sklearn.datasets.make_friedman2",
    "sklearn.datasets.make_friedman3",
    "sklearn.datasets.make_gaussian_quantiles",
    "sklearn.datasets.make_hastie_10_2",
    "sklearn.datasets.make_low_rank_matrix",
    "sklearn.datasets.make_moons",
    "sklearn.datasets.make_multilabel_classification",
    "sklearn.datasets.make_regression",
    "sklearn.datasets.make_s_curve",
    "sklearn.datasets.make_sparse_coded_signal",
    "sklearn.datasets.make_sparse_spd_matrix",
    "sklearn.datasets.make_sparse_uncorrelated",
    "sklearn.datasets.make_spd_matrix",
    "sklearn.datasets.make_swiss_roll",
    "sklearn.decomposition.sparse_encode",
    "sklearn.feature_extraction.grid_to_graph",
    "sklearn.feature_extraction.img_to_graph",
    "sklearn.feature_extraction.image.extract_patches_2d",
    "sklearn.feature_extraction.image.reconstruct_from_patches_2d",
    "sklearn.feature_selection.chi2",
    "sklearn.feature_selection.f_classif",
    "sklearn.feature_selection.f_regression",
    "sklearn.feature_selection.mutual_info_classif",
    "sklearn.feature_selection.mutual_info_regression",
    "sklearn.feature_selection.r_regression",
    "sklearn.inspection.partial_dependence",
    "sklearn.inspection.permutation_importance",
    "sklearn.isotonic.check_increasing",
    "sklearn.isotonic.isotonic_regression",
    "sklearn.linear_model.enet_path",
    "sklearn.linear_model.lars_path",
    "sklearn.linear_model.lars_path_gram",
    "sklearn.linear_model.lasso_path",
    "sklearn.linear_model.orthogonal_mp",
    "sklearn.linear_model.orthogonal_mp_gram",
    "sklearn.linear_model.ridge_regression",
    "sklearn.manifold.locally_linear_embedding",
    "sklearn.manifold.smacof",
    "sklearn.manifold.spectral_embedding",
    "sklearn.manifold.trustworthiness",
    "sklearn.metrics.accuracy_score",
    "sklearn.metrics.auc",
    "sklearn.metrics.average_precision_score",
    "sklearn.metrics.balanced_accuracy_score",
    "sklearn.metrics.brier_score_loss",
    "sklearn.metrics.calinski_harabasz_score",
    "sklearn.metrics.check_scoring",
    "sklearn.metrics.completeness_score",
    "sklearn.metrics.class_likelihood_ratios",
    "sklearn.metrics.classification_report",
    "sklearn.metrics.cluster.adjusted_mutual_info_score",
    "sklearn.metrics.cluster.contingency_matrix",
    "sklearn.metrics.cluster.entropy",
    "sklearn.metrics.cluster.fowlkes_mallows_score",
    "sklearn.metrics.cluster.homogeneity_completeness_v_measure",
    "sklearn.metrics.cluster.normalized_mutual_info_score",
    "sklearn.metrics.cluster.silhouette_samples",
    "sklearn.metrics.cluster.silhouette_score",
    "sklearn.metrics.cohen_kappa_score",
    "sklearn.metrics.confusion_matrix",
    "sklearn.metrics.consensus_score",
    "sklearn.metrics.coverage_error",
    "sklearn.metrics.d2_absolute_error_score",
    "sklearn.metrics.d2_log_loss_score",
    "sklearn.metrics.d2_pinball_score",
    "sklearn.metrics.d2_tweedie_score",
    "sklearn.metrics.davies_bouldin_score",
    "sklearn.metrics.dcg_score",
    "sklearn.metrics.det_curve",
    "sklearn.metrics.explained_variance_score",
    "sklearn.metrics.f1_score",
    "sklearn.metrics.fbeta_score",
    "sklearn.metrics.get_scorer",
    "sklearn.metrics.hamming_loss",
    "sklearn.metrics.hinge_loss",
    "sklearn.metrics.homogeneity_score",
    "sklearn.metrics.jaccard_score",
    "sklearn.metrics.label_ranking_average_precision_score",
    "sklearn.metrics.label_ranking_loss",
    "sklearn.metrics.log_loss",
    "sklearn.metrics.make_scorer",
    "sklearn.metrics.matthews_corrcoef",
    "sklearn.metrics.max_error",
    "sklearn.metrics.mean_absolute_error",
    "sklearn.metrics.mean_absolute_percentage_error",
    "sklearn.metrics.mean_gamma_deviance",
    "sklearn.metrics.mean_pinball_loss",
    "sklearn.metrics.mean_poisson_deviance",
    "sklearn.metrics.mean_squared_error",
    "sklearn.metrics.mean_squared_log_error",
    "sklearn.metrics.mean_tweedie_deviance",
    "sklearn.metrics.median_absolute_error",
    "sklearn.metrics.multilabel_confusion_matrix",
    "sklearn.metrics.mutual_info_score",
    "sklearn.metrics.ndcg_score",
    "sklearn.metrics.pair_confusion_matrix",
    "sklearn.metrics.adjusted_rand_score",
    "sklearn.metrics.pairwise.additive_chi2_kernel",
    "sklearn.metrics.pairwise.chi2_kernel",
    "sklearn.metrics.pairwise.cosine_distances",
    "sklearn.metrics.pairwise.cosine_similarity",
    "sklearn.metrics.pairwise.euclidean_distances",
    "sklearn.metrics.pairwise.haversine_distances",
    "sklearn.metrics.pairwise.laplacian_kernel",
    "sklearn.metrics.pairwise.linear_kernel",
    "sklearn.metrics.pairwise.manhattan_distances",
    "sklearn.metrics.pairwise.nan_euclidean_distances",
    "sklearn.metrics.pairwise.paired_cosine_distances",
    "sklearn.metrics.pairwise.paired_distances",
    "sklearn.metrics.pairwise.paired_euclidean_distances",
    "sklearn.metrics.pairwise.paired_manhattan_distances",
    "sklearn.metrics.pairwise.pairwise_distances_argmin_min",
    "sklearn.metrics.pairwise.pairwise_kernels",
    "sklearn.metrics.pairwise.polynomial_kernel",
    "sklearn.metrics.pairwise.rbf_kernel",
    "sklearn.metrics.pairwise.sigmoid_kernel",
    "sklearn.metrics.pairwise_distances",
    "sklearn.metrics.pairwise_distances_argmin",
    "sklearn.metrics.pairwise_distances_chunked",
    "sklearn.metrics.precision_recall_curve",
    "sklearn.metrics.precision_recall_fscore_support",
    "sklearn.metrics.precision_score",
    "sklearn.metrics.r2_score",
    "sklearn.metrics.rand_score",
    "sklearn.metrics.recall_score",
    "sklearn.metrics.roc_auc_score",
    "sklearn.metrics.roc_curve",
    "sklearn.metrics.root_mean_squared_error",
    "sklearn.metrics.root_mean_squared_log_error",
    "sklearn.metrics.top_k_accuracy_score",
    "sklearn.metrics.v_measure_score",
    "sklearn.metrics.zero_one_loss",
    "sklearn.model_selection.cross_val_predict",
    "sklearn.model_selection.cross_val_score",
    "sklearn.model_selection.cross_validate",
    "sklearn.model_selection.learning_curve",
    "sklearn.model_selection.permutation_test_score",
    "sklearn.model_selection.train_test_split",
    "sklearn.model_selection.validation_curve",
    "sklearn.neighbors.kneighbors_graph",
    "sklearn.neighbors.radius_neighbors_graph",
    "sklearn.neighbors.sort_graph_by_row_values",
    "sklearn.preprocessing.add_dummy_feature",
    "sklearn.preprocessing.binarize",
    "sklearn.preprocessing.label_binarize",
    "sklearn.preprocessing.normalize",
    "sklearn.preprocessing.scale",
    "sklearn.random_projection.johnson_lindenstrauss_min_dim",
    "sklearn.svm.l1_min_c",
    "sklearn.tree.export_graphviz",
    "sklearn.tree.export_text",
    "sklearn.tree.plot_tree",
    "sklearn.utils.gen_batches",
    "sklearn.utils.gen_even_slices",
    "sklearn.utils.resample",
    "sklearn.utils.safe_mask",
    "sklearn.utils.extmath.randomized_svd",
    "sklearn.utils.class_weight.compute_class_weight",
    "sklearn.utils.class_weight.compute_sample_weight",
    "sklearn.utils.graph.single_source_shortest_path_length",
]


@pytest.mark.parametrize("func_module", PARAM_VALIDATION_FUNCTION_LIST)
def test_function_param_validation(func_module):
    """Check param validation for public functions that are not wrappers around
    estimators.
    """
    func, func_name, func_params, required_params = _get_func_info(func_module)

    parameter_constraints = getattr(func, "_skl_parameter_constraints")

    _check_function_param_validation(
        func, func_name, func_params, required_params, parameter_constraints
    )


PARAM_VALIDATION_CLASS_WRAPPER_LIST = [
    ("sklearn.cluster.affinity_propagation", "sklearn.cluster.AffinityPropagation"),
    ("sklearn.cluster.dbscan", "sklearn.cluster.DBSCAN"),
    ("sklearn.cluster.k_means", "sklearn.cluster.KMeans"),
    ("sklearn.cluster.mean_shift", "sklearn.cluster.MeanShift"),
    ("sklearn.cluster.spectral_clustering", "sklearn.cluster.SpectralClustering"),
    ("sklearn.covariance.graphical_lasso", "sklearn.covariance.GraphicalLasso"),
    ("sklearn.covariance.ledoit_wolf", "sklearn.covariance.LedoitWolf"),
    ("sklearn.covariance.oas", "sklearn.covariance.OAS"),
    ("sklearn.decomposition.dict_learning", "sklearn.decomposition.DictionaryLearning"),
    (
        "sklearn.decomposition.dict_learning_online",
        "sklearn.decomposition.MiniBatchDictionaryLearning",
    ),
    ("sklearn.decomposition.fastica", "sklearn.decomposition.FastICA"),
    ("sklearn.decomposition.non_negative_factorization", "sklearn.decomposition.NMF"),
    ("sklearn.preprocessing.maxabs_scale", "sklearn.preprocessing.MaxAbsScaler"),
    ("sklearn.preprocessing.minmax_scale", "sklearn.preprocessing.MinMaxScaler"),
    ("sklearn.preprocessing.power_transform", "sklearn.preprocessing.PowerTransformer"),
    (
        "sklearn.preprocessing.quantile_transform",
        "sklearn.preprocessing.QuantileTransformer",
    ),
    ("sklearn.preprocessing.robust_scale", "sklearn.preprocessing.RobustScaler"),
]


@pytest.mark.parametrize(
    "func_module, class_module", PARAM_VALIDATION_CLASS_WRAPPER_LIST
)
def test_class_wrapper_param_validation(func_module, class_module):
    """Check param validation for public functions that are wrappers around
    estimators.
    """
    func, func_name, func_params, required_params = _get_func_info(func_module)

    module_name, class_name = class_module.rsplit(".", 1)
    module = import_module(module_name)
    klass = getattr(module, class_name)

    parameter_constraints_func = getattr(func, "_skl_parameter_constraints")
    parameter_constraints_class = getattr(klass, "_parameter_constraints")
    parameter_constraints = {
        **parameter_constraints_class,
        **parameter_constraints_func,
    }
    parameter_constraints = {
        k: v for k, v in parameter_constraints.items() if k in func_params
    }

    _check_function_param_validation(
        func, func_name, func_params, required_params, parameter_constraints
    )