File size: 30,014 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
import re

import numpy as np
import pytest
from joblib import cpu_count

from sklearn import datasets
from sklearn.base import ClassifierMixin, clone
from sklearn.datasets import (
    load_linnerud,
    make_classification,
    make_multilabel_classification,
    make_regression,
)
from sklearn.dummy import DummyClassifier, DummyRegressor
from sklearn.ensemble import (
    GradientBoostingRegressor,
    RandomForestClassifier,
    StackingRegressor,
)
from sklearn.exceptions import NotFittedError
from sklearn.impute import SimpleImputer
from sklearn.linear_model import (
    Lasso,
    LinearRegression,
    LogisticRegression,
    OrthogonalMatchingPursuit,
    PassiveAggressiveClassifier,
    Ridge,
    SGDClassifier,
    SGDRegressor,
)
from sklearn.metrics import jaccard_score, mean_squared_error
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.multiclass import OneVsRestClassifier
from sklearn.multioutput import (
    ClassifierChain,
    MultiOutputClassifier,
    MultiOutputRegressor,
    RegressorChain,
)
from sklearn.pipeline import make_pipeline
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils import shuffle
from sklearn.utils._testing import (
    assert_almost_equal,
    assert_array_almost_equal,
    assert_array_equal,
)
from sklearn.utils.fixes import (
    BSR_CONTAINERS,
    COO_CONTAINERS,
    CSC_CONTAINERS,
    CSR_CONTAINERS,
    DOK_CONTAINERS,
    LIL_CONTAINERS,
)


def test_multi_target_regression():
    X, y = datasets.make_regression(n_targets=3, random_state=0)
    X_train, y_train = X[:50], y[:50]
    X_test, y_test = X[50:], y[50:]

    references = np.zeros_like(y_test)
    for n in range(3):
        rgr = GradientBoostingRegressor(random_state=0)
        rgr.fit(X_train, y_train[:, n])
        references[:, n] = rgr.predict(X_test)

    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X_train, y_train)
    y_pred = rgr.predict(X_test)

    assert_almost_equal(references, y_pred)


def test_multi_target_regression_partial_fit():
    X, y = datasets.make_regression(n_targets=3, random_state=0)
    X_train, y_train = X[:50], y[:50]
    X_test, y_test = X[50:], y[50:]

    references = np.zeros_like(y_test)
    half_index = 25
    for n in range(3):
        sgr = SGDRegressor(random_state=0, max_iter=5)
        sgr.partial_fit(X_train[:half_index], y_train[:half_index, n])
        sgr.partial_fit(X_train[half_index:], y_train[half_index:, n])
        references[:, n] = sgr.predict(X_test)

    sgr = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5))

    sgr.partial_fit(X_train[:half_index], y_train[:half_index])
    sgr.partial_fit(X_train[half_index:], y_train[half_index:])

    y_pred = sgr.predict(X_test)
    assert_almost_equal(references, y_pred)
    assert not hasattr(MultiOutputRegressor(Lasso), "partial_fit")


def test_multi_target_regression_one_target():
    # Test multi target regression raises
    X, y = datasets.make_regression(n_targets=1, random_state=0)
    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    msg = "at least two dimensions"
    with pytest.raises(ValueError, match=msg):
        rgr.fit(X, y)


@pytest.mark.parametrize(
    "sparse_container",
    CSR_CONTAINERS
    + CSC_CONTAINERS
    + COO_CONTAINERS
    + LIL_CONTAINERS
    + DOK_CONTAINERS
    + BSR_CONTAINERS,
)
def test_multi_target_sparse_regression(sparse_container):
    X, y = datasets.make_regression(n_targets=3, random_state=0)
    X_train, y_train = X[:50], y[:50]
    X_test = X[50:]

    rgr = MultiOutputRegressor(Lasso(random_state=0))
    rgr_sparse = MultiOutputRegressor(Lasso(random_state=0))

    rgr.fit(X_train, y_train)
    rgr_sparse.fit(sparse_container(X_train), y_train)

    assert_almost_equal(
        rgr.predict(X_test), rgr_sparse.predict(sparse_container(X_test))
    )


def test_multi_target_sample_weights_api():
    X = [[1, 2, 3], [4, 5, 6]]
    y = [[3.141, 2.718], [2.718, 3.141]]
    w = [0.8, 0.6]

    rgr = MultiOutputRegressor(OrthogonalMatchingPursuit())
    msg = "does not support sample weights"
    with pytest.raises(ValueError, match=msg):
        rgr.fit(X, y, w)

    # no exception should be raised if the base estimator supports weights
    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X, y, w)


def test_multi_target_sample_weight_partial_fit():
    # weighted regressor
    X = [[1, 2, 3], [4, 5, 6]]
    y = [[3.141, 2.718], [2.718, 3.141]]
    w = [2.0, 1.0]
    rgr_w = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5))
    rgr_w.partial_fit(X, y, w)

    # weighted with different weights
    w = [2.0, 2.0]
    rgr = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5))
    rgr.partial_fit(X, y, w)

    assert rgr.predict(X)[0][0] != rgr_w.predict(X)[0][0]


def test_multi_target_sample_weights():
    # weighted regressor
    Xw = [[1, 2, 3], [4, 5, 6]]
    yw = [[3.141, 2.718], [2.718, 3.141]]
    w = [2.0, 1.0]
    rgr_w = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr_w.fit(Xw, yw, w)

    # unweighted, but with repeated samples
    X = [[1, 2, 3], [1, 2, 3], [4, 5, 6]]
    y = [[3.141, 2.718], [3.141, 2.718], [2.718, 3.141]]
    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X, y)

    X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]]
    assert_almost_equal(rgr.predict(X_test), rgr_w.predict(X_test))


# Import the data
iris = datasets.load_iris()
# create a multiple targets by randomized shuffling and concatenating y.
X = iris.data
y1 = iris.target
y2 = shuffle(y1, random_state=1)
y3 = shuffle(y1, random_state=2)
y = np.column_stack((y1, y2, y3))
n_samples, n_features = X.shape
n_outputs = y.shape[1]
n_classes = len(np.unique(y1))
classes = list(map(np.unique, (y1, y2, y3)))


def test_multi_output_classification_partial_fit_parallelism():
    sgd_linear_clf = SGDClassifier(loss="log_loss", random_state=1, max_iter=5)
    mor = MultiOutputClassifier(sgd_linear_clf, n_jobs=4)
    mor.partial_fit(X, y, classes)
    est1 = mor.estimators_[0]
    mor.partial_fit(X, y)
    est2 = mor.estimators_[0]
    if cpu_count() > 1:
        # parallelism requires this to be the case for a sane implementation
        assert est1 is not est2


# check multioutput has predict_proba
def test_hasattr_multi_output_predict_proba():
    # default SGDClassifier has loss='hinge'
    # which does not expose a predict_proba method
    sgd_linear_clf = SGDClassifier(random_state=1, max_iter=5)
    multi_target_linear = MultiOutputClassifier(sgd_linear_clf)
    multi_target_linear.fit(X, y)
    assert not hasattr(multi_target_linear, "predict_proba")

    # case where predict_proba attribute exists
    sgd_linear_clf = SGDClassifier(loss="log_loss", random_state=1, max_iter=5)
    multi_target_linear = MultiOutputClassifier(sgd_linear_clf)
    multi_target_linear.fit(X, y)
    assert hasattr(multi_target_linear, "predict_proba")


# check predict_proba passes
def test_multi_output_predict_proba():
    sgd_linear_clf = SGDClassifier(random_state=1, max_iter=5)
    param = {"loss": ("hinge", "log_loss", "modified_huber")}

    # inner function for custom scoring
    def custom_scorer(estimator, X, y):
        if hasattr(estimator, "predict_proba"):
            return 1.0
        else:
            return 0.0

    grid_clf = GridSearchCV(
        sgd_linear_clf,
        param_grid=param,
        scoring=custom_scorer,
        cv=3,
        error_score="raise",
    )
    multi_target_linear = MultiOutputClassifier(grid_clf)
    multi_target_linear.fit(X, y)

    multi_target_linear.predict_proba(X)

    # SGDClassifier defaults to loss='hinge' which is not a probabilistic
    # loss function; therefore it does not expose a predict_proba method
    sgd_linear_clf = SGDClassifier(random_state=1, max_iter=5)
    multi_target_linear = MultiOutputClassifier(sgd_linear_clf)
    multi_target_linear.fit(X, y)

    inner2_msg = "probability estimates are not available for loss='hinge'"
    inner1_msg = "'SGDClassifier' has no attribute 'predict_proba'"
    outer_msg = "'MultiOutputClassifier' has no attribute 'predict_proba'"
    with pytest.raises(AttributeError, match=outer_msg) as exec_info:
        multi_target_linear.predict_proba(X)

    assert isinstance(exec_info.value.__cause__, AttributeError)
    assert inner1_msg in str(exec_info.value.__cause__)

    assert isinstance(exec_info.value.__cause__.__cause__, AttributeError)
    assert inner2_msg in str(exec_info.value.__cause__.__cause__)


def test_multi_output_classification_partial_fit():
    # test if multi_target initializes correctly with base estimator and fit
    # assert predictions work as expected for predict

    sgd_linear_clf = SGDClassifier(loss="log_loss", random_state=1, max_iter=5)
    multi_target_linear = MultiOutputClassifier(sgd_linear_clf)

    # train the multi_target_linear and also get the predictions.
    half_index = X.shape[0] // 2
    multi_target_linear.partial_fit(X[:half_index], y[:half_index], classes=classes)

    first_predictions = multi_target_linear.predict(X)
    assert (n_samples, n_outputs) == first_predictions.shape

    multi_target_linear.partial_fit(X[half_index:], y[half_index:])
    second_predictions = multi_target_linear.predict(X)
    assert (n_samples, n_outputs) == second_predictions.shape

    # train the linear classification with each column and assert that
    # predictions are equal after first partial_fit and second partial_fit
    for i in range(3):
        # create a clone with the same state
        sgd_linear_clf = clone(sgd_linear_clf)
        sgd_linear_clf.partial_fit(
            X[:half_index], y[:half_index, i], classes=classes[i]
        )
        assert_array_equal(sgd_linear_clf.predict(X), first_predictions[:, i])
        sgd_linear_clf.partial_fit(X[half_index:], y[half_index:, i])
        assert_array_equal(sgd_linear_clf.predict(X), second_predictions[:, i])


def test_multi_output_classification_partial_fit_no_first_classes_exception():
    sgd_linear_clf = SGDClassifier(loss="log_loss", random_state=1, max_iter=5)
    multi_target_linear = MultiOutputClassifier(sgd_linear_clf)
    msg = "classes must be passed on the first call to partial_fit."
    with pytest.raises(ValueError, match=msg):
        multi_target_linear.partial_fit(X, y)


def test_multi_output_classification():
    # test if multi_target initializes correctly with base estimator and fit
    # assert predictions work as expected for predict, prodict_proba and score

    forest = RandomForestClassifier(n_estimators=10, random_state=1)
    multi_target_forest = MultiOutputClassifier(forest)

    # train the multi_target_forest and also get the predictions.
    multi_target_forest.fit(X, y)

    predictions = multi_target_forest.predict(X)
    assert (n_samples, n_outputs) == predictions.shape

    predict_proba = multi_target_forest.predict_proba(X)

    assert len(predict_proba) == n_outputs
    for class_probabilities in predict_proba:
        assert (n_samples, n_classes) == class_probabilities.shape

    assert_array_equal(np.argmax(np.dstack(predict_proba), axis=1), predictions)

    # train the forest with each column and assert that predictions are equal
    for i in range(3):
        forest_ = clone(forest)  # create a clone with the same state
        forest_.fit(X, y[:, i])
        assert list(forest_.predict(X)) == list(predictions[:, i])
        assert_array_equal(list(forest_.predict_proba(X)), list(predict_proba[i]))


def test_multiclass_multioutput_estimator():
    # test to check meta of meta estimators
    svc = LinearSVC(random_state=0)
    multi_class_svc = OneVsRestClassifier(svc)
    multi_target_svc = MultiOutputClassifier(multi_class_svc)

    multi_target_svc.fit(X, y)

    predictions = multi_target_svc.predict(X)
    assert (n_samples, n_outputs) == predictions.shape

    # train the forest with each column and assert that predictions are equal
    for i in range(3):
        multi_class_svc_ = clone(multi_class_svc)  # create a clone
        multi_class_svc_.fit(X, y[:, i])
        assert list(multi_class_svc_.predict(X)) == list(predictions[:, i])


def test_multiclass_multioutput_estimator_predict_proba():
    seed = 542

    # make test deterministic
    rng = np.random.RandomState(seed)

    # random features
    X = rng.normal(size=(5, 5))

    # random labels
    y1 = np.array(["b", "a", "a", "b", "a"]).reshape(5, 1)  # 2 classes
    y2 = np.array(["d", "e", "f", "e", "d"]).reshape(5, 1)  # 3 classes

    Y = np.concatenate([y1, y2], axis=1)

    clf = MultiOutputClassifier(
        LogisticRegression(solver="liblinear", random_state=seed)
    )

    clf.fit(X, Y)

    y_result = clf.predict_proba(X)
    y_actual = [
        np.array(
            [
                [0.23481764, 0.76518236],
                [0.67196072, 0.32803928],
                [0.54681448, 0.45318552],
                [0.34883923, 0.65116077],
                [0.73687069, 0.26312931],
            ]
        ),
        np.array(
            [
                [0.5171785, 0.23878628, 0.24403522],
                [0.22141451, 0.64102704, 0.13755846],
                [0.16751315, 0.18256843, 0.64991843],
                [0.27357372, 0.55201592, 0.17441036],
                [0.65745193, 0.26062899, 0.08191907],
            ]
        ),
    ]

    for i in range(len(y_actual)):
        assert_almost_equal(y_result[i], y_actual[i])


def test_multi_output_classification_sample_weights():
    # weighted classifier
    Xw = [[1, 2, 3], [4, 5, 6]]
    yw = [[3, 2], [2, 3]]
    w = np.asarray([2.0, 1.0])
    forest = RandomForestClassifier(n_estimators=10, random_state=1)
    clf_w = MultiOutputClassifier(forest)
    clf_w.fit(Xw, yw, w)

    # unweighted, but with repeated samples
    X = [[1, 2, 3], [1, 2, 3], [4, 5, 6]]
    y = [[3, 2], [3, 2], [2, 3]]
    forest = RandomForestClassifier(n_estimators=10, random_state=1)
    clf = MultiOutputClassifier(forest)
    clf.fit(X, y)

    X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]]
    assert_almost_equal(clf.predict(X_test), clf_w.predict(X_test))


def test_multi_output_classification_partial_fit_sample_weights():
    # weighted classifier
    Xw = [[1, 2, 3], [4, 5, 6], [1.5, 2.5, 3.5]]
    yw = [[3, 2], [2, 3], [3, 2]]
    w = np.asarray([2.0, 1.0, 1.0])
    sgd_linear_clf = SGDClassifier(random_state=1, max_iter=20)
    clf_w = MultiOutputClassifier(sgd_linear_clf)
    clf_w.fit(Xw, yw, w)

    # unweighted, but with repeated samples
    X = [[1, 2, 3], [1, 2, 3], [4, 5, 6], [1.5, 2.5, 3.5]]
    y = [[3, 2], [3, 2], [2, 3], [3, 2]]
    sgd_linear_clf = SGDClassifier(random_state=1, max_iter=20)
    clf = MultiOutputClassifier(sgd_linear_clf)
    clf.fit(X, y)
    X_test = [[1.5, 2.5, 3.5]]
    assert_array_almost_equal(clf.predict(X_test), clf_w.predict(X_test))


def test_multi_output_exceptions():
    # NotFittedError when fit is not done but score, predict and
    # and predict_proba are called
    moc = MultiOutputClassifier(LinearSVC(random_state=0))
    with pytest.raises(NotFittedError):
        moc.score(X, y)

    # ValueError when number of outputs is different
    # for fit and score
    y_new = np.column_stack((y1, y2))
    moc.fit(X, y)
    with pytest.raises(ValueError):
        moc.score(X, y_new)

    # ValueError when y is continuous
    msg = "Unknown label type"
    with pytest.raises(ValueError, match=msg):
        moc.fit(X, X[:, 1])


@pytest.mark.parametrize("response_method", ["predict_proba", "predict"])
def test_multi_output_not_fitted_error(response_method):
    """Check that we raise the proper error when the estimator is not fitted"""
    moc = MultiOutputClassifier(LogisticRegression())
    with pytest.raises(NotFittedError):
        getattr(moc, response_method)(X)


def test_multi_output_delegate_predict_proba():
    """Check the behavior for the delegation of predict_proba to the underlying
    estimator"""

    # A base estimator with `predict_proba`should expose the method even before fit
    moc = MultiOutputClassifier(LogisticRegression())
    assert hasattr(moc, "predict_proba")
    moc.fit(X, y)
    assert hasattr(moc, "predict_proba")

    # A base estimator without `predict_proba` should raise an AttributeError
    moc = MultiOutputClassifier(LinearSVC())
    assert not hasattr(moc, "predict_proba")

    outer_msg = "'MultiOutputClassifier' has no attribute 'predict_proba'"
    inner_msg = "'LinearSVC' object has no attribute 'predict_proba'"
    with pytest.raises(AttributeError, match=outer_msg) as exec_info:
        moc.predict_proba(X)
    assert isinstance(exec_info.value.__cause__, AttributeError)
    assert inner_msg == str(exec_info.value.__cause__)

    moc.fit(X, y)
    assert not hasattr(moc, "predict_proba")
    with pytest.raises(AttributeError, match=outer_msg) as exec_info:
        moc.predict_proba(X)
    assert isinstance(exec_info.value.__cause__, AttributeError)
    assert inner_msg == str(exec_info.value.__cause__)


def generate_multilabel_dataset_with_correlations():
    # Generate a multilabel data set from a multiclass dataset as a way of
    # by representing the integer number of the original class using a binary
    # encoding.
    X, y = make_classification(
        n_samples=1000, n_features=100, n_classes=16, n_informative=10, random_state=0
    )

    Y_multi = np.array([[int(yyy) for yyy in format(yy, "#06b")[2:]] for yy in y])
    return X, Y_multi


@pytest.mark.parametrize("chain_method", ["predict", "decision_function"])
def test_classifier_chain_fit_and_predict_with_linear_svc(chain_method):
    # Fit classifier chain and verify predict performance using LinearSVC
    X, Y = generate_multilabel_dataset_with_correlations()
    classifier_chain = ClassifierChain(
        LinearSVC(),
        chain_method=chain_method,
    ).fit(X, Y)

    Y_pred = classifier_chain.predict(X)
    assert Y_pred.shape == Y.shape

    Y_decision = classifier_chain.decision_function(X)

    Y_binary = Y_decision >= 0
    assert_array_equal(Y_binary, Y_pred)
    assert not hasattr(classifier_chain, "predict_proba")


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_classifier_chain_fit_and_predict_with_sparse_data(csr_container):
    # Fit classifier chain with sparse data
    X, Y = generate_multilabel_dataset_with_correlations()
    X_sparse = csr_container(X)

    classifier_chain = ClassifierChain(LogisticRegression()).fit(X_sparse, Y)
    Y_pred_sparse = classifier_chain.predict(X_sparse)

    classifier_chain = ClassifierChain(LogisticRegression()).fit(X, Y)
    Y_pred_dense = classifier_chain.predict(X)

    assert_array_equal(Y_pred_sparse, Y_pred_dense)


def test_classifier_chain_vs_independent_models():
    # Verify that an ensemble of classifier chains (each of length
    # N) can achieve a higher Jaccard similarity score than N independent
    # models
    X, Y = generate_multilabel_dataset_with_correlations()
    X_train = X[:600, :]
    X_test = X[600:, :]
    Y_train = Y[:600, :]
    Y_test = Y[600:, :]

    ovr = OneVsRestClassifier(LogisticRegression())
    ovr.fit(X_train, Y_train)
    Y_pred_ovr = ovr.predict(X_test)

    chain = ClassifierChain(LogisticRegression())
    chain.fit(X_train, Y_train)
    Y_pred_chain = chain.predict(X_test)

    assert jaccard_score(Y_test, Y_pred_chain, average="samples") > jaccard_score(
        Y_test, Y_pred_ovr, average="samples"
    )


@pytest.mark.parametrize(
    "chain_method",
    ["predict", "predict_proba", "predict_log_proba", "decision_function"],
)
@pytest.mark.parametrize("response_method", ["predict_proba", "predict_log_proba"])
def test_classifier_chain_fit_and_predict(chain_method, response_method):
    # Fit classifier chain and verify predict performance
    X, Y = generate_multilabel_dataset_with_correlations()
    chain = ClassifierChain(LogisticRegression(), chain_method=chain_method)
    chain.fit(X, Y)
    Y_pred = chain.predict(X)
    assert Y_pred.shape == Y.shape
    assert [c.coef_.size for c in chain.estimators_] == list(
        range(X.shape[1], X.shape[1] + Y.shape[1])
    )

    Y_prob = getattr(chain, response_method)(X)
    if response_method == "predict_log_proba":
        Y_prob = np.exp(Y_prob)
    Y_binary = Y_prob >= 0.5
    assert_array_equal(Y_binary, Y_pred)

    assert isinstance(chain, ClassifierMixin)


def test_regressor_chain_fit_and_predict():
    # Fit regressor chain and verify Y and estimator coefficients shape
    X, Y = generate_multilabel_dataset_with_correlations()
    chain = RegressorChain(Ridge())
    chain.fit(X, Y)
    Y_pred = chain.predict(X)
    assert Y_pred.shape == Y.shape
    assert [c.coef_.size for c in chain.estimators_] == list(
        range(X.shape[1], X.shape[1] + Y.shape[1])
    )


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_base_chain_fit_and_predict_with_sparse_data_and_cv(csr_container):
    # Fit base chain with sparse data cross_val_predict
    X, Y = generate_multilabel_dataset_with_correlations()
    X_sparse = csr_container(X)
    base_chains = [
        ClassifierChain(LogisticRegression(), cv=3),
        RegressorChain(Ridge(), cv=3),
    ]
    for chain in base_chains:
        chain.fit(X_sparse, Y)
        Y_pred = chain.predict(X_sparse)
        assert Y_pred.shape == Y.shape


def test_base_chain_random_order():
    # Fit base chain with random order
    X, Y = generate_multilabel_dataset_with_correlations()
    for chain in [ClassifierChain(LogisticRegression()), RegressorChain(Ridge())]:
        chain_random = clone(chain).set_params(order="random", random_state=42)
        chain_random.fit(X, Y)
        chain_fixed = clone(chain).set_params(order=chain_random.order_)
        chain_fixed.fit(X, Y)
        assert_array_equal(chain_fixed.order_, chain_random.order_)
        assert list(chain_random.order) != list(range(4))
        assert len(chain_random.order_) == 4
        assert len(set(chain_random.order_)) == 4
        # Randomly ordered chain should behave identically to a fixed order
        # chain with the same order.
        for est1, est2 in zip(chain_random.estimators_, chain_fixed.estimators_):
            assert_array_almost_equal(est1.coef_, est2.coef_)


@pytest.mark.parametrize(
    "chain_type, chain_method",
    [
        ("classifier", "predict"),
        ("classifier", "predict_proba"),
        ("classifier", "predict_log_proba"),
        ("classifier", "decision_function"),
        ("regressor", ""),
    ],
)
def test_base_chain_crossval_fit_and_predict(chain_type, chain_method):
    # Fit chain with cross_val_predict and verify predict
    # performance
    X, Y = generate_multilabel_dataset_with_correlations()

    if chain_type == "classifier":
        chain = ClassifierChain(LogisticRegression(), chain_method=chain_method)
    else:
        chain = RegressorChain(Ridge())
    chain.fit(X, Y)
    chain_cv = clone(chain).set_params(cv=3)
    chain_cv.fit(X, Y)
    Y_pred_cv = chain_cv.predict(X)
    Y_pred = chain.predict(X)

    assert Y_pred_cv.shape == Y_pred.shape
    assert not np.all(Y_pred == Y_pred_cv)
    if isinstance(chain, ClassifierChain):
        assert jaccard_score(Y, Y_pred_cv, average="samples") > 0.4
    else:
        assert mean_squared_error(Y, Y_pred_cv) < 0.25


@pytest.mark.parametrize(
    "estimator",
    [
        RandomForestClassifier(n_estimators=2),
        MultiOutputClassifier(RandomForestClassifier(n_estimators=2)),
        ClassifierChain(RandomForestClassifier(n_estimators=2)),
    ],
)
def test_multi_output_classes_(estimator):
    # Tests classes_ attribute of multioutput classifiers
    # RandomForestClassifier supports multioutput out-of-the-box
    estimator.fit(X, y)
    assert isinstance(estimator.classes_, list)
    assert len(estimator.classes_) == n_outputs
    for estimator_classes, expected_classes in zip(classes, estimator.classes_):
        assert_array_equal(estimator_classes, expected_classes)


class DummyRegressorWithFitParams(DummyRegressor):
    def fit(self, X, y, sample_weight=None, **fit_params):
        self._fit_params = fit_params
        return super().fit(X, y, sample_weight)


class DummyClassifierWithFitParams(DummyClassifier):
    def fit(self, X, y, sample_weight=None, **fit_params):
        self._fit_params = fit_params
        return super().fit(X, y, sample_weight)


@pytest.mark.parametrize(
    "estimator, dataset",
    [
        (
            MultiOutputClassifier(DummyClassifierWithFitParams(strategy="prior")),
            datasets.make_multilabel_classification(),
        ),
        (
            MultiOutputRegressor(DummyRegressorWithFitParams()),
            datasets.make_regression(n_targets=3, random_state=0),
        ),
    ],
)
def test_multioutput_estimator_with_fit_params(estimator, dataset):
    X, y = dataset
    some_param = np.zeros_like(X)
    estimator.fit(X, y, some_param=some_param)
    for dummy_estimator in estimator.estimators_:
        assert "some_param" in dummy_estimator._fit_params


def test_regressor_chain_w_fit_params():
    # Make sure fit_params are properly propagated to the sub-estimators
    rng = np.random.RandomState(0)
    X, y = datasets.make_regression(n_targets=3, random_state=0)
    weight = rng.rand(y.shape[0])

    class MySGD(SGDRegressor):
        def fit(self, X, y, **fit_params):
            self.sample_weight_ = fit_params["sample_weight"]
            super().fit(X, y, **fit_params)

    model = RegressorChain(MySGD())

    # Fitting with params
    fit_param = {"sample_weight": weight}
    model.fit(X, y, **fit_param)

    for est in model.estimators_:
        assert est.sample_weight_ is weight


@pytest.mark.parametrize(
    "MultiOutputEstimator, Estimator",
    [(MultiOutputClassifier, LogisticRegression), (MultiOutputRegressor, Ridge)],
)
# FIXME: we should move this test in `estimator_checks` once we are able
# to construct meta-estimator instances
def test_support_missing_values(MultiOutputEstimator, Estimator):
    # smoke test to check that pipeline MultioutputEstimators are letting
    # the validation of missing values to
    # the underlying pipeline, regressor or classifier
    rng = np.random.RandomState(42)
    X, y = rng.randn(50, 2), rng.binomial(1, 0.5, (50, 3))
    mask = rng.choice([1, 0], X.shape, p=[0.01, 0.99]).astype(bool)
    X[mask] = np.nan

    pipe = make_pipeline(SimpleImputer(), Estimator())
    MultiOutputEstimator(pipe).fit(X, y).score(X, y)


@pytest.mark.parametrize("order_type", [list, np.array, tuple])
def test_classifier_chain_tuple_order(order_type):
    X = [[1, 2, 3], [4, 5, 6], [1.5, 2.5, 3.5]]
    y = [[3, 2], [2, 3], [3, 2]]
    order = order_type([1, 0])

    chain = ClassifierChain(
        RandomForestClassifier(n_estimators=2, random_state=0), order=order
    )

    chain.fit(X, y)
    X_test = [[1.5, 2.5, 3.5]]
    y_test = [[3, 2]]
    assert_array_almost_equal(chain.predict(X_test), y_test)


def test_classifier_chain_tuple_invalid_order():
    X = [[1, 2, 3], [4, 5, 6], [1.5, 2.5, 3.5]]
    y = [[3, 2], [2, 3], [3, 2]]
    order = tuple([1, 2])

    chain = ClassifierChain(RandomForestClassifier(), order=order)

    with pytest.raises(ValueError, match="invalid order"):
        chain.fit(X, y)


def test_classifier_chain_verbose(capsys):
    X, y = make_multilabel_classification(
        n_samples=100, n_features=5, n_classes=3, n_labels=3, random_state=0
    )
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    pattern = (
        r"\[Chain\].*\(1 of 3\) Processing order 0, total=.*\n"
        r"\[Chain\].*\(2 of 3\) Processing order 1, total=.*\n"
        r"\[Chain\].*\(3 of 3\) Processing order 2, total=.*\n$"
    )

    classifier = ClassifierChain(
        DecisionTreeClassifier(),
        order=[0, 1, 2],
        random_state=0,
        verbose=True,
    )
    classifier.fit(X_train, y_train)
    assert re.match(pattern, capsys.readouterr()[0])


def test_regressor_chain_verbose(capsys):
    X, y = make_regression(n_samples=125, n_targets=3, random_state=0)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    pattern = (
        r"\[Chain\].*\(1 of 3\) Processing order 1, total=.*\n"
        r"\[Chain\].*\(2 of 3\) Processing order 0, total=.*\n"
        r"\[Chain\].*\(3 of 3\) Processing order 2, total=.*\n$"
    )
    regressor = RegressorChain(
        LinearRegression(),
        order=[1, 0, 2],
        random_state=0,
        verbose=True,
    )
    regressor.fit(X_train, y_train)
    assert re.match(pattern, capsys.readouterr()[0])


def test_multioutputregressor_ducktypes_fitted_estimator():
    """Test that MultiOutputRegressor checks the fitted estimator for
    predict. Non-regression test for #16549."""
    X, y = load_linnerud(return_X_y=True)
    stacker = StackingRegressor(
        estimators=[("sgd", SGDRegressor(random_state=1))],
        final_estimator=Ridge(),
        cv=2,
    )

    reg = MultiOutputRegressor(estimator=stacker).fit(X, y)

    # Does not raise
    reg.predict(X)


@pytest.mark.parametrize(
    "Cls, method", [(ClassifierChain, "fit"), (MultiOutputClassifier, "partial_fit")]
)
def test_fit_params_no_routing(Cls, method):
    """Check that we raise an error when passing metadata not requested by the
    underlying classifier.
    """
    X, y = make_classification(n_samples=50)
    clf = Cls(PassiveAggressiveClassifier())

    with pytest.raises(ValueError, match="is only supported if"):
        getattr(clf, method)(X, y, test=1)


def test_multioutput_regressor_has_partial_fit():
    # Test that an unfitted MultiOutputRegressor handles available_if for
    # partial_fit correctly
    est = MultiOutputRegressor(LinearRegression())
    msg = "This 'MultiOutputRegressor' has no attribute 'partial_fit'"
    with pytest.raises(AttributeError, match=msg):
        getattr(est, "partial_fit")