File size: 14,006 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import importlib
import inspect
import os
import warnings
from inspect import signature
from pkgutil import walk_packages

import numpy as np
import pytest

import sklearn
from sklearn import metrics
from sklearn.datasets import make_classification
from sklearn.ensemble import StackingClassifier, StackingRegressor

# make it possible to discover experimental estimators when calling `all_estimators`
from sklearn.experimental import (
    enable_halving_search_cv,  # noqa
    enable_iterative_imputer,  # noqa
)
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import FunctionTransformer
from sklearn.utils import all_estimators
from sklearn.utils._test_common.instance_generator import _construct_instances
from sklearn.utils._testing import (
    _get_func_name,
    assert_docstring_consistency,
    check_docstring_parameters,
    ignore_warnings,
    skip_if_no_numpydoc,
)
from sklearn.utils.deprecation import _is_deprecated
from sklearn.utils.estimator_checks import (
    _enforce_estimator_tags_X,
    _enforce_estimator_tags_y,
)

# walk_packages() ignores DeprecationWarnings, now we need to ignore
# FutureWarnings
with warnings.catch_warnings():
    warnings.simplefilter("ignore", FutureWarning)
    # mypy error: Module has no attribute "__path__"
    sklearn_path = [os.path.dirname(sklearn.__file__)]
    PUBLIC_MODULES = set(
        [
            pckg[1]
            for pckg in walk_packages(prefix="sklearn.", path=sklearn_path)
            if not ("._" in pckg[1] or ".tests." in pckg[1])
        ]
    )

# functions to ignore args / docstring of
# TODO(1.7): remove "sklearn.utils._joblib"
_DOCSTRING_IGNORES = [
    "sklearn.utils.deprecation.load_mlcomp",
    "sklearn.pipeline.make_pipeline",
    "sklearn.pipeline.make_union",
    "sklearn.utils.extmath.safe_sparse_dot",
    "sklearn.utils._joblib",
    "HalfBinomialLoss",
]

# Methods where y param should be ignored if y=None by default
_METHODS_IGNORE_NONE_Y = [
    "fit",
    "score",
    "fit_predict",
    "fit_transform",
    "partial_fit",
    "predict",
]


def test_docstring_parameters():
    # Test module docstring formatting

    # Skip test if numpydoc is not found
    pytest.importorskip(
        "numpydoc", reason="numpydoc is required to test the docstrings"
    )

    # XXX unreached code as of v0.22
    from numpydoc import docscrape

    incorrect = []
    for name in PUBLIC_MODULES:
        if name.endswith(".conftest"):
            # pytest tooling, not part of the scikit-learn API
            continue
        if name == "sklearn.utils.fixes":
            # We cannot always control these docstrings
            continue
        with warnings.catch_warnings(record=True):
            module = importlib.import_module(name)
        classes = inspect.getmembers(module, inspect.isclass)
        # Exclude non-scikit-learn classes
        classes = [cls for cls in classes if cls[1].__module__.startswith("sklearn")]
        for cname, cls in classes:
            this_incorrect = []
            if cname in _DOCSTRING_IGNORES or cname.startswith("_"):
                continue
            if inspect.isabstract(cls):
                continue
            with warnings.catch_warnings(record=True) as w:
                cdoc = docscrape.ClassDoc(cls)
            if len(w):
                raise RuntimeError(
                    "Error for __init__ of %s in %s:\n%s" % (cls, name, w[0])
                )

            # Skip checks on deprecated classes
            if _is_deprecated(cls.__new__):
                continue

            this_incorrect += check_docstring_parameters(cls.__init__, cdoc)

            for method_name in cdoc.methods:
                method = getattr(cls, method_name)
                if _is_deprecated(method):
                    continue
                param_ignore = None
                # Now skip docstring test for y when y is None
                # by default for API reason
                if method_name in _METHODS_IGNORE_NONE_Y:
                    sig = signature(method)
                    if "y" in sig.parameters and sig.parameters["y"].default is None:
                        param_ignore = ["y"]  # ignore y for fit and score
                result = check_docstring_parameters(method, ignore=param_ignore)
                this_incorrect += result

            incorrect += this_incorrect

        functions = inspect.getmembers(module, inspect.isfunction)
        # Exclude imported functions
        functions = [fn for fn in functions if fn[1].__module__ == name]
        for fname, func in functions:
            # Don't test private methods / functions
            if fname.startswith("_"):
                continue
            if fname == "configuration" and name.endswith("setup"):
                continue
            name_ = _get_func_name(func)
            if not any(d in name_ for d in _DOCSTRING_IGNORES) and not _is_deprecated(
                func
            ):
                incorrect += check_docstring_parameters(func)

    msg = "\n".join(incorrect)
    if len(incorrect) > 0:
        raise AssertionError("Docstring Error:\n" + msg)


def _construct_searchcv_instance(SearchCV):
    return SearchCV(LogisticRegression(), {"C": [0.1, 1]})


def _construct_compose_pipeline_instance(Estimator):
    # Minimal / degenerate instances: only useful to test the docstrings.
    if Estimator.__name__ == "ColumnTransformer":
        return Estimator(transformers=[("transformer", "passthrough", [0, 1])])
    elif Estimator.__name__ == "Pipeline":
        return Estimator(steps=[("clf", LogisticRegression())])
    elif Estimator.__name__ == "FeatureUnion":
        return Estimator(transformer_list=[("transformer", FunctionTransformer())])


def _construct_sparse_coder(Estimator):
    # XXX: hard-coded assumption that n_features=3
    dictionary = np.array(
        [[0, 1, 0], [-1, -1, 2], [1, 1, 1], [0, 1, 1], [0, 2, 1]],
        dtype=np.float64,
    )
    return Estimator(dictionary=dictionary)


@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
@pytest.mark.parametrize("name, Estimator", all_estimators())
def test_fit_docstring_attributes(name, Estimator):
    pytest.importorskip("numpydoc")
    from numpydoc import docscrape

    doc = docscrape.ClassDoc(Estimator)
    attributes = doc["Attributes"]

    if Estimator.__name__ in (
        "HalvingRandomSearchCV",
        "RandomizedSearchCV",
        "HalvingGridSearchCV",
        "GridSearchCV",
    ):
        est = _construct_searchcv_instance(Estimator)
    elif Estimator.__name__ in (
        "ColumnTransformer",
        "Pipeline",
        "FeatureUnion",
    ):
        est = _construct_compose_pipeline_instance(Estimator)
    elif Estimator.__name__ == "SparseCoder":
        est = _construct_sparse_coder(Estimator)
    elif Estimator.__name__ == "FrozenEstimator":
        X, y = make_classification(n_samples=20, n_features=5, random_state=0)
        est = Estimator(LogisticRegression().fit(X, y))
    else:
        # TODO(devtools): use _tested_estimators instead of all_estimators in the
        # decorator
        est = next(_construct_instances(Estimator))

    if Estimator.__name__ == "SelectKBest":
        est.set_params(k=2)
    elif Estimator.__name__ == "DummyClassifier":
        est.set_params(strategy="stratified")
    elif Estimator.__name__ == "CCA" or Estimator.__name__.startswith("PLS"):
        # default = 2 is invalid for single target
        est.set_params(n_components=1)
    elif Estimator.__name__ in (
        "GaussianRandomProjection",
        "SparseRandomProjection",
    ):
        # default="auto" raises an error with the shape of `X`
        est.set_params(n_components=2)
    elif Estimator.__name__ == "TSNE":
        # default raises an error, perplexity must be less than n_samples
        est.set_params(perplexity=2)

    # Low max iter to speed up tests: we are only interested in checking the existence
    # of fitted attributes. This should be invariant to whether it has converged or not.
    if "max_iter" in est.get_params():
        est.set_params(max_iter=2)
        # min value for `TSNE` is 250
        if Estimator.__name__ == "TSNE":
            est.set_params(max_iter=250)

    if "random_state" in est.get_params():
        est.set_params(random_state=0)

    # In case we want to deprecate some attributes in the future
    skipped_attributes = {}

    if Estimator.__name__.endswith("Vectorizer"):
        # Vectorizer require some specific input data
        if Estimator.__name__ in (
            "CountVectorizer",
            "HashingVectorizer",
            "TfidfVectorizer",
        ):
            X = [
                "This is the first document.",
                "This document is the second document.",
                "And this is the third one.",
                "Is this the first document?",
            ]
        elif Estimator.__name__ == "DictVectorizer":
            X = [{"foo": 1, "bar": 2}, {"foo": 3, "baz": 1}]
        y = None
    else:
        X, y = make_classification(
            n_samples=20,
            n_features=3,
            n_redundant=0,
            n_classes=2,
            random_state=2,
        )

        y = _enforce_estimator_tags_y(est, y)
        X = _enforce_estimator_tags_X(est, X)

    if est.__sklearn_tags__().target_tags.one_d_labels:
        est.fit(y)
    elif est.__sklearn_tags__().target_tags.two_d_labels:
        est.fit(np.c_[y, y])
    elif est.__sklearn_tags__().input_tags.three_d_array:
        est.fit(X[np.newaxis, ...], y)
    else:
        est.fit(X, y)

    for attr in attributes:
        if attr.name in skipped_attributes:
            continue
        desc = " ".join(attr.desc).lower()
        # As certain attributes are present "only" if a certain parameter is
        # provided, this checks if the word "only" is present in the attribute
        # description, and if not the attribute is required to be present.
        if "only " in desc:
            continue
        # ignore deprecation warnings
        with ignore_warnings(category=FutureWarning):
            assert hasattr(est, attr.name)

    fit_attr = _get_all_fitted_attributes(est)
    fit_attr_names = [attr.name for attr in attributes]
    undocumented_attrs = set(fit_attr).difference(fit_attr_names)
    undocumented_attrs = set(undocumented_attrs).difference(skipped_attributes)
    if undocumented_attrs:
        raise AssertionError(
            f"Undocumented attributes for {Estimator.__name__}: {undocumented_attrs}"
        )


def _get_all_fitted_attributes(estimator):
    "Get all the fitted attributes of an estimator including properties"
    # attributes
    fit_attr = list(estimator.__dict__.keys())

    # properties
    with warnings.catch_warnings():
        warnings.filterwarnings("error", category=FutureWarning)

        for name in dir(estimator.__class__):
            obj = getattr(estimator.__class__, name)
            if not isinstance(obj, property):
                continue

            # ignore properties that raises an AttributeError and deprecated
            # properties
            try:
                getattr(estimator, name)
            except (AttributeError, FutureWarning):
                continue
            fit_attr.append(name)

    return [k for k in fit_attr if k.endswith("_") and not k.startswith("_")]


@skip_if_no_numpydoc
def test_precision_recall_f_score_docstring_consistency():
    """Check docstrings parameters of related metrics are consistent."""
    metrics_to_check = [
        metrics.precision_recall_fscore_support,
        metrics.f1_score,
        metrics.fbeta_score,
        metrics.precision_score,
        metrics.recall_score,
    ]
    assert_docstring_consistency(
        metrics_to_check,
        include_params=True,
        # "zero_division" - the reason for zero division differs between f scores,
        # precision and recall.
        exclude_params=["average", "zero_division"],
    )
    description_regex = (
        r"""This parameter is required for multiclass/multilabel targets\.
        If ``None``, the metrics for each class are returned\. Otherwise, this
        determines the type of averaging performed on the data:
        ``'binary'``:
            Only report results for the class specified by ``pos_label``\.
            This is applicable only if targets \(``y_\{true,pred\}``\) are binary\.
        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives\.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean\.  This does not take label imbalance into account\.
        ``'weighted'``:
            Calculate metrics for each label, and find their average weighted
            by support \(the number of true instances for each label\)\. This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall\."""
        + r"[\s\w]*\.*"  # optionally match additonal sentence
        + r"""
        ``'samples'``:
            Calculate metrics for each instance, and find their average \(only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`\)\."""
    )
    assert_docstring_consistency(
        metrics_to_check,
        include_params=["average"],
        descr_regex_pattern=" ".join(description_regex.split()),
    )


@skip_if_no_numpydoc
def test_stacking_classifier_regressor_docstring_consistency():
    """Check docstrings parameters stacking estimators are consistent."""
    assert_docstring_consistency(
        [StackingClassifier, StackingRegressor],
        include_params=["cv", "n_jobs", "passthrough", "verbose"],
        include_attrs=True,
        exclude_attrs=["final_estimator_"],
    )