File size: 40,958 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import numpy as np
import pytest
from numpy.testing import assert_allclose

from sklearn.base import BaseEstimator, ClassifierMixin, clone
from sklearn.calibration import (
    CalibratedClassifierCV,
    CalibrationDisplay,
    _CalibratedClassifier,
    _sigmoid_calibration,
    _SigmoidCalibration,
    calibration_curve,
)
from sklearn.datasets import load_iris, make_blobs, make_classification
from sklearn.dummy import DummyClassifier
from sklearn.ensemble import (
    RandomForestClassifier,
    VotingClassifier,
)
from sklearn.exceptions import NotFittedError
from sklearn.feature_extraction import DictVectorizer
from sklearn.frozen import FrozenEstimator
from sklearn.impute import SimpleImputer
from sklearn.isotonic import IsotonicRegression
from sklearn.linear_model import LogisticRegression, SGDClassifier
from sklearn.metrics import brier_score_loss
from sklearn.model_selection import (
    KFold,
    LeaveOneOut,
    check_cv,
    cross_val_predict,
    cross_val_score,
    train_test_split,
)
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils._mocking import CheckingClassifier
from sklearn.utils._testing import (
    _convert_container,
    assert_almost_equal,
    assert_array_almost_equal,
    assert_array_equal,
    ignore_warnings,
)
from sklearn.utils.extmath import softmax
from sklearn.utils.fixes import CSR_CONTAINERS

N_SAMPLES = 200


@pytest.fixture(scope="module")
def data():
    X, y = make_classification(n_samples=N_SAMPLES, n_features=6, random_state=42)
    return X, y


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
@pytest.mark.parametrize("method", ["sigmoid", "isotonic"])
@pytest.mark.parametrize("ensemble", [True, False])
def test_calibration(data, method, csr_container, ensemble):
    # Test calibration objects with isotonic and sigmoid
    n_samples = N_SAMPLES // 2
    X, y = data
    sample_weight = np.random.RandomState(seed=42).uniform(size=y.size)

    X -= X.min()  # MultinomialNB only allows positive X

    # split train and test
    X_train, y_train, sw_train = X[:n_samples], y[:n_samples], sample_weight[:n_samples]
    X_test, y_test = X[n_samples:], y[n_samples:]

    # Naive-Bayes
    clf = MultinomialNB().fit(X_train, y_train, sample_weight=sw_train)
    prob_pos_clf = clf.predict_proba(X_test)[:, 1]

    cal_clf = CalibratedClassifierCV(clf, cv=y.size + 1, ensemble=ensemble)
    with pytest.raises(ValueError):
        cal_clf.fit(X, y)

    # Naive Bayes with calibration
    for this_X_train, this_X_test in [
        (X_train, X_test),
        (csr_container(X_train), csr_container(X_test)),
    ]:
        cal_clf = CalibratedClassifierCV(clf, method=method, cv=5, ensemble=ensemble)
        # Note that this fit overwrites the fit on the entire training
        # set
        cal_clf.fit(this_X_train, y_train, sample_weight=sw_train)
        prob_pos_cal_clf = cal_clf.predict_proba(this_X_test)[:, 1]

        # Check that brier score has improved after calibration
        assert brier_score_loss(y_test, prob_pos_clf) > brier_score_loss(
            y_test, prob_pos_cal_clf
        )

        # Check invariance against relabeling [0, 1] -> [1, 2]
        cal_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train)
        prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1]
        assert_array_almost_equal(prob_pos_cal_clf, prob_pos_cal_clf_relabeled)

        # Check invariance against relabeling [0, 1] -> [-1, 1]
        cal_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train)
        prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1]
        assert_array_almost_equal(prob_pos_cal_clf, prob_pos_cal_clf_relabeled)

        # Check invariance against relabeling [0, 1] -> [1, 0]
        cal_clf.fit(this_X_train, (y_train + 1) % 2, sample_weight=sw_train)
        prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1]
        if method == "sigmoid":
            assert_array_almost_equal(prob_pos_cal_clf, 1 - prob_pos_cal_clf_relabeled)
        else:
            # Isotonic calibration is not invariant against relabeling
            # but should improve in both cases
            assert brier_score_loss(y_test, prob_pos_clf) > brier_score_loss(
                (y_test + 1) % 2, prob_pos_cal_clf_relabeled
            )


def test_calibration_default_estimator(data):
    # Check estimator default is LinearSVC
    X, y = data
    calib_clf = CalibratedClassifierCV(cv=2)
    calib_clf.fit(X, y)

    base_est = calib_clf.calibrated_classifiers_[0].estimator
    assert isinstance(base_est, LinearSVC)


@pytest.mark.parametrize("ensemble", [True, False])
def test_calibration_cv_splitter(data, ensemble):
    # Check when `cv` is a CV splitter
    X, y = data

    splits = 5
    kfold = KFold(n_splits=splits)
    calib_clf = CalibratedClassifierCV(cv=kfold, ensemble=ensemble)
    assert isinstance(calib_clf.cv, KFold)
    assert calib_clf.cv.n_splits == splits

    calib_clf.fit(X, y)
    expected_n_clf = splits if ensemble else 1
    assert len(calib_clf.calibrated_classifiers_) == expected_n_clf


def test_calibration_cv_nfold(data):
    # Check error raised when number of examples per class less than nfold
    X, y = data

    kfold = KFold(n_splits=101)
    calib_clf = CalibratedClassifierCV(cv=kfold, ensemble=True)
    with pytest.raises(ValueError, match="Requesting 101-fold cross-validation"):
        calib_clf.fit(X, y)

    calib_clf = CalibratedClassifierCV(cv=LeaveOneOut(), ensemble=True)
    with pytest.raises(ValueError, match="LeaveOneOut cross-validation does"):
        calib_clf.fit(X, y)


@pytest.mark.parametrize("method", ["sigmoid", "isotonic"])
@pytest.mark.parametrize("ensemble", [True, False])
def test_sample_weight(data, method, ensemble):
    n_samples = N_SAMPLES // 2
    X, y = data

    sample_weight = np.random.RandomState(seed=42).uniform(size=len(y))
    X_train, y_train, sw_train = X[:n_samples], y[:n_samples], sample_weight[:n_samples]
    X_test = X[n_samples:]

    estimator = LinearSVC(random_state=42)
    calibrated_clf = CalibratedClassifierCV(estimator, method=method, ensemble=ensemble)
    calibrated_clf.fit(X_train, y_train, sample_weight=sw_train)
    probs_with_sw = calibrated_clf.predict_proba(X_test)

    # As the weights are used for the calibration, they should still yield
    # different predictions
    calibrated_clf.fit(X_train, y_train)
    probs_without_sw = calibrated_clf.predict_proba(X_test)

    diff = np.linalg.norm(probs_with_sw - probs_without_sw)
    assert diff > 0.1


@pytest.mark.parametrize("method", ["sigmoid", "isotonic"])
@pytest.mark.parametrize("ensemble", [True, False])
def test_parallel_execution(data, method, ensemble):
    """Test parallel calibration"""
    X, y = data
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

    estimator = make_pipeline(StandardScaler(), LinearSVC(random_state=42))

    cal_clf_parallel = CalibratedClassifierCV(
        estimator, method=method, n_jobs=2, ensemble=ensemble
    )
    cal_clf_parallel.fit(X_train, y_train)
    probs_parallel = cal_clf_parallel.predict_proba(X_test)

    cal_clf_sequential = CalibratedClassifierCV(
        estimator, method=method, n_jobs=1, ensemble=ensemble
    )
    cal_clf_sequential.fit(X_train, y_train)
    probs_sequential = cal_clf_sequential.predict_proba(X_test)

    assert_allclose(probs_parallel, probs_sequential)


@pytest.mark.parametrize("method", ["sigmoid", "isotonic"])
@pytest.mark.parametrize("ensemble", [True, False])
# increase the number of RNG seeds to assess the statistical stability of this
# test:
@pytest.mark.parametrize("seed", range(2))
def test_calibration_multiclass(method, ensemble, seed):
    def multiclass_brier(y_true, proba_pred, n_classes):
        Y_onehot = np.eye(n_classes)[y_true]
        return np.sum((Y_onehot - proba_pred) ** 2) / Y_onehot.shape[0]

    # Test calibration for multiclass with classifier that implements
    # only decision function.
    clf = LinearSVC(random_state=7)
    X, y = make_blobs(
        n_samples=500, n_features=100, random_state=seed, centers=10, cluster_std=15.0
    )

    # Use an unbalanced dataset by collapsing 8 clusters into one class
    # to make the naive calibration based on a softmax more unlikely
    # to work.
    y[y > 2] = 2
    n_classes = np.unique(y).shape[0]
    X_train, y_train = X[::2], y[::2]
    X_test, y_test = X[1::2], y[1::2]

    clf.fit(X_train, y_train)

    cal_clf = CalibratedClassifierCV(clf, method=method, cv=5, ensemble=ensemble)
    cal_clf.fit(X_train, y_train)
    probas = cal_clf.predict_proba(X_test)
    # Check probabilities sum to 1
    assert_allclose(np.sum(probas, axis=1), np.ones(len(X_test)))

    # Check that the dataset is not too trivial, otherwise it's hard
    # to get interesting calibration data during the internal
    # cross-validation loop.
    assert 0.65 < clf.score(X_test, y_test) < 0.95

    # Check that the accuracy of the calibrated model is never degraded
    # too much compared to the original classifier.
    assert cal_clf.score(X_test, y_test) > 0.95 * clf.score(X_test, y_test)

    # Check that Brier loss of calibrated classifier is smaller than
    # loss obtained by naively turning OvR decision function to
    # probabilities via a softmax
    uncalibrated_brier = multiclass_brier(
        y_test, softmax(clf.decision_function(X_test)), n_classes=n_classes
    )
    calibrated_brier = multiclass_brier(y_test, probas, n_classes=n_classes)

    assert calibrated_brier < 1.1 * uncalibrated_brier

    # Test that calibration of a multiclass classifier decreases log-loss
    # for RandomForestClassifier
    clf = RandomForestClassifier(n_estimators=30, random_state=42)
    clf.fit(X_train, y_train)
    clf_probs = clf.predict_proba(X_test)
    uncalibrated_brier = multiclass_brier(y_test, clf_probs, n_classes=n_classes)

    cal_clf = CalibratedClassifierCV(clf, method=method, cv=5, ensemble=ensemble)
    cal_clf.fit(X_train, y_train)
    cal_clf_probs = cal_clf.predict_proba(X_test)
    calibrated_brier = multiclass_brier(y_test, cal_clf_probs, n_classes=n_classes)
    assert calibrated_brier < 1.1 * uncalibrated_brier


def test_calibration_zero_probability():
    # Test an edge case where _CalibratedClassifier avoids numerical errors
    # in the multiclass normalization step if all the calibrators output
    # are zero all at once for a given sample and instead fallback to uniform
    # probabilities.
    class ZeroCalibrator:
        # This function is called from _CalibratedClassifier.predict_proba.
        def predict(self, X):
            return np.zeros(X.shape[0])

    X, y = make_blobs(
        n_samples=50, n_features=10, random_state=7, centers=10, cluster_std=15.0
    )
    clf = DummyClassifier().fit(X, y)
    calibrator = ZeroCalibrator()
    cal_clf = _CalibratedClassifier(
        estimator=clf, calibrators=[calibrator], classes=clf.classes_
    )

    probas = cal_clf.predict_proba(X)

    # Check that all probabilities are uniformly 1. / clf.n_classes_
    assert_allclose(probas, 1.0 / clf.n_classes_)


@ignore_warnings(category=FutureWarning)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_calibration_prefit(csr_container):
    """Test calibration for prefitted classifiers"""
    # TODO(1.8): Remove cv="prefit" options here and the @ignore_warnings of the test
    n_samples = 50
    X, y = make_classification(n_samples=3 * n_samples, n_features=6, random_state=42)
    sample_weight = np.random.RandomState(seed=42).uniform(size=y.size)

    X -= X.min()  # MultinomialNB only allows positive X

    # split train and test
    X_train, y_train, sw_train = X[:n_samples], y[:n_samples], sample_weight[:n_samples]
    X_calib, y_calib, sw_calib = (
        X[n_samples : 2 * n_samples],
        y[n_samples : 2 * n_samples],
        sample_weight[n_samples : 2 * n_samples],
    )
    X_test, y_test = X[2 * n_samples :], y[2 * n_samples :]

    # Naive-Bayes
    clf = MultinomialNB()
    # Check error if clf not prefit
    unfit_clf = CalibratedClassifierCV(clf, cv="prefit")
    with pytest.raises(NotFittedError):
        unfit_clf.fit(X_calib, y_calib)

    clf.fit(X_train, y_train, sw_train)
    prob_pos_clf = clf.predict_proba(X_test)[:, 1]

    # Naive Bayes with calibration
    for this_X_calib, this_X_test in [
        (X_calib, X_test),
        (csr_container(X_calib), csr_container(X_test)),
    ]:
        for method in ["isotonic", "sigmoid"]:
            cal_clf_prefit = CalibratedClassifierCV(clf, method=method, cv="prefit")
            cal_clf_frozen = CalibratedClassifierCV(FrozenEstimator(clf), method=method)

            for sw in [sw_calib, None]:
                cal_clf_prefit.fit(this_X_calib, y_calib, sample_weight=sw)
                cal_clf_frozen.fit(this_X_calib, y_calib, sample_weight=sw)

                y_prob_prefit = cal_clf_prefit.predict_proba(this_X_test)
                y_prob_frozen = cal_clf_frozen.predict_proba(this_X_test)
                y_pred_prefit = cal_clf_prefit.predict(this_X_test)
                y_pred_frozen = cal_clf_frozen.predict(this_X_test)
                prob_pos_cal_clf_prefit = y_prob_prefit[:, 1]
                prob_pos_cal_clf_frozen = y_prob_frozen[:, 1]
                assert_array_equal(y_pred_prefit, y_pred_frozen)
                assert_array_equal(
                    y_pred_prefit, np.array([0, 1])[np.argmax(y_prob_prefit, axis=1)]
                )
                assert brier_score_loss(y_test, prob_pos_clf) > brier_score_loss(
                    y_test, prob_pos_cal_clf_frozen
                )


@pytest.mark.parametrize("method", ["sigmoid", "isotonic"])
def test_calibration_ensemble_false(data, method):
    # Test that `ensemble=False` is the same as using predictions from
    # `cross_val_predict` to train calibrator.
    X, y = data
    clf = LinearSVC(random_state=7)

    cal_clf = CalibratedClassifierCV(clf, method=method, cv=3, ensemble=False)
    cal_clf.fit(X, y)
    cal_probas = cal_clf.predict_proba(X)

    # Get probas manually
    unbiased_preds = cross_val_predict(clf, X, y, cv=3, method="decision_function")
    if method == "isotonic":
        calibrator = IsotonicRegression(out_of_bounds="clip")
    else:
        calibrator = _SigmoidCalibration()
    calibrator.fit(unbiased_preds, y)
    # Use `clf` fit on all data
    clf.fit(X, y)
    clf_df = clf.decision_function(X)
    manual_probas = calibrator.predict(clf_df)
    assert_allclose(cal_probas[:, 1], manual_probas)


def test_sigmoid_calibration():
    """Test calibration values with Platt sigmoid model"""
    exF = np.array([5, -4, 1.0])
    exY = np.array([1, -1, -1])
    # computed from my python port of the C++ code in LibSVM
    AB_lin_libsvm = np.array([-0.20261354391187855, 0.65236314980010512])
    assert_array_almost_equal(AB_lin_libsvm, _sigmoid_calibration(exF, exY), 3)
    lin_prob = 1.0 / (1.0 + np.exp(AB_lin_libsvm[0] * exF + AB_lin_libsvm[1]))
    sk_prob = _SigmoidCalibration().fit(exF, exY).predict(exF)
    assert_array_almost_equal(lin_prob, sk_prob, 6)

    # check that _SigmoidCalibration().fit only accepts 1d array or 2d column
    # arrays
    with pytest.raises(ValueError):
        _SigmoidCalibration().fit(np.vstack((exF, exF)), exY)


def test_calibration_curve():
    """Check calibration_curve function"""
    y_true = np.array([0, 0, 0, 1, 1, 1])
    y_pred = np.array([0.0, 0.1, 0.2, 0.8, 0.9, 1.0])
    prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2)
    assert len(prob_true) == len(prob_pred)
    assert len(prob_true) == 2
    assert_almost_equal(prob_true, [0, 1])
    assert_almost_equal(prob_pred, [0.1, 0.9])

    # Probabilities outside [0, 1] should not be accepted at all.
    with pytest.raises(ValueError):
        calibration_curve([1], [-0.1])

    # test that quantiles work as expected
    y_true2 = np.array([0, 0, 0, 0, 1, 1])
    y_pred2 = np.array([0.0, 0.1, 0.2, 0.5, 0.9, 1.0])
    prob_true_quantile, prob_pred_quantile = calibration_curve(
        y_true2, y_pred2, n_bins=2, strategy="quantile"
    )

    assert len(prob_true_quantile) == len(prob_pred_quantile)
    assert len(prob_true_quantile) == 2
    assert_almost_equal(prob_true_quantile, [0, 2 / 3])
    assert_almost_equal(prob_pred_quantile, [0.1, 0.8])

    # Check that error is raised when invalid strategy is selected
    with pytest.raises(ValueError):
        calibration_curve(y_true2, y_pred2, strategy="percentile")


@pytest.mark.parametrize("ensemble", [True, False])
def test_calibration_nan_imputer(ensemble):
    """Test that calibration can accept nan"""
    X, y = make_classification(
        n_samples=10, n_features=2, n_informative=2, n_redundant=0, random_state=42
    )
    X[0, 0] = np.nan
    clf = Pipeline(
        [("imputer", SimpleImputer()), ("rf", RandomForestClassifier(n_estimators=1))]
    )
    clf_c = CalibratedClassifierCV(clf, cv=2, method="isotonic", ensemble=ensemble)
    clf_c.fit(X, y)
    clf_c.predict(X)


@pytest.mark.parametrize("ensemble", [True, False])
def test_calibration_prob_sum(ensemble):
    # Test that sum of probabilities is (max) 1. A non-regression test for
    # issue #7796 - when test has fewer classes than train
    X, _ = make_classification(n_samples=10, n_features=5, n_classes=2)
    y = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
    clf = LinearSVC(C=1.0, random_state=7)
    # In the first and last fold, test will have 1 class while train will have 2
    clf_prob = CalibratedClassifierCV(
        clf, method="sigmoid", cv=KFold(n_splits=3), ensemble=ensemble
    )
    clf_prob.fit(X, y)
    assert_allclose(clf_prob.predict_proba(X).sum(axis=1), 1.0)


@pytest.mark.parametrize("ensemble", [True, False])
def test_calibration_less_classes(ensemble):
    # Test to check calibration works fine when train set in a test-train
    # split does not contain all classes
    # In 1st split, train is missing class 0
    # In 3rd split, train is missing class 3
    X = np.random.randn(12, 5)
    y = [0, 0, 0, 1] + [1, 1, 2, 2] + [2, 3, 3, 3]
    clf = DecisionTreeClassifier(random_state=7)
    cal_clf = CalibratedClassifierCV(
        clf, method="sigmoid", cv=KFold(3), ensemble=ensemble
    )
    cal_clf.fit(X, y)

    if ensemble:
        classes = np.arange(4)
        for calib_i, class_i in zip([0, 2], [0, 3]):
            proba = cal_clf.calibrated_classifiers_[calib_i].predict_proba(X)
            # Check that the unobserved class has proba=0
            assert_array_equal(proba[:, class_i], np.zeros(len(y)))
            # Check for all other classes proba>0
            assert np.all(proba[:, classes != class_i] > 0)

    # When `ensemble=False`, `cross_val_predict` is used to compute predictions
    # to fit only one `calibrated_classifiers_`
    else:
        proba = cal_clf.calibrated_classifiers_[0].predict_proba(X)
        assert_array_almost_equal(proba.sum(axis=1), np.ones(proba.shape[0]))


@pytest.mark.parametrize(
    "X",
    [
        np.random.RandomState(42).randn(15, 5, 2),
        np.random.RandomState(42).randn(15, 5, 2, 6),
    ],
)
def test_calibration_accepts_ndarray(X):
    """Test that calibration accepts n-dimensional arrays as input"""
    y = [1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0]

    class MockTensorClassifier(ClassifierMixin, BaseEstimator):
        """A toy estimator that accepts tensor inputs"""

        def fit(self, X, y):
            self.classes_ = np.unique(y)
            return self

        def decision_function(self, X):
            # toy decision function that just needs to have the right shape:
            return X.reshape(X.shape[0], -1).sum(axis=1)

    calibrated_clf = CalibratedClassifierCV(MockTensorClassifier())
    # we should be able to fit this classifier with no error
    calibrated_clf.fit(X, y)


@pytest.fixture
def dict_data():
    dict_data = [
        {"state": "NY", "age": "adult"},
        {"state": "TX", "age": "adult"},
        {"state": "VT", "age": "child"},
        {"state": "CT", "age": "adult"},
        {"state": "BR", "age": "child"},
    ]
    text_labels = [1, 0, 1, 1, 0]
    return dict_data, text_labels


@pytest.fixture
def dict_data_pipeline(dict_data):
    X, y = dict_data
    pipeline_prefit = Pipeline(
        [("vectorizer", DictVectorizer()), ("clf", RandomForestClassifier())]
    )
    return pipeline_prefit.fit(X, y)


def test_calibration_dict_pipeline(dict_data, dict_data_pipeline):
    """Test that calibration works in prefit pipeline with transformer

    `X` is not array-like, sparse matrix or dataframe at the start.
    See https://github.com/scikit-learn/scikit-learn/issues/8710

    Also test it can predict without running into validation errors.
    See https://github.com/scikit-learn/scikit-learn/issues/19637
    """
    X, y = dict_data
    clf = dict_data_pipeline
    calib_clf = CalibratedClassifierCV(FrozenEstimator(clf), cv=2)
    calib_clf.fit(X, y)
    # Check attributes are obtained from fitted estimator
    assert_array_equal(calib_clf.classes_, clf.classes_)

    # Neither the pipeline nor the calibration meta-estimator
    # expose the n_features_in_ check on this kind of data.
    assert not hasattr(clf, "n_features_in_")
    assert not hasattr(calib_clf, "n_features_in_")

    # Ensure that no error is thrown with predict and predict_proba
    calib_clf.predict(X)
    calib_clf.predict_proba(X)


@pytest.mark.parametrize(
    "clf, cv",
    [
        pytest.param(LinearSVC(C=1), 2),
        pytest.param(LinearSVC(C=1), "prefit"),
    ],
)
def test_calibration_attributes(clf, cv):
    # Check that `n_features_in_` and `classes_` attributes created properly
    X, y = make_classification(n_samples=10, n_features=5, n_classes=2, random_state=7)
    if cv == "prefit":
        clf = clf.fit(X, y)
    calib_clf = CalibratedClassifierCV(clf, cv=cv)
    calib_clf.fit(X, y)

    if cv == "prefit":
        assert_array_equal(calib_clf.classes_, clf.classes_)
        assert calib_clf.n_features_in_ == clf.n_features_in_
    else:
        classes = LabelEncoder().fit(y).classes_
        assert_array_equal(calib_clf.classes_, classes)
        assert calib_clf.n_features_in_ == X.shape[1]


def test_calibration_inconsistent_prefit_n_features_in():
    # Check that `n_features_in_` from prefit base estimator
    # is consistent with training set
    X, y = make_classification(n_samples=10, n_features=5, n_classes=2, random_state=7)
    clf = LinearSVC(C=1).fit(X, y)
    calib_clf = CalibratedClassifierCV(FrozenEstimator(clf))

    msg = "X has 3 features, but LinearSVC is expecting 5 features as input."
    with pytest.raises(ValueError, match=msg):
        calib_clf.fit(X[:, :3], y)


def test_calibration_votingclassifier():
    # Check that `CalibratedClassifier` works with `VotingClassifier`.
    # The method `predict_proba` from `VotingClassifier` is dynamically
    # defined via a property that only works when voting="soft".
    X, y = make_classification(n_samples=10, n_features=5, n_classes=2, random_state=7)
    vote = VotingClassifier(
        estimators=[("lr" + str(i), LogisticRegression()) for i in range(3)],
        voting="soft",
    )
    vote.fit(X, y)

    calib_clf = CalibratedClassifierCV(estimator=FrozenEstimator(vote))
    # smoke test: should not raise an error
    calib_clf.fit(X, y)


@pytest.fixture(scope="module")
def iris_data():
    return load_iris(return_X_y=True)


@pytest.fixture(scope="module")
def iris_data_binary(iris_data):
    X, y = iris_data
    return X[y < 2], y[y < 2]


@pytest.mark.parametrize("n_bins", [5, 10])
@pytest.mark.parametrize("strategy", ["uniform", "quantile"])
def test_calibration_display_compute(pyplot, iris_data_binary, n_bins, strategy):
    # Ensure `CalibrationDisplay.from_predictions` and `calibration_curve`
    # compute the same results. Also checks attributes of the
    # CalibrationDisplay object.
    X, y = iris_data_binary

    lr = LogisticRegression().fit(X, y)

    viz = CalibrationDisplay.from_estimator(
        lr, X, y, n_bins=n_bins, strategy=strategy, alpha=0.8
    )

    y_prob = lr.predict_proba(X)[:, 1]
    prob_true, prob_pred = calibration_curve(
        y, y_prob, n_bins=n_bins, strategy=strategy
    )

    assert_allclose(viz.prob_true, prob_true)
    assert_allclose(viz.prob_pred, prob_pred)
    assert_allclose(viz.y_prob, y_prob)

    assert viz.estimator_name == "LogisticRegression"

    # cannot fail thanks to pyplot fixture
    import matplotlib as mpl  # noqa

    assert isinstance(viz.line_, mpl.lines.Line2D)
    assert viz.line_.get_alpha() == 0.8
    assert isinstance(viz.ax_, mpl.axes.Axes)
    assert isinstance(viz.figure_, mpl.figure.Figure)

    assert viz.ax_.get_xlabel() == "Mean predicted probability (Positive class: 1)"
    assert viz.ax_.get_ylabel() == "Fraction of positives (Positive class: 1)"

    expected_legend_labels = ["LogisticRegression", "Perfectly calibrated"]
    legend_labels = viz.ax_.get_legend().get_texts()
    assert len(legend_labels) == len(expected_legend_labels)
    for labels in legend_labels:
        assert labels.get_text() in expected_legend_labels


def test_plot_calibration_curve_pipeline(pyplot, iris_data_binary):
    # Ensure pipelines are supported by CalibrationDisplay.from_estimator
    X, y = iris_data_binary
    clf = make_pipeline(StandardScaler(), LogisticRegression())
    clf.fit(X, y)
    viz = CalibrationDisplay.from_estimator(clf, X, y)

    expected_legend_labels = [viz.estimator_name, "Perfectly calibrated"]
    legend_labels = viz.ax_.get_legend().get_texts()
    assert len(legend_labels) == len(expected_legend_labels)
    for labels in legend_labels:
        assert labels.get_text() in expected_legend_labels


@pytest.mark.parametrize(
    "name, expected_label", [(None, "_line1"), ("my_est", "my_est")]
)
def test_calibration_display_default_labels(pyplot, name, expected_label):
    prob_true = np.array([0, 1, 1, 0])
    prob_pred = np.array([0.2, 0.8, 0.8, 0.4])
    y_prob = np.array([])

    viz = CalibrationDisplay(prob_true, prob_pred, y_prob, estimator_name=name)
    viz.plot()

    expected_legend_labels = [] if name is None else [name]
    expected_legend_labels.append("Perfectly calibrated")
    legend_labels = viz.ax_.get_legend().get_texts()
    assert len(legend_labels) == len(expected_legend_labels)
    for labels in legend_labels:
        assert labels.get_text() in expected_legend_labels


def test_calibration_display_label_class_plot(pyplot):
    # Checks that when instantiating `CalibrationDisplay` class then calling
    # `plot`, `self.estimator_name` is the one given in `plot`
    prob_true = np.array([0, 1, 1, 0])
    prob_pred = np.array([0.2, 0.8, 0.8, 0.4])
    y_prob = np.array([])

    name = "name one"
    viz = CalibrationDisplay(prob_true, prob_pred, y_prob, estimator_name=name)
    assert viz.estimator_name == name
    name = "name two"
    viz.plot(name=name)

    expected_legend_labels = [name, "Perfectly calibrated"]
    legend_labels = viz.ax_.get_legend().get_texts()
    assert len(legend_labels) == len(expected_legend_labels)
    for labels in legend_labels:
        assert labels.get_text() in expected_legend_labels


@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
def test_calibration_display_name_multiple_calls(
    constructor_name, pyplot, iris_data_binary
):
    # Check that the `name` used when calling
    # `CalibrationDisplay.from_predictions` or
    # `CalibrationDisplay.from_estimator` is used when multiple
    # `CalibrationDisplay.viz.plot()` calls are made.
    X, y = iris_data_binary
    clf_name = "my hand-crafted name"
    clf = LogisticRegression().fit(X, y)
    y_prob = clf.predict_proba(X)[:, 1]

    constructor = getattr(CalibrationDisplay, constructor_name)
    params = (clf, X, y) if constructor_name == "from_estimator" else (y, y_prob)

    viz = constructor(*params, name=clf_name)
    assert viz.estimator_name == clf_name
    pyplot.close("all")
    viz.plot()

    expected_legend_labels = [clf_name, "Perfectly calibrated"]
    legend_labels = viz.ax_.get_legend().get_texts()
    assert len(legend_labels) == len(expected_legend_labels)
    for labels in legend_labels:
        assert labels.get_text() in expected_legend_labels

    pyplot.close("all")
    clf_name = "another_name"
    viz.plot(name=clf_name)
    assert len(legend_labels) == len(expected_legend_labels)
    for labels in legend_labels:
        assert labels.get_text() in expected_legend_labels


def test_calibration_display_ref_line(pyplot, iris_data_binary):
    # Check that `ref_line` only appears once
    X, y = iris_data_binary
    lr = LogisticRegression().fit(X, y)
    dt = DecisionTreeClassifier().fit(X, y)

    viz = CalibrationDisplay.from_estimator(lr, X, y)
    viz2 = CalibrationDisplay.from_estimator(dt, X, y, ax=viz.ax_)

    labels = viz2.ax_.get_legend_handles_labels()[1]
    assert labels.count("Perfectly calibrated") == 1


@pytest.mark.parametrize("dtype_y_str", [str, object])
def test_calibration_curve_pos_label_error_str(dtype_y_str):
    """Check error message when a `pos_label` is not specified with `str` targets."""
    rng = np.random.RandomState(42)
    y1 = np.array(["spam"] * 3 + ["eggs"] * 2, dtype=dtype_y_str)
    y2 = rng.randint(0, 2, size=y1.size)

    err_msg = (
        "y_true takes value in {'eggs', 'spam'} and pos_label is not "
        "specified: either make y_true take value in {0, 1} or {-1, 1} or "
        "pass pos_label explicitly"
    )
    with pytest.raises(ValueError, match=err_msg):
        calibration_curve(y1, y2)


@pytest.mark.parametrize("dtype_y_str", [str, object])
def test_calibration_curve_pos_label(dtype_y_str):
    """Check the behaviour when passing explicitly `pos_label`."""
    y_true = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1])
    classes = np.array(["spam", "egg"], dtype=dtype_y_str)
    y_true_str = classes[y_true]
    y_pred = np.array([0.1, 0.2, 0.3, 0.4, 0.65, 0.7, 0.8, 0.9, 1.0])

    # default case
    prob_true, _ = calibration_curve(y_true, y_pred, n_bins=4)
    assert_allclose(prob_true, [0, 0.5, 1, 1])
    # if `y_true` contains `str`, then `pos_label` is required
    prob_true, _ = calibration_curve(y_true_str, y_pred, n_bins=4, pos_label="egg")
    assert_allclose(prob_true, [0, 0.5, 1, 1])

    prob_true, _ = calibration_curve(y_true, 1 - y_pred, n_bins=4, pos_label=0)
    assert_allclose(prob_true, [0, 0, 0.5, 1])
    prob_true, _ = calibration_curve(y_true_str, 1 - y_pred, n_bins=4, pos_label="spam")
    assert_allclose(prob_true, [0, 0, 0.5, 1])


@pytest.mark.parametrize(
    "kwargs",
    [
        {"c": "red", "lw": 2, "ls": "-."},
        {"color": "red", "linewidth": 2, "linestyle": "-."},
    ],
)
def test_calibration_display_kwargs(pyplot, iris_data_binary, kwargs):
    """Check that matplotlib aliases are handled."""
    X, y = iris_data_binary

    lr = LogisticRegression().fit(X, y)
    viz = CalibrationDisplay.from_estimator(lr, X, y, **kwargs)

    assert viz.line_.get_color() == "red"
    assert viz.line_.get_linewidth() == 2
    assert viz.line_.get_linestyle() == "-."


@pytest.mark.parametrize("pos_label, expected_pos_label", [(None, 1), (0, 0), (1, 1)])
def test_calibration_display_pos_label(
    pyplot, iris_data_binary, pos_label, expected_pos_label
):
    """Check the behaviour of `pos_label` in the `CalibrationDisplay`."""
    X, y = iris_data_binary

    lr = LogisticRegression().fit(X, y)
    viz = CalibrationDisplay.from_estimator(lr, X, y, pos_label=pos_label)

    y_prob = lr.predict_proba(X)[:, expected_pos_label]
    prob_true, prob_pred = calibration_curve(y, y_prob, pos_label=pos_label)

    assert_allclose(viz.prob_true, prob_true)
    assert_allclose(viz.prob_pred, prob_pred)
    assert_allclose(viz.y_prob, y_prob)

    assert (
        viz.ax_.get_xlabel()
        == f"Mean predicted probability (Positive class: {expected_pos_label})"
    )
    assert (
        viz.ax_.get_ylabel()
        == f"Fraction of positives (Positive class: {expected_pos_label})"
    )

    expected_legend_labels = [lr.__class__.__name__, "Perfectly calibrated"]
    legend_labels = viz.ax_.get_legend().get_texts()
    assert len(legend_labels) == len(expected_legend_labels)
    for labels in legend_labels:
        assert labels.get_text() in expected_legend_labels


@pytest.mark.parametrize("method", ["sigmoid", "isotonic"])
@pytest.mark.parametrize("ensemble", [True, False])
def test_calibrated_classifier_cv_double_sample_weights_equivalence(method, ensemble):
    """Check that passing repeating twice the dataset `X` is equivalent to
    passing a `sample_weight` with a factor 2."""
    X, y = load_iris(return_X_y=True)
    # Scale the data to avoid any convergence issue
    X = StandardScaler().fit_transform(X)
    # Only use 2 classes
    X, y = X[:100], y[:100]
    sample_weight = np.ones_like(y) * 2

    # Interlace the data such that a 2-fold cross-validation will be equivalent
    # to using the original dataset with a sample weights of 2
    X_twice = np.zeros((X.shape[0] * 2, X.shape[1]), dtype=X.dtype)
    X_twice[::2, :] = X
    X_twice[1::2, :] = X
    y_twice = np.zeros(y.shape[0] * 2, dtype=y.dtype)
    y_twice[::2] = y
    y_twice[1::2] = y

    estimator = LogisticRegression()
    calibrated_clf_without_weights = CalibratedClassifierCV(
        estimator,
        method=method,
        ensemble=ensemble,
        cv=2,
    )
    calibrated_clf_with_weights = clone(calibrated_clf_without_weights)

    calibrated_clf_with_weights.fit(X, y, sample_weight=sample_weight)
    calibrated_clf_without_weights.fit(X_twice, y_twice)

    # Check that the underlying fitted estimators have the same coefficients
    for est_with_weights, est_without_weights in zip(
        calibrated_clf_with_weights.calibrated_classifiers_,
        calibrated_clf_without_weights.calibrated_classifiers_,
    ):
        assert_allclose(
            est_with_weights.estimator.coef_,
            est_without_weights.estimator.coef_,
        )

    # Check that the predictions are the same
    y_pred_with_weights = calibrated_clf_with_weights.predict_proba(X)
    y_pred_without_weights = calibrated_clf_without_weights.predict_proba(X)

    assert_allclose(y_pred_with_weights, y_pred_without_weights)


@pytest.mark.parametrize("fit_params_type", ["list", "array"])
def test_calibration_with_fit_params(fit_params_type, data):
    """Tests that fit_params are passed to the underlying base estimator.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/12384
    """
    X, y = data
    fit_params = {
        "a": _convert_container(y, fit_params_type),
        "b": _convert_container(y, fit_params_type),
    }

    clf = CheckingClassifier(expected_fit_params=["a", "b"])
    pc_clf = CalibratedClassifierCV(clf)

    pc_clf.fit(X, y, **fit_params)


@pytest.mark.parametrize(
    "sample_weight",
    [
        [1.0] * N_SAMPLES,
        np.ones(N_SAMPLES),
    ],
)
def test_calibration_with_sample_weight_estimator(sample_weight, data):
    """Tests that sample_weight is passed to the underlying base
    estimator.
    """
    X, y = data
    clf = CheckingClassifier(expected_sample_weight=True)
    pc_clf = CalibratedClassifierCV(clf)

    pc_clf.fit(X, y, sample_weight=sample_weight)


def test_calibration_without_sample_weight_estimator(data):
    """Check that even if the estimator doesn't support
    sample_weight, fitting with sample_weight still works.

    There should be a warning, since the sample_weight is not passed
    on to the estimator.
    """
    X, y = data
    sample_weight = np.ones_like(y)

    class ClfWithoutSampleWeight(CheckingClassifier):
        def fit(self, X, y, **fit_params):
            assert "sample_weight" not in fit_params
            return super().fit(X, y, **fit_params)

    clf = ClfWithoutSampleWeight()
    pc_clf = CalibratedClassifierCV(clf)

    with pytest.warns(UserWarning):
        pc_clf.fit(X, y, sample_weight=sample_weight)


def test_calibration_with_non_sample_aligned_fit_param(data):
    """Check that CalibratedClassifierCV does not enforce sample alignment
    for fit parameters."""

    class TestClassifier(LogisticRegression):
        def fit(self, X, y, sample_weight=None, fit_param=None):
            assert fit_param is not None
            return super().fit(X, y, sample_weight=sample_weight)

    CalibratedClassifierCV(estimator=TestClassifier()).fit(
        *data, fit_param=np.ones(len(data[1]) + 1)
    )


def test_calibrated_classifier_cv_works_with_large_confidence_scores(
    global_random_seed,
):
    """Test that :class:`CalibratedClassifierCV` works with large confidence
    scores when using the `sigmoid` method, particularly with the
    :class:`SGDClassifier`.

    Non-regression test for issue #26766.
    """
    prob = 0.67
    n = 1000
    random_noise = np.random.default_rng(global_random_seed).normal(size=n)

    y = np.array([1] * int(n * prob) + [0] * (n - int(n * prob)))
    X = 1e5 * y.reshape((-1, 1)) + random_noise

    # Check that the decision function of SGDClassifier produces predicted
    # values that are quite large, for the data under consideration.
    cv = check_cv(cv=None, y=y, classifier=True)
    indices = cv.split(X, y)
    for train, test in indices:
        X_train, y_train = X[train], y[train]
        X_test = X[test]
        sgd_clf = SGDClassifier(loss="squared_hinge", random_state=global_random_seed)
        sgd_clf.fit(X_train, y_train)
        predictions = sgd_clf.decision_function(X_test)
        assert (predictions > 1e4).any()

    # Compare the CalibratedClassifierCV using the sigmoid method with the
    # CalibratedClassifierCV using the isotonic method. The isotonic method
    # is used for comparison because it is numerically stable.
    clf_sigmoid = CalibratedClassifierCV(
        SGDClassifier(loss="squared_hinge", random_state=global_random_seed),
        method="sigmoid",
    )
    score_sigmoid = cross_val_score(clf_sigmoid, X, y, scoring="roc_auc")

    # The isotonic method is used for comparison because it is numerically
    # stable.
    clf_isotonic = CalibratedClassifierCV(
        SGDClassifier(loss="squared_hinge", random_state=global_random_seed),
        method="isotonic",
    )
    score_isotonic = cross_val_score(clf_isotonic, X, y, scoring="roc_auc")

    # The AUC score should be the same because it is invariant under
    # strictly monotonic conditions
    assert_allclose(score_sigmoid, score_isotonic)


def test_sigmoid_calibration_max_abs_prediction_threshold(global_random_seed):
    random_state = np.random.RandomState(seed=global_random_seed)
    n = 100
    y = random_state.randint(0, 2, size=n)

    # Check that for small enough predictions ranging from -2 to 2, the
    # threshold value has no impact on the outcome
    predictions_small = random_state.uniform(low=-2, high=2, size=100)

    # Using a threshold lower than the maximum absolute value of the
    # predictions enables internal re-scaling by max(abs(predictions_small)).
    threshold_1 = 0.1
    a1, b1 = _sigmoid_calibration(
        predictions=predictions_small,
        y=y,
        max_abs_prediction_threshold=threshold_1,
    )

    # Using a larger threshold disables rescaling.
    threshold_2 = 10
    a2, b2 = _sigmoid_calibration(
        predictions=predictions_small,
        y=y,
        max_abs_prediction_threshold=threshold_2,
    )

    # Using default threshold of 30 also disables the scaling.
    a3, b3 = _sigmoid_calibration(
        predictions=predictions_small,
        y=y,
    )

    # Depends on the tolerance of the underlying quasy-newton solver which is
    # not too strict by default.
    atol = 1e-6
    assert_allclose(a1, a2, atol=atol)
    assert_allclose(a2, a3, atol=atol)
    assert_allclose(b1, b2, atol=atol)
    assert_allclose(b2, b3, atol=atol)


def test_float32_predict_proba(data):
    """Check that CalibratedClassifierCV works with float32 predict proba.

    Non-regression test for gh-28245.
    """

    class DummyClassifer32(DummyClassifier):
        def predict_proba(self, X):
            return super().predict_proba(X).astype(np.float32)

    model = DummyClassifer32()
    calibrator = CalibratedClassifierCV(model)
    # Does not raise an error
    calibrator.fit(*data)


def test_error_less_class_samples_than_folds():
    """Check that CalibratedClassifierCV works with string targets.

    non-regression test for issue #28841.
    """
    X = np.random.normal(size=(20, 3))
    y = ["a"] * 10 + ["b"] * 10

    CalibratedClassifierCV(cv=3).fit(X, y)