File size: 18,837 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import inspect
from collections import defaultdict
from functools import partial

import numpy as np
from numpy.testing import assert_array_equal

from sklearn.base import (
    BaseEstimator,
    ClassifierMixin,
    MetaEstimatorMixin,
    RegressorMixin,
    TransformerMixin,
    clone,
)
from sklearn.metrics._scorer import _Scorer, mean_squared_error
from sklearn.model_selection import BaseCrossValidator
from sklearn.model_selection._split import GroupsConsumerMixin
from sklearn.utils._metadata_requests import (
    SIMPLE_METHODS,
)
from sklearn.utils.metadata_routing import (
    MetadataRouter,
    MethodMapping,
    process_routing,
)
from sklearn.utils.multiclass import _check_partial_fit_first_call


def record_metadata(obj, record_default=True, **kwargs):
    """Utility function to store passed metadata to a method of obj.

    If record_default is False, kwargs whose values are "default" are skipped.
    This is so that checks on keyword arguments whose default was not changed
    are skipped.

    """
    stack = inspect.stack()
    callee = stack[1].function
    caller = stack[2].function
    if not hasattr(obj, "_records"):
        obj._records = defaultdict(lambda: defaultdict(list))
    if not record_default:
        kwargs = {
            key: val
            for key, val in kwargs.items()
            if not isinstance(val, str) or (val != "default")
        }
    obj._records[callee][caller].append(kwargs)


def check_recorded_metadata(obj, method, parent, split_params=tuple(), **kwargs):
    """Check whether the expected metadata is passed to the object's method.

    Parameters
    ----------
    obj : estimator object
        sub-estimator to check routed params for
    method : str
        sub-estimator's method where metadata is routed to, or otherwise in
        the context of metadata routing referred to as 'callee'
    parent : str
        the parent method which should have called `method`, or otherwise in
        the context of metadata routing referred to as 'caller'
    split_params : tuple, default=empty
        specifies any parameters which are to be checked as being a subset
        of the original values
    **kwargs : dict
        passed metadata
    """
    all_records = (
        getattr(obj, "_records", dict()).get(method, dict()).get(parent, list())
    )
    for record in all_records:
        # first check that the names of the metadata passed are the same as
        # expected. The names are stored as keys in `record`.
        assert set(kwargs.keys()) == set(
            record.keys()
        ), f"Expected {kwargs.keys()} vs {record.keys()}"
        for key, value in kwargs.items():
            recorded_value = record[key]
            # The following condition is used to check for any specified parameters
            # being a subset of the original values
            if key in split_params and recorded_value is not None:
                assert np.isin(recorded_value, value).all()
            else:
                if isinstance(recorded_value, np.ndarray):
                    assert_array_equal(recorded_value, value)
                else:
                    assert (
                        recorded_value is value
                    ), f"Expected {recorded_value} vs {value}. Method: {method}"


record_metadata_not_default = partial(record_metadata, record_default=False)


def assert_request_is_empty(metadata_request, exclude=None):
    """Check if a metadata request dict is empty.

    One can exclude a method or a list of methods from the check using the
    ``exclude`` parameter. If metadata_request is a MetadataRouter, then
    ``exclude`` can be of the form ``{"object" : [method, ...]}``.
    """
    if isinstance(metadata_request, MetadataRouter):
        for name, route_mapping in metadata_request:
            if exclude is not None and name in exclude:
                _exclude = exclude[name]
            else:
                _exclude = None
            assert_request_is_empty(route_mapping.router, exclude=_exclude)
        return

    exclude = [] if exclude is None else exclude
    for method in SIMPLE_METHODS:
        if method in exclude:
            continue
        mmr = getattr(metadata_request, method)
        props = [
            prop
            for prop, alias in mmr.requests.items()
            if isinstance(alias, str) or alias is not None
        ]
        assert not props


def assert_request_equal(request, dictionary):
    for method, requests in dictionary.items():
        mmr = getattr(request, method)
        assert mmr.requests == requests

    empty_methods = [method for method in SIMPLE_METHODS if method not in dictionary]
    for method in empty_methods:
        assert not len(getattr(request, method).requests)


class _Registry(list):
    # This list is used to get a reference to the sub-estimators, which are not
    # necessarily stored on the metaestimator. We need to override __deepcopy__
    # because the sub-estimators are probably cloned, which would result in a
    # new copy of the list, but we need copy and deep copy both to return the
    # same instance.
    def __deepcopy__(self, memo):
        return self

    def __copy__(self):
        return self


class ConsumingRegressor(RegressorMixin, BaseEstimator):
    """A regressor consuming metadata.

    Parameters
    ----------
    registry : list, default=None
        If a list, the estimator will append itself to the list in order to have
        a reference to the estimator later on. Since that reference is not
        required in all tests, registration can be skipped by leaving this value
        as None.
    """

    def __init__(self, registry=None):
        self.registry = registry

    def partial_fit(self, X, y, sample_weight="default", metadata="default"):
        if self.registry is not None:
            self.registry.append(self)

        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        return self

    def fit(self, X, y, sample_weight="default", metadata="default"):
        if self.registry is not None:
            self.registry.append(self)

        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        return self

    def predict(self, X, y=None, sample_weight="default", metadata="default"):
        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        return np.zeros(shape=(len(X),))

    def score(self, X, y, sample_weight="default", metadata="default"):
        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        return 1


class NonConsumingClassifier(ClassifierMixin, BaseEstimator):
    """A classifier which accepts no metadata on any method."""

    def __init__(self, alpha=0.0):
        self.alpha = alpha

    def fit(self, X, y):
        self.classes_ = np.unique(y)
        self.coef_ = np.ones_like(X)
        return self

    def partial_fit(self, X, y, classes=None):
        return self

    def decision_function(self, X):
        return self.predict(X)

    def predict(self, X):
        y_pred = np.empty(shape=(len(X),))
        y_pred[: len(X) // 2] = 0
        y_pred[len(X) // 2 :] = 1
        return y_pred

    def predict_proba(self, X):
        # dummy probabilities to support predict_proba
        y_proba = np.empty(shape=(len(X), 2))
        y_proba[: len(X) // 2, :] = np.asarray([1.0, 0.0])
        y_proba[len(X) // 2 :, :] = np.asarray([0.0, 1.0])
        return y_proba

    def predict_log_proba(self, X):
        # dummy probabilities to support predict_log_proba
        return self.predict_proba(X)


class NonConsumingRegressor(RegressorMixin, BaseEstimator):
    """A classifier which accepts no metadata on any method."""

    def fit(self, X, y):
        return self

    def partial_fit(self, X, y):
        return self

    def predict(self, X):
        return np.ones(len(X))  # pragma: no cover


class ConsumingClassifier(ClassifierMixin, BaseEstimator):
    """A classifier consuming metadata.

    Parameters
    ----------
    registry : list, default=None
        If a list, the estimator will append itself to the list in order to have
        a reference to the estimator later on. Since that reference is not
        required in all tests, registration can be skipped by leaving this value
        as None.

    alpha : float, default=0
        This parameter is only used to test the ``*SearchCV`` objects, and
        doesn't do anything.
    """

    def __init__(self, registry=None, alpha=0.0):
        self.alpha = alpha
        self.registry = registry

    def partial_fit(
        self, X, y, classes=None, sample_weight="default", metadata="default"
    ):
        if self.registry is not None:
            self.registry.append(self)

        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        _check_partial_fit_first_call(self, classes)
        return self

    def fit(self, X, y, sample_weight="default", metadata="default"):
        if self.registry is not None:
            self.registry.append(self)

        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )

        self.classes_ = np.unique(y)
        self.coef_ = np.ones_like(X)
        return self

    def predict(self, X, sample_weight="default", metadata="default"):
        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        y_score = np.empty(shape=(len(X),), dtype="int8")
        y_score[len(X) // 2 :] = 0
        y_score[: len(X) // 2] = 1
        return y_score

    def predict_proba(self, X, sample_weight="default", metadata="default"):
        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        y_proba = np.empty(shape=(len(X), 2))
        y_proba[: len(X) // 2, :] = np.asarray([1.0, 0.0])
        y_proba[len(X) // 2 :, :] = np.asarray([0.0, 1.0])
        return y_proba

    def predict_log_proba(self, X, sample_weight="default", metadata="default"):
        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        return np.zeros(shape=(len(X), 2))

    def decision_function(self, X, sample_weight="default", metadata="default"):
        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        y_score = np.empty(shape=(len(X),))
        y_score[len(X) // 2 :] = 0
        y_score[: len(X) // 2] = 1
        return y_score

    def score(self, X, y, sample_weight="default", metadata="default"):
        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        return 1


class ConsumingTransformer(TransformerMixin, BaseEstimator):
    """A transformer which accepts metadata on fit and transform.

    Parameters
    ----------
    registry : list, default=None
        If a list, the estimator will append itself to the list in order to have
        a reference to the estimator later on. Since that reference is not
        required in all tests, registration can be skipped by leaving this value
        as None.
    """

    def __init__(self, registry=None):
        self.registry = registry

    def fit(self, X, y=None, sample_weight="default", metadata="default"):
        if self.registry is not None:
            self.registry.append(self)

        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        self.fitted_ = True
        return self

    def transform(self, X, sample_weight="default", metadata="default"):
        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        return X + 1

    def fit_transform(self, X, y, sample_weight="default", metadata="default"):
        # implementing ``fit_transform`` is necessary since
        # ``TransformerMixin.fit_transform`` doesn't route any metadata to
        # ``transform``, while here we want ``transform`` to receive
        # ``sample_weight`` and ``metadata``.
        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        return self.fit(X, y, sample_weight=sample_weight, metadata=metadata).transform(
            X, sample_weight=sample_weight, metadata=metadata
        )

    def inverse_transform(self, X, sample_weight=None, metadata=None):
        record_metadata_not_default(
            self, sample_weight=sample_weight, metadata=metadata
        )
        return X - 1


class ConsumingNoFitTransformTransformer(BaseEstimator):
    """A metadata consuming transformer that doesn't inherit from
    TransformerMixin, and thus doesn't implement `fit_transform`. Note that
    TransformerMixin's `fit_transform` doesn't route metadata to `transform`."""

    def __init__(self, registry=None):
        self.registry = registry

    def fit(self, X, y=None, sample_weight=None, metadata=None):
        if self.registry is not None:
            self.registry.append(self)

        record_metadata(self, sample_weight=sample_weight, metadata=metadata)

        return self

    def transform(self, X, sample_weight=None, metadata=None):
        record_metadata(self, sample_weight=sample_weight, metadata=metadata)
        return X


class ConsumingScorer(_Scorer):
    def __init__(self, registry=None):
        super().__init__(
            score_func=mean_squared_error, sign=1, kwargs={}, response_method="predict"
        )
        self.registry = registry

    def _score(self, method_caller, clf, X, y, **kwargs):
        if self.registry is not None:
            self.registry.append(self)

        record_metadata_not_default(self, **kwargs)

        sample_weight = kwargs.get("sample_weight", None)
        return super()._score(method_caller, clf, X, y, sample_weight=sample_weight)


class ConsumingSplitter(GroupsConsumerMixin, BaseCrossValidator):
    def __init__(self, registry=None):
        self.registry = registry

    def split(self, X, y=None, groups="default", metadata="default"):
        if self.registry is not None:
            self.registry.append(self)

        record_metadata_not_default(self, groups=groups, metadata=metadata)

        split_index = len(X) // 2
        train_indices = list(range(0, split_index))
        test_indices = list(range(split_index, len(X)))
        yield test_indices, train_indices
        yield train_indices, test_indices

    def get_n_splits(self, X=None, y=None, groups=None, metadata=None):
        return 2

    def _iter_test_indices(self, X=None, y=None, groups=None):
        split_index = len(X) // 2
        train_indices = list(range(0, split_index))
        test_indices = list(range(split_index, len(X)))
        yield test_indices
        yield train_indices


class MetaRegressor(MetaEstimatorMixin, RegressorMixin, BaseEstimator):
    """A meta-regressor which is only a router."""

    def __init__(self, estimator):
        self.estimator = estimator

    def fit(self, X, y, **fit_params):
        params = process_routing(self, "fit", **fit_params)
        self.estimator_ = clone(self.estimator).fit(X, y, **params.estimator.fit)

    def get_metadata_routing(self):
        router = MetadataRouter(owner=self.__class__.__name__).add(
            estimator=self.estimator,
            method_mapping=MethodMapping().add(caller="fit", callee="fit"),
        )
        return router


class WeightedMetaRegressor(MetaEstimatorMixin, RegressorMixin, BaseEstimator):
    """A meta-regressor which is also a consumer."""

    def __init__(self, estimator, registry=None):
        self.estimator = estimator
        self.registry = registry

    def fit(self, X, y, sample_weight=None, **fit_params):
        if self.registry is not None:
            self.registry.append(self)

        record_metadata(self, sample_weight=sample_weight)
        params = process_routing(self, "fit", sample_weight=sample_weight, **fit_params)
        self.estimator_ = clone(self.estimator).fit(X, y, **params.estimator.fit)
        return self

    def predict(self, X, **predict_params):
        params = process_routing(self, "predict", **predict_params)
        return self.estimator_.predict(X, **params.estimator.predict)

    def get_metadata_routing(self):
        router = (
            MetadataRouter(owner=self.__class__.__name__)
            .add_self_request(self)
            .add(
                estimator=self.estimator,
                method_mapping=MethodMapping()
                .add(caller="fit", callee="fit")
                .add(caller="predict", callee="predict"),
            )
        )
        return router


class WeightedMetaClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):
    """A meta-estimator which also consumes sample_weight itself in ``fit``."""

    def __init__(self, estimator, registry=None):
        self.estimator = estimator
        self.registry = registry

    def fit(self, X, y, sample_weight=None, **kwargs):
        if self.registry is not None:
            self.registry.append(self)

        record_metadata(self, sample_weight=sample_weight)
        params = process_routing(self, "fit", sample_weight=sample_weight, **kwargs)
        self.estimator_ = clone(self.estimator).fit(X, y, **params.estimator.fit)
        return self

    def get_metadata_routing(self):
        router = (
            MetadataRouter(owner=self.__class__.__name__)
            .add_self_request(self)
            .add(
                estimator=self.estimator,
                method_mapping=MethodMapping().add(caller="fit", callee="fit"),
            )
        )
        return router


class MetaTransformer(MetaEstimatorMixin, TransformerMixin, BaseEstimator):
    """A simple meta-transformer."""

    def __init__(self, transformer):
        self.transformer = transformer

    def fit(self, X, y=None, **fit_params):
        params = process_routing(self, "fit", **fit_params)
        self.transformer_ = clone(self.transformer).fit(X, y, **params.transformer.fit)
        return self

    def transform(self, X, y=None, **transform_params):
        params = process_routing(self, "transform", **transform_params)
        return self.transformer_.transform(X, **params.transformer.transform)

    def get_metadata_routing(self):
        return MetadataRouter(owner=self.__class__.__name__).add(
            transformer=self.transformer,
            method_mapping=MethodMapping()
            .add(caller="fit", callee="fit")
            .add(caller="transform", callee="transform"),
        )