File size: 97,769 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
"""
The :mod:`sklearn.model_selection._validation` module includes classes and
functions to validate the model.
"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause


import numbers
import time
import warnings
from collections import Counter
from contextlib import suppress
from functools import partial
from numbers import Real
from traceback import format_exc

import numpy as np
import scipy.sparse as sp
from joblib import logger

from ..base import clone, is_classifier
from ..exceptions import FitFailedWarning, UnsetMetadataPassedError
from ..metrics import check_scoring, get_scorer_names
from ..metrics._scorer import _MultimetricScorer
from ..preprocessing import LabelEncoder
from ..utils import Bunch, _safe_indexing, check_random_state, indexable
from ..utils._array_api import device, get_namespace
from ..utils._param_validation import (
    HasMethods,
    Integral,
    Interval,
    StrOptions,
    validate_params,
)
from ..utils.metadata_routing import (
    MetadataRouter,
    MethodMapping,
    _routing_enabled,
    process_routing,
)
from ..utils.metaestimators import _safe_split
from ..utils.parallel import Parallel, delayed
from ..utils.validation import _check_method_params, _num_samples
from ._split import check_cv

__all__ = [
    "cross_validate",
    "cross_val_score",
    "cross_val_predict",
    "permutation_test_score",
    "learning_curve",
    "validation_curve",
]


def _check_params_groups_deprecation(fit_params, params, groups, version):
    """A helper function to check deprecations on `groups` and `fit_params`.

    # TODO(SLEP6): To be removed when set_config(enable_metadata_routing=False) is not
    # possible.
    """
    if params is not None and fit_params is not None:
        raise ValueError(
            "`params` and `fit_params` cannot both be provided. Pass parameters "
            "via `params`. `fit_params` is deprecated and will be removed in "
            f"version {version}."
        )
    elif fit_params is not None:
        warnings.warn(
            (
                "`fit_params` is deprecated and will be removed in version {version}. "
                "Pass parameters via `params` instead."
            ),
            FutureWarning,
        )
        params = fit_params

    params = {} if params is None else params

    _check_groups_routing_disabled(groups)

    return params


# TODO(SLEP6): To be removed when set_config(enable_metadata_routing=False) is not
# possible.
def _check_groups_routing_disabled(groups):
    if groups is not None and _routing_enabled():
        raise ValueError(
            "`groups` can only be passed if metadata routing is not enabled via"
            " `sklearn.set_config(enable_metadata_routing=True)`. When routing is"
            " enabled, pass `groups` alongside other metadata via the `params` argument"
            " instead."
        )


@validate_params(
    {
        "estimator": [HasMethods("fit")],
        "X": ["array-like", "sparse matrix"],
        "y": ["array-like", None],
        "groups": ["array-like", None],
        "scoring": [
            StrOptions(set(get_scorer_names())),
            callable,
            list,
            tuple,
            dict,
            None,
        ],
        "cv": ["cv_object"],
        "n_jobs": [Integral, None],
        "verbose": ["verbose"],
        "params": [dict, None],
        "pre_dispatch": [Integral, str],
        "return_train_score": ["boolean"],
        "return_estimator": ["boolean"],
        "return_indices": ["boolean"],
        "error_score": [StrOptions({"raise"}), Real],
    },
    prefer_skip_nested_validation=False,  # estimator is not validated yet
)
def cross_validate(
    estimator,
    X,
    y=None,
    *,
    groups=None,
    scoring=None,
    cv=None,
    n_jobs=None,
    verbose=0,
    params=None,
    pre_dispatch="2*n_jobs",
    return_train_score=False,
    return_estimator=False,
    return_indices=False,
    error_score=np.nan,
):
    """Evaluate metric(s) by cross-validation and also record fit/score times.

    Read more in the :ref:`User Guide <multimetric_cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        The data to fit. Can be for example a list, or an array.

    y : array-like of shape (n_samples,) or (n_samples, n_outputs), default=None
        The target variable to try to predict in the case of
        supervised learning.

    groups : array-like of shape (n_samples,), default=None
        Group labels for the samples used while splitting the dataset into
        train/test set. Only used in conjunction with a "Group" :term:`cv`
        instance (e.g., :class:`GroupKFold`).

        .. versionchanged:: 1.4
            ``groups`` can only be passed if metadata routing is not enabled
            via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
            is enabled, pass ``groups`` alongside other metadata via the ``params``
            argument instead. E.g.:
            ``cross_validate(..., params={'groups': groups})``.

    scoring : str, callable, list, tuple, or dict, default=None
        Strategy to evaluate the performance of the cross-validated model on
        the test set. If `None`, the
        :ref:`default evaluation criterion <scoring_api_overview>` of the estimator
        is used.

        If `scoring` represents a single score, one can use:

        - a single string (see :ref:`scoring_parameter`);
        - a callable (see :ref:`scoring_callable`) that returns a single value.

        If `scoring` represents multiple scores, one can use:

        - a list or tuple of unique strings;
        - a callable returning a dictionary where the keys are the metric
          names and the values are the metric scores;
        - a dictionary with metric names as keys and callables a values.

        See :ref:`multimetric_grid_search` for an example.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 5-fold cross validation,
        - int, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For int/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used. These splitters are instantiated
        with `shuffle=False` so the splits will be the same across calls.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.22
            ``cv`` default value if None changed from 3-fold to 5-fold.

    n_jobs : int, default=None
        Number of jobs to run in parallel. Training the estimator and computing
        the score are parallelized over the cross-validation splits.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    verbose : int, default=0
        The verbosity level.

    params : dict, default=None
        Parameters to pass to the underlying estimator's ``fit``, the scorer,
        and the CV splitter.

        .. versionadded:: 1.4

    pre_dispatch : int or str, default='2*n_jobs'
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

        - An int, giving the exact number of total jobs that are spawned
        - A str, giving an expression as a function of n_jobs, as in '2*n_jobs'

    return_train_score : bool, default=False
        Whether to include train scores.
        Computing training scores is used to get insights on how different
        parameter settings impact the overfitting/underfitting trade-off.
        However computing the scores on the training set can be computationally
        expensive and is not strictly required to select the parameters that
        yield the best generalization performance.

        .. versionadded:: 0.19

        .. versionchanged:: 0.21
            Default value was changed from ``True`` to ``False``

    return_estimator : bool, default=False
        Whether to return the estimators fitted on each split.

        .. versionadded:: 0.20

    return_indices : bool, default=False
        Whether to return the train-test indices selected for each split.

        .. versionadded:: 1.3

    error_score : 'raise' or numeric, default=np.nan
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised.
        If a numeric value is given, FitFailedWarning is raised.

        .. versionadded:: 0.20

    Returns
    -------
    scores : dict of float arrays of shape (n_splits,)
        Array of scores of the estimator for each run of the cross validation.

        A dict of arrays containing the score/time arrays for each scorer is
        returned. The possible keys for this ``dict`` are:

        ``test_score``
            The score array for test scores on each cv split.
            Suffix ``_score`` in ``test_score`` changes to a specific
            metric like ``test_r2`` or ``test_auc`` if there are
            multiple scoring metrics in the scoring parameter.
        ``train_score``
            The score array for train scores on each cv split.
            Suffix ``_score`` in ``train_score`` changes to a specific
            metric like ``train_r2`` or ``train_auc`` if there are
            multiple scoring metrics in the scoring parameter.
            This is available only if ``return_train_score`` parameter
            is ``True``.
        ``fit_time``
            The time for fitting the estimator on the train
            set for each cv split.
        ``score_time``
            The time for scoring the estimator on the test set for each
            cv split. (Note time for scoring on the train set is not
            included even if ``return_train_score`` is set to ``True``
        ``estimator``
            The estimator objects for each cv split.
            This is available only if ``return_estimator`` parameter
            is set to ``True``.
        ``indices``
            The train/test positional indices for each cv split. A dictionary
            is returned where the keys are either `"train"` or `"test"`
            and the associated values are a list of integer-dtyped NumPy
            arrays with the indices. Available only if `return_indices=True`.

    See Also
    --------
    cross_val_score : Run cross-validation for single metric evaluation.

    cross_val_predict : Get predictions from each split of cross-validation for
        diagnostic purposes.

    sklearn.metrics.make_scorer : Make a scorer from a performance metric or
        loss function.

    Examples
    --------
    >>> from sklearn import datasets, linear_model
    >>> from sklearn.model_selection import cross_validate
    >>> from sklearn.metrics import make_scorer
    >>> from sklearn.metrics import confusion_matrix
    >>> from sklearn.svm import LinearSVC
    >>> diabetes = datasets.load_diabetes()
    >>> X = diabetes.data[:150]
    >>> y = diabetes.target[:150]
    >>> lasso = linear_model.Lasso()

    Single metric evaluation using ``cross_validate``

    >>> cv_results = cross_validate(lasso, X, y, cv=3)
    >>> sorted(cv_results.keys())
    ['fit_time', 'score_time', 'test_score']
    >>> cv_results['test_score']
    array([0.3315057 , 0.08022103, 0.03531816])

    Multiple metric evaluation using ``cross_validate``
    (please refer the ``scoring`` parameter doc for more information)

    >>> scores = cross_validate(lasso, X, y, cv=3,
    ...                         scoring=('r2', 'neg_mean_squared_error'),
    ...                         return_train_score=True)
    >>> print(scores['test_neg_mean_squared_error'])
    [-3635.5... -3573.3... -6114.7...]
    >>> print(scores['train_r2'])
    [0.28009951 0.3908844  0.22784907]
    """
    _check_groups_routing_disabled(groups)

    X, y = indexable(X, y)
    params = {} if params is None else params
    cv = check_cv(cv, y, classifier=is_classifier(estimator))

    scorers = check_scoring(
        estimator, scoring=scoring, raise_exc=(error_score == "raise")
    )

    if _routing_enabled():
        # For estimators, a MetadataRouter is created in get_metadata_routing
        # methods. For these router methods, we create the router to use
        # `process_routing` on it.
        router = (
            MetadataRouter(owner="cross_validate")
            .add(
                splitter=cv,
                method_mapping=MethodMapping().add(caller="fit", callee="split"),
            )
            .add(
                estimator=estimator,
                # TODO(SLEP6): also pass metadata to the predict method for
                # scoring?
                method_mapping=MethodMapping().add(caller="fit", callee="fit"),
            )
            .add(
                scorer=scorers,
                method_mapping=MethodMapping().add(caller="fit", callee="score"),
            )
        )
        try:
            routed_params = process_routing(router, "fit", **params)
        except UnsetMetadataPassedError as e:
            # The default exception would mention `fit` since in the above
            # `process_routing` code, we pass `fit` as the caller. However,
            # the user is not calling `fit` directly, so we change the message
            # to make it more suitable for this case.
            unrequested_params = sorted(e.unrequested_params)
            raise UnsetMetadataPassedError(
                message=(
                    f"{unrequested_params} are passed to cross validation but are not"
                    " explicitly set as requested or not requested for cross_validate's"
                    f" estimator: {estimator.__class__.__name__}. Call"
                    " `.set_fit_request({{metadata}}=True)` on the estimator for"
                    f" each metadata in {unrequested_params} that you"
                    " want to use and `metadata=False` for not using it. See the"
                    " Metadata Routing User guide"
                    " <https://scikit-learn.org/stable/metadata_routing.html> for more"
                    " information."
                ),
                unrequested_params=e.unrequested_params,
                routed_params=e.routed_params,
            )
    else:
        routed_params = Bunch()
        routed_params.splitter = Bunch(split={"groups": groups})
        routed_params.estimator = Bunch(fit=params)
        routed_params.scorer = Bunch(score={})

    indices = cv.split(X, y, **routed_params.splitter.split)
    if return_indices:
        # materialize the indices since we need to store them in the returned dict
        indices = list(indices)

    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
    results = parallel(
        delayed(_fit_and_score)(
            clone(estimator),
            X,
            y,
            scorer=scorers,
            train=train,
            test=test,
            verbose=verbose,
            parameters=None,
            fit_params=routed_params.estimator.fit,
            score_params=routed_params.scorer.score,
            return_train_score=return_train_score,
            return_times=True,
            return_estimator=return_estimator,
            error_score=error_score,
        )
        for train, test in indices
    )

    _warn_or_raise_about_fit_failures(results, error_score)

    # For callable scoring, the return type is only know after calling. If the
    # return type is a dictionary, the error scores can now be inserted with
    # the correct key.
    if callable(scoring):
        _insert_error_scores(results, error_score)

    results = _aggregate_score_dicts(results)

    ret = {}
    ret["fit_time"] = results["fit_time"]
    ret["score_time"] = results["score_time"]

    if return_estimator:
        ret["estimator"] = results["estimator"]

    if return_indices:
        ret["indices"] = {}
        ret["indices"]["train"], ret["indices"]["test"] = zip(*indices)

    test_scores_dict = _normalize_score_results(results["test_scores"])
    if return_train_score:
        train_scores_dict = _normalize_score_results(results["train_scores"])

    for name in test_scores_dict:
        ret["test_%s" % name] = test_scores_dict[name]
        if return_train_score:
            key = "train_%s" % name
            ret[key] = train_scores_dict[name]

    return ret


def _insert_error_scores(results, error_score):
    """Insert error in `results` by replacing them inplace with `error_score`.

    This only applies to multimetric scores because `_fit_and_score` will
    handle the single metric case.
    """
    successful_score = None
    failed_indices = []
    for i, result in enumerate(results):
        if result["fit_error"] is not None:
            failed_indices.append(i)
        elif successful_score is None:
            successful_score = result["test_scores"]

    if isinstance(successful_score, dict):
        formatted_error = {name: error_score for name in successful_score}
        for i in failed_indices:
            results[i]["test_scores"] = formatted_error.copy()
            if "train_scores" in results[i]:
                results[i]["train_scores"] = formatted_error.copy()


def _normalize_score_results(scores, scaler_score_key="score"):
    """Creates a scoring dictionary based on the type of `scores`"""
    if isinstance(scores[0], dict):
        # multimetric scoring
        return _aggregate_score_dicts(scores)
    # scaler
    return {scaler_score_key: scores}


def _warn_or_raise_about_fit_failures(results, error_score):
    fit_errors = [
        result["fit_error"] for result in results if result["fit_error"] is not None
    ]
    if fit_errors:
        num_failed_fits = len(fit_errors)
        num_fits = len(results)
        fit_errors_counter = Counter(fit_errors)
        delimiter = "-" * 80 + "\n"
        fit_errors_summary = "\n".join(
            f"{delimiter}{n} fits failed with the following error:\n{error}"
            for error, n in fit_errors_counter.items()
        )

        if num_failed_fits == num_fits:
            all_fits_failed_message = (
                f"\nAll the {num_fits} fits failed.\n"
                "It is very likely that your model is misconfigured.\n"
                "You can try to debug the error by setting error_score='raise'.\n\n"
                f"Below are more details about the failures:\n{fit_errors_summary}"
            )
            raise ValueError(all_fits_failed_message)

        else:
            some_fits_failed_message = (
                f"\n{num_failed_fits} fits failed out of a total of {num_fits}.\n"
                "The score on these train-test partitions for these parameters"
                f" will be set to {error_score}.\n"
                "If these failures are not expected, you can try to debug them "
                "by setting error_score='raise'.\n\n"
                f"Below are more details about the failures:\n{fit_errors_summary}"
            )
            warnings.warn(some_fits_failed_message, FitFailedWarning)


@validate_params(
    {
        "estimator": [HasMethods("fit")],
        "X": ["array-like", "sparse matrix"],
        "y": ["array-like", None],
        "groups": ["array-like", None],
        "scoring": [StrOptions(set(get_scorer_names())), callable, None],
        "cv": ["cv_object"],
        "n_jobs": [Integral, None],
        "verbose": ["verbose"],
        "params": [dict, None],
        "pre_dispatch": [Integral, str, None],
        "error_score": [StrOptions({"raise"}), Real],
    },
    prefer_skip_nested_validation=False,  # estimator is not validated yet
)
def cross_val_score(
    estimator,
    X,
    y=None,
    *,
    groups=None,
    scoring=None,
    cv=None,
    n_jobs=None,
    verbose=0,
    params=None,
    pre_dispatch="2*n_jobs",
    error_score=np.nan,
):
    """Evaluate a score by cross-validation.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        The data to fit. Can be for example a list, or an array.

    y : array-like of shape (n_samples,) or (n_samples, n_outputs), \
            default=None
        The target variable to try to predict in the case of
        supervised learning.

    groups : array-like of shape (n_samples,), default=None
        Group labels for the samples used while splitting the dataset into
        train/test set. Only used in conjunction with a "Group" :term:`cv`
        instance (e.g., :class:`GroupKFold`).

        .. versionchanged:: 1.4
            ``groups`` can only be passed if metadata routing is not enabled
            via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
            is enabled, pass ``groups`` alongside other metadata via the ``params``
            argument instead. E.g.:
            ``cross_val_score(..., params={'groups': groups})``.

    scoring : str or callable, default=None
        A str (see :ref:`scoring_parameter`) or a scorer callable object / function with
        signature ``scorer(estimator, X, y)`` which should return only a single value.

        Similar to :func:`cross_validate`
        but only a single metric is permitted.

        If `None`, the estimator's default scorer (if available) is used.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - `None`, to use the default 5-fold cross validation,
        - int, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable that generates (train, test) splits as arrays of indices.

        For `int`/`None` inputs, if the estimator is a classifier and `y` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used. These splitters are instantiated
        with `shuffle=False` so the splits will be the same across calls.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.22
            `cv` default value if `None` changed from 3-fold to 5-fold.

    n_jobs : int, default=None
        Number of jobs to run in parallel. Training the estimator and computing
        the score are parallelized over the cross-validation splits.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    verbose : int, default=0
        The verbosity level.

    params : dict, default=None
        Parameters to pass to the underlying estimator's ``fit``, the scorer,
        and the CV splitter.

        .. versionadded:: 1.4

    pre_dispatch : int or str, default='2*n_jobs'
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

        - ``None``, in which case all the jobs are immediately created and spawned. Use
          this for lightweight and fast-running jobs, to avoid delays due to on-demand
          spawning of the jobs
        - An int, giving the exact number of total jobs that are spawned
        - A str, giving an expression as a function of n_jobs, as in '2*n_jobs'

    error_score : 'raise' or numeric, default=np.nan
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised.
        If a numeric value is given, FitFailedWarning is raised.

        .. versionadded:: 0.20

    Returns
    -------
    scores : ndarray of float of shape=(len(list(cv)),)
        Array of scores of the estimator for each run of the cross validation.

    See Also
    --------
    cross_validate : To run cross-validation on multiple metrics and also to
        return train scores, fit times and score times.

    cross_val_predict : Get predictions from each split of cross-validation for
        diagnostic purposes.

    sklearn.metrics.make_scorer : Make a scorer from a performance metric or
        loss function.

    Examples
    --------
    >>> from sklearn import datasets, linear_model
    >>> from sklearn.model_selection import cross_val_score
    >>> diabetes = datasets.load_diabetes()
    >>> X = diabetes.data[:150]
    >>> y = diabetes.target[:150]
    >>> lasso = linear_model.Lasso()
    >>> print(cross_val_score(lasso, X, y, cv=3))
    [0.3315057  0.08022103 0.03531816]
    """
    # To ensure multimetric format is not supported
    scorer = check_scoring(estimator, scoring=scoring)

    cv_results = cross_validate(
        estimator=estimator,
        X=X,
        y=y,
        groups=groups,
        scoring={"score": scorer},
        cv=cv,
        n_jobs=n_jobs,
        verbose=verbose,
        params=params,
        pre_dispatch=pre_dispatch,
        error_score=error_score,
    )
    return cv_results["test_score"]


def _fit_and_score(
    estimator,
    X,
    y,
    *,
    scorer,
    train,
    test,
    verbose,
    parameters,
    fit_params,
    score_params,
    return_train_score=False,
    return_parameters=False,
    return_n_test_samples=False,
    return_times=False,
    return_estimator=False,
    split_progress=None,
    candidate_progress=None,
    error_score=np.nan,
):
    """Fit estimator and compute scores for a given dataset split.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like of shape (n_samples, n_features)
        The data to fit.

    y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
        The target variable to try to predict in the case of
        supervised learning.

    scorer : A single callable or dict mapping scorer name to the callable
        If it is a single callable, the return value for ``train_scores`` and
        ``test_scores`` is a single float.

        For a dict, it should be one mapping the scorer name to the scorer
        callable object / function.

        The callable object / fn should have signature
        ``scorer(estimator, X, y)``.

    train : array-like of shape (n_train_samples,)
        Indices of training samples.

    test : array-like of shape (n_test_samples,)
        Indices of test samples.

    verbose : int
        The verbosity level.

    error_score : 'raise' or numeric, default=np.nan
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised.
        If a numeric value is given, FitFailedWarning is raised.

    parameters : dict or None
        Parameters to be set on the estimator.

    fit_params : dict or None
        Parameters that will be passed to ``estimator.fit``.

    score_params : dict or None
        Parameters that will be passed to the scorer.

    return_train_score : bool, default=False
        Compute and return score on training set.

    return_parameters : bool, default=False
        Return parameters that has been used for the estimator.

    split_progress : {list, tuple} of int, default=None
        A list or tuple of format (<current_split_id>, <total_num_of_splits>).

    candidate_progress : {list, tuple} of int, default=None
        A list or tuple of format
        (<current_candidate_id>, <total_number_of_candidates>).

    return_n_test_samples : bool, default=False
        Whether to return the ``n_test_samples``.

    return_times : bool, default=False
        Whether to return the fit/score times.

    return_estimator : bool, default=False
        Whether to return the fitted estimator.

    Returns
    -------
    result : dict with the following attributes
        train_scores : dict of scorer name -> float
            Score on training set (for all the scorers),
            returned only if `return_train_score` is `True`.
        test_scores : dict of scorer name -> float
            Score on testing set (for all the scorers).
        n_test_samples : int
            Number of test samples.
        fit_time : float
            Time spent for fitting in seconds.
        score_time : float
            Time spent for scoring in seconds.
        parameters : dict or None
            The parameters that have been evaluated.
        estimator : estimator object
            The fitted estimator.
        fit_error : str or None
            Traceback str if the fit failed, None if the fit succeeded.
    """
    xp, _ = get_namespace(X)
    X_device = device(X)

    # Make sure that we can fancy index X even if train and test are provided
    # as NumPy arrays by NumPy only cross-validation splitters.
    train, test = xp.asarray(train, device=X_device), xp.asarray(test, device=X_device)

    if not isinstance(error_score, numbers.Number) and error_score != "raise":
        raise ValueError(
            "error_score must be the string 'raise' or a numeric value. "
            "(Hint: if using 'raise', please make sure that it has been "
            "spelled correctly.)"
        )

    progress_msg = ""
    if verbose > 2:
        if split_progress is not None:
            progress_msg = f" {split_progress[0]+1}/{split_progress[1]}"
        if candidate_progress and verbose > 9:
            progress_msg += f"; {candidate_progress[0]+1}/{candidate_progress[1]}"

    if verbose > 1:
        if parameters is None:
            params_msg = ""
        else:
            sorted_keys = sorted(parameters)  # Ensure deterministic o/p
            params_msg = ", ".join(f"{k}={parameters[k]}" for k in sorted_keys)
    if verbose > 9:
        start_msg = f"[CV{progress_msg}] START {params_msg}"
        print(f"{start_msg}{(80 - len(start_msg)) * '.'}")

    # Adjust length of sample weights
    fit_params = fit_params if fit_params is not None else {}
    fit_params = _check_method_params(X, params=fit_params, indices=train)
    score_params = score_params if score_params is not None else {}
    score_params_train = _check_method_params(X, params=score_params, indices=train)
    score_params_test = _check_method_params(X, params=score_params, indices=test)

    if parameters is not None:
        # here we clone the parameters, since sometimes the parameters
        # themselves might be estimators, e.g. when we search over different
        # estimators in a pipeline.
        # ref: https://github.com/scikit-learn/scikit-learn/pull/26786
        estimator = estimator.set_params(**clone(parameters, safe=False))

    start_time = time.time()

    X_train, y_train = _safe_split(estimator, X, y, train)
    X_test, y_test = _safe_split(estimator, X, y, test, train)

    result = {}
    try:
        if y_train is None:
            estimator.fit(X_train, **fit_params)
        else:
            estimator.fit(X_train, y_train, **fit_params)

    except Exception:
        # Note fit time as time until error
        fit_time = time.time() - start_time
        score_time = 0.0
        if error_score == "raise":
            raise
        elif isinstance(error_score, numbers.Number):
            if isinstance(scorer, _MultimetricScorer):
                test_scores = {name: error_score for name in scorer._scorers}
                if return_train_score:
                    train_scores = test_scores.copy()
            else:
                test_scores = error_score
                if return_train_score:
                    train_scores = error_score
        result["fit_error"] = format_exc()
    else:
        result["fit_error"] = None

        fit_time = time.time() - start_time
        test_scores = _score(
            estimator, X_test, y_test, scorer, score_params_test, error_score
        )
        score_time = time.time() - start_time - fit_time
        if return_train_score:
            train_scores = _score(
                estimator, X_train, y_train, scorer, score_params_train, error_score
            )

    if verbose > 1:
        total_time = score_time + fit_time
        end_msg = f"[CV{progress_msg}] END "
        result_msg = params_msg + (";" if params_msg else "")
        if verbose > 2:
            if isinstance(test_scores, dict):
                for scorer_name in sorted(test_scores):
                    result_msg += f" {scorer_name}: ("
                    if return_train_score:
                        scorer_scores = train_scores[scorer_name]
                        result_msg += f"train={scorer_scores:.3f}, "
                    result_msg += f"test={test_scores[scorer_name]:.3f})"
            else:
                result_msg += ", score="
                if return_train_score:
                    result_msg += f"(train={train_scores:.3f}, test={test_scores:.3f})"
                else:
                    result_msg += f"{test_scores:.3f}"
        result_msg += f" total time={logger.short_format_time(total_time)}"

        # Right align the result_msg
        end_msg += "." * (80 - len(end_msg) - len(result_msg))
        end_msg += result_msg
        print(end_msg)

    result["test_scores"] = test_scores
    if return_train_score:
        result["train_scores"] = train_scores
    if return_n_test_samples:
        result["n_test_samples"] = _num_samples(X_test)
    if return_times:
        result["fit_time"] = fit_time
        result["score_time"] = score_time
    if return_parameters:
        result["parameters"] = parameters
    if return_estimator:
        result["estimator"] = estimator
    return result


def _score(estimator, X_test, y_test, scorer, score_params, error_score="raise"):
    """Compute the score(s) of an estimator on a given test set.

    Will return a dict of floats if `scorer` is a _MultiMetricScorer, otherwise a single
    float is returned.
    """
    score_params = {} if score_params is None else score_params

    try:
        if y_test is None:
            scores = scorer(estimator, X_test, **score_params)
        else:
            scores = scorer(estimator, X_test, y_test, **score_params)
    except Exception:
        if isinstance(scorer, _MultimetricScorer):
            # If `_MultimetricScorer` raises exception, the `error_score`
            # parameter is equal to "raise".
            raise
        else:
            if error_score == "raise":
                raise
            else:
                scores = error_score
                warnings.warn(
                    (
                        "Scoring failed. The score on this train-test partition for "
                        f"these parameters will be set to {error_score}. Details: \n"
                        f"{format_exc()}"
                    ),
                    UserWarning,
                )

    # Check non-raised error messages in `_MultimetricScorer`
    if isinstance(scorer, _MultimetricScorer):
        exception_messages = [
            (name, str_e) for name, str_e in scores.items() if isinstance(str_e, str)
        ]
        if exception_messages:
            # error_score != "raise"
            for name, str_e in exception_messages:
                scores[name] = error_score
                warnings.warn(
                    (
                        "Scoring failed. The score on this train-test partition for "
                        f"these parameters will be set to {error_score}. Details: \n"
                        f"{str_e}"
                    ),
                    UserWarning,
                )

    error_msg = "scoring must return a number, got %s (%s) instead. (scorer=%s)"
    if isinstance(scores, dict):
        for name, score in scores.items():
            if hasattr(score, "item"):
                with suppress(ValueError):
                    # e.g. unwrap memmapped scalars
                    score = score.item()
            if not isinstance(score, numbers.Number):
                raise ValueError(error_msg % (score, type(score), name))
            scores[name] = score
    else:  # scalar
        if hasattr(scores, "item"):
            with suppress(ValueError):
                # e.g. unwrap memmapped scalars
                scores = scores.item()
        if not isinstance(scores, numbers.Number):
            raise ValueError(error_msg % (scores, type(scores), scorer))
    return scores


@validate_params(
    {
        "estimator": [HasMethods(["fit", "predict"])],
        "X": ["array-like", "sparse matrix"],
        "y": ["array-like", "sparse matrix", None],
        "groups": ["array-like", None],
        "cv": ["cv_object"],
        "n_jobs": [Integral, None],
        "verbose": ["verbose"],
        "params": [dict, None],
        "pre_dispatch": [Integral, str, None],
        "method": [
            StrOptions(
                {
                    "predict",
                    "predict_proba",
                    "predict_log_proba",
                    "decision_function",
                }
            )
        ],
    },
    prefer_skip_nested_validation=False,  # estimator is not validated yet
)
def cross_val_predict(
    estimator,
    X,
    y=None,
    *,
    groups=None,
    cv=None,
    n_jobs=None,
    verbose=0,
    params=None,
    pre_dispatch="2*n_jobs",
    method="predict",
):
    """Generate cross-validated estimates for each input data point.

    The data is split according to the cv parameter. Each sample belongs
    to exactly one test set, and its prediction is computed with an
    estimator fitted on the corresponding training set.

    Passing these predictions into an evaluation metric may not be a valid
    way to measure generalization performance. Results can differ from
    :func:`cross_validate` and :func:`cross_val_score` unless all tests sets
    have equal size and the metric decomposes over samples.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator
        The estimator instance to use to fit the data. It must implement a `fit`
        method and the method given by the `method` parameter.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        The data to fit. Can be, for example a list, or an array at least 2d.

    y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs), \
            default=None
        The target variable to try to predict in the case of
        supervised learning.

    groups : array-like of shape (n_samples,), default=None
        Group labels for the samples used while splitting the dataset into
        train/test set. Only used in conjunction with a "Group" :term:`cv`
        instance (e.g., :class:`GroupKFold`).

        .. versionchanged:: 1.4
            ``groups`` can only be passed if metadata routing is not enabled
            via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
            is enabled, pass ``groups`` alongside other metadata via the ``params``
            argument instead. E.g.:
            ``cross_val_predict(..., params={'groups': groups})``.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 5-fold cross validation,
        - int, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable that generates (train, test) splits as arrays of indices.

        For int/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used. These splitters are instantiated
        with `shuffle=False` so the splits will be the same across calls.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.22
            ``cv`` default value if None changed from 3-fold to 5-fold.

    n_jobs : int, default=None
        Number of jobs to run in parallel. Training the estimator and
        predicting are parallelized over the cross-validation splits.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    verbose : int, default=0
        The verbosity level.

    params : dict, default=None
        Parameters to pass to the underlying estimator's ``fit`` and the CV
        splitter.

        .. versionadded:: 1.4

    pre_dispatch : int or str, default='2*n_jobs'
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

        - None, in which case all the jobs are immediately created and spawned. Use
          this for lightweight and fast-running jobs, to avoid delays due to on-demand
          spawning of the jobs
        - An int, giving the exact number of total jobs that are spawned
        - A str, giving an expression as a function of n_jobs, as in '2*n_jobs'

    method : {'predict', 'predict_proba', 'predict_log_proba', \
              'decision_function'}, default='predict'
        The method to be invoked by `estimator`.

    Returns
    -------
    predictions : ndarray
        This is the result of calling `method`. Shape:

        - When `method` is 'predict' and in special case where `method` is
          'decision_function' and the target is binary: (n_samples,)
        - When `method` is one of {'predict_proba', 'predict_log_proba',
          'decision_function'} (unless special case above):
          (n_samples, n_classes)
        - If `estimator` is :term:`multioutput`, an extra dimension
          'n_outputs' is added to the end of each shape above.

    See Also
    --------
    cross_val_score : Calculate score for each CV split.
    cross_validate : Calculate one or more scores and timings for each CV
        split.

    Notes
    -----
    In the case that one or more classes are absent in a training portion, a
    default score needs to be assigned to all instances for that class if
    ``method`` produces columns per class, as in {'decision_function',
    'predict_proba', 'predict_log_proba'}.  For ``predict_proba`` this value is
    0.  In order to ensure finite output, we approximate negative infinity by
    the minimum finite float value for the dtype in other cases.

    Examples
    --------
    >>> from sklearn import datasets, linear_model
    >>> from sklearn.model_selection import cross_val_predict
    >>> diabetes = datasets.load_diabetes()
    >>> X = diabetes.data[:150]
    >>> y = diabetes.target[:150]
    >>> lasso = linear_model.Lasso()
    >>> y_pred = cross_val_predict(lasso, X, y, cv=3)
    """
    _check_groups_routing_disabled(groups)
    X, y = indexable(X, y)
    params = {} if params is None else params

    if _routing_enabled():
        # For estimators, a MetadataRouter is created in get_metadata_routing
        # methods. For these router methods, we create the router to use
        # `process_routing` on it.
        router = (
            MetadataRouter(owner="cross_validate")
            .add(
                splitter=cv,
                method_mapping=MethodMapping().add(caller="fit", callee="split"),
            )
            .add(
                estimator=estimator,
                # TODO(SLEP6): also pass metadata for the predict method.
                method_mapping=MethodMapping().add(caller="fit", callee="fit"),
            )
        )
        try:
            routed_params = process_routing(router, "fit", **params)
        except UnsetMetadataPassedError as e:
            # The default exception would mention `fit` since in the above
            # `process_routing` code, we pass `fit` as the caller. However,
            # the user is not calling `fit` directly, so we change the message
            # to make it more suitable for this case.
            unrequested_params = sorted(e.unrequested_params)
            raise UnsetMetadataPassedError(
                message=(
                    f"{unrequested_params} are passed to `cross_val_predict` but are"
                    " not explicitly set as requested or not requested for"
                    f" cross_validate's estimator: {estimator.__class__.__name__} Call"
                    " `.set_fit_request({{metadata}}=True)` on the estimator for"
                    f" each metadata in {unrequested_params} that you want to use and"
                    " `metadata=False` for not using it. See the Metadata Routing User"
                    " guide <https://scikit-learn.org/stable/metadata_routing.html>"
                    " for more information."
                ),
                unrequested_params=e.unrequested_params,
                routed_params=e.routed_params,
            )
    else:
        routed_params = Bunch()
        routed_params.splitter = Bunch(split={"groups": groups})
        routed_params.estimator = Bunch(fit=params)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))
    splits = list(cv.split(X, y, **routed_params.splitter.split))

    test_indices = np.concatenate([test for _, test in splits])
    if not _check_is_permutation(test_indices, _num_samples(X)):
        raise ValueError("cross_val_predict only works for partitions")

    # If classification methods produce multiple columns of output,
    # we need to manually encode classes to ensure consistent column ordering.
    encode = (
        method in ["decision_function", "predict_proba", "predict_log_proba"]
        and y is not None
    )
    if encode:
        y = np.asarray(y)
        if y.ndim == 1:
            le = LabelEncoder()
            y = le.fit_transform(y)
        elif y.ndim == 2:
            y_enc = np.zeros_like(y, dtype=int)
            for i_label in range(y.shape[1]):
                y_enc[:, i_label] = LabelEncoder().fit_transform(y[:, i_label])
            y = y_enc

    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
    predictions = parallel(
        delayed(_fit_and_predict)(
            clone(estimator),
            X,
            y,
            train,
            test,
            routed_params.estimator.fit,
            method,
        )
        for train, test in splits
    )

    inv_test_indices = np.empty(len(test_indices), dtype=int)
    inv_test_indices[test_indices] = np.arange(len(test_indices))

    if sp.issparse(predictions[0]):
        predictions = sp.vstack(predictions, format=predictions[0].format)
    elif encode and isinstance(predictions[0], list):
        # `predictions` is a list of method outputs from each fold.
        # If each of those is also a list, then treat this as a
        # multioutput-multiclass task. We need to separately concatenate
        # the method outputs for each label into an `n_labels` long list.
        n_labels = y.shape[1]
        concat_pred = []
        for i_label in range(n_labels):
            label_preds = np.concatenate([p[i_label] for p in predictions])
            concat_pred.append(label_preds)
        predictions = concat_pred
    else:
        predictions = np.concatenate(predictions)

    if isinstance(predictions, list):
        return [p[inv_test_indices] for p in predictions]
    else:
        return predictions[inv_test_indices]


def _fit_and_predict(estimator, X, y, train, test, fit_params, method):
    """Fit estimator and predict values for a given dataset split.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit' and 'predict'
        The object to use to fit the data.

    X : array-like of shape (n_samples, n_features)
        The data to fit.

        .. versionchanged:: 0.20
            X is only required to be an object with finite length or shape now

    y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
        The target variable to try to predict in the case of
        supervised learning.

    train : array-like of shape (n_train_samples,)
        Indices of training samples.

    test : array-like of shape (n_test_samples,)
        Indices of test samples.

    fit_params : dict or None
        Parameters that will be passed to ``estimator.fit``.

    method : str
        Invokes the passed method name of the passed estimator.

    Returns
    -------
    predictions : sequence
        Result of calling 'estimator.method'
    """
    # Adjust length of sample weights
    fit_params = fit_params if fit_params is not None else {}
    fit_params = _check_method_params(X, params=fit_params, indices=train)

    X_train, y_train = _safe_split(estimator, X, y, train)
    X_test, _ = _safe_split(estimator, X, y, test, train)

    if y_train is None:
        estimator.fit(X_train, **fit_params)
    else:
        estimator.fit(X_train, y_train, **fit_params)
    func = getattr(estimator, method)
    predictions = func(X_test)

    encode = (
        method in ["decision_function", "predict_proba", "predict_log_proba"]
        and y is not None
    )

    if encode:
        if isinstance(predictions, list):
            predictions = [
                _enforce_prediction_order(
                    estimator.classes_[i_label],
                    predictions[i_label],
                    n_classes=len(set(y[:, i_label])),
                    method=method,
                )
                for i_label in range(len(predictions))
            ]
        else:
            # A 2D y array should be a binary label indicator matrix
            n_classes = len(set(y)) if y.ndim == 1 else y.shape[1]
            predictions = _enforce_prediction_order(
                estimator.classes_, predictions, n_classes, method
            )
    return predictions


def _enforce_prediction_order(classes, predictions, n_classes, method):
    """Ensure that prediction arrays have correct column order

    When doing cross-validation, if one or more classes are
    not present in the subset of data used for training,
    then the output prediction array might not have the same
    columns as other folds. Use the list of class names
    (assumed to be ints) to enforce the correct column order.

    Note that `classes` is the list of classes in this fold
    (a subset of the classes in the full training set)
    and `n_classes` is the number of classes in the full training set.
    """
    if n_classes != len(classes):
        recommendation = (
            "To fix this, use a cross-validation "
            "technique resulting in properly "
            "stratified folds"
        )
        warnings.warn(
            "Number of classes in training fold ({}) does "
            "not match total number of classes ({}). "
            "Results may not be appropriate for your use case. "
            "{}".format(len(classes), n_classes, recommendation),
            RuntimeWarning,
        )
        if method == "decision_function":
            if predictions.ndim == 2 and predictions.shape[1] != len(classes):
                # This handles the case when the shape of predictions
                # does not match the number of classes used to train
                # it with. This case is found when sklearn.svm.SVC is
                # set to `decision_function_shape='ovo'`.
                raise ValueError(
                    "Output shape {} of {} does not match "
                    "number of classes ({}) in fold. "
                    "Irregular decision_function outputs "
                    "are not currently supported by "
                    "cross_val_predict".format(predictions.shape, method, len(classes))
                )
            if len(classes) <= 2:
                # In this special case, `predictions` contains a 1D array.
                raise ValueError(
                    "Only {} class/es in training fold, but {} "
                    "in overall dataset. This "
                    "is not supported for decision_function "
                    "with imbalanced folds. {}".format(
                        len(classes), n_classes, recommendation
                    )
                )

        float_min = np.finfo(predictions.dtype).min
        default_values = {
            "decision_function": float_min,
            "predict_log_proba": float_min,
            "predict_proba": 0,
        }
        predictions_for_all_classes = np.full(
            (_num_samples(predictions), n_classes),
            default_values[method],
            dtype=predictions.dtype,
        )
        predictions_for_all_classes[:, classes] = predictions
        predictions = predictions_for_all_classes
    return predictions


def _check_is_permutation(indices, n_samples):
    """Check whether indices is a reordering of the array np.arange(n_samples)

    Parameters
    ----------
    indices : ndarray
        int array to test
    n_samples : int
        number of expected elements

    Returns
    -------
    is_partition : bool
        True iff sorted(indices) is np.arange(n)
    """
    if len(indices) != n_samples:
        return False
    hit = np.zeros(n_samples, dtype=bool)
    hit[indices] = True
    if not np.all(hit):
        return False
    return True


@validate_params(
    {
        "estimator": [HasMethods("fit")],
        "X": ["array-like", "sparse matrix"],
        "y": ["array-like", None],
        "groups": ["array-like", None],
        "cv": ["cv_object"],
        "n_permutations": [Interval(Integral, 1, None, closed="left")],
        "n_jobs": [Integral, None],
        "random_state": ["random_state"],
        "verbose": ["verbose"],
        "scoring": [StrOptions(set(get_scorer_names())), callable, None],
        "fit_params": [dict, None],
        "params": [dict, None],
    },
    prefer_skip_nested_validation=False,  # estimator is not validated yet
)
def permutation_test_score(
    estimator,
    X,
    y,
    *,
    groups=None,
    cv=None,
    n_permutations=100,
    n_jobs=None,
    random_state=0,
    verbose=0,
    scoring=None,
    fit_params=None,
    params=None,
):
    """Evaluate the significance of a cross-validated score with permutations.

    Permutes targets to generate 'randomized data' and compute the empirical
    p-value against the null hypothesis that features and targets are
    independent.

    The p-value represents the fraction of randomized data sets where the
    estimator performed as well or better than in the original data. A small
    p-value suggests that there is a real dependency between features and
    targets which has been used by the estimator to give good predictions.
    A large p-value may be due to lack of real dependency between features
    and targets or the estimator was not able to use the dependency to
    give good predictions.

    Read more in the :ref:`User Guide <permutation_test_score>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like of shape at least 2D
        The data to fit.

    y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
        The target variable to try to predict in the case of
        supervised learning.

    groups : array-like of shape (n_samples,), default=None
        Labels to constrain permutation within groups, i.e. ``y`` values
        are permuted among samples with the same group identifier.
        When not specified, ``y`` values are permuted among all samples.

        When a grouped cross-validator is used, the group labels are
        also passed on to the ``split`` method of the cross-validator. The
        cross-validator uses them for grouping the samples  while splitting
        the dataset into train/test set.

        .. versionchanged:: 1.6
            ``groups`` can only be passed if metadata routing is not enabled
            via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
            is enabled, pass ``groups`` alongside other metadata via the ``params``
            argument instead. E.g.:
            ``permutation_test_score(..., params={'groups': groups})``.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - `None`, to use the default 5-fold cross validation,
        - int, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For `int`/`None` inputs, if the estimator is a classifier and `y` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used. These splitters are instantiated
        with `shuffle=False` so the splits will be the same across calls.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.22
            `cv` default value if `None` changed from 3-fold to 5-fold.

    n_permutations : int, default=100
        Number of times to permute ``y``.

    n_jobs : int, default=None
        Number of jobs to run in parallel. Training the estimator and computing
        the cross-validated score are parallelized over the permutations.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    random_state : int, RandomState instance or None, default=0
        Pass an int for reproducible output for permutation of
        ``y`` values among samples. See :term:`Glossary <random_state>`.

    verbose : int, default=0
        The verbosity level.

    scoring : str or callable, default=None
        A single str (see :ref:`scoring_parameter`) or a callable
        (see :ref:`scoring_callable`) to evaluate the predictions on the test set.

        If `None` the estimator's score method is used.

    fit_params : dict, default=None
        Parameters to pass to the fit method of the estimator.

        .. deprecated:: 1.6
            This parameter is deprecated and will be removed in version 1.6. Use
            ``params`` instead.

    params : dict, default=None
        Parameters to pass to the `fit` method of the estimator, the scorer
        and the cv splitter.

        - If `enable_metadata_routing=False` (default): Parameters directly passed to
          the `fit` method of the estimator.

        - If `enable_metadata_routing=True`: Parameters safely routed to the `fit`
          method of the estimator, `cv` object and `scorer`. See :ref:`Metadata Routing
          User Guide <metadata_routing>` for more details.

        .. versionadded:: 1.6

    Returns
    -------
    score : float
        The true score without permuting targets.

    permutation_scores : array of shape (n_permutations,)
        The scores obtained for each permutations.

    pvalue : float
        The p-value, which approximates the probability that the score would
        be obtained by chance. This is calculated as:

        `(C + 1) / (n_permutations + 1)`

        Where C is the number of permutations whose score >= the true score.

        The best possible p-value is 1/(n_permutations + 1), the worst is 1.0.

    Notes
    -----
    This function implements Test 1 in:

    Ojala and Garriga. `Permutation Tests for Studying Classifier Performance
    <http://www.jmlr.org/papers/volume11/ojala10a/ojala10a.pdf>`_. The
    Journal of Machine Learning Research (2010) vol. 11

    Examples
    --------
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.linear_model import LogisticRegression
    >>> from sklearn.model_selection import permutation_test_score
    >>> X, y = make_classification(random_state=0)
    >>> estimator = LogisticRegression()
    >>> score, permutation_scores, pvalue = permutation_test_score(
    ...     estimator, X, y, random_state=0
    ... )
    >>> print(f"Original Score: {score:.3f}")
    Original Score: 0.810
    >>> print(
    ...     f"Permutation Scores: {permutation_scores.mean():.3f} +/- "
    ...     f"{permutation_scores.std():.3f}"
    ... )
    Permutation Scores: 0.505 +/- 0.057
    >>> print(f"P-value: {pvalue:.3f}")
    P-value: 0.010
    """
    params = _check_params_groups_deprecation(fit_params, params, groups, "1.8")

    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))
    scorer = check_scoring(estimator, scoring=scoring)
    random_state = check_random_state(random_state)

    if _routing_enabled():
        router = (
            MetadataRouter(owner="permutation_test_score")
            .add(
                estimator=estimator,
                # TODO(SLEP6): also pass metadata to the predict method for
                # scoring?
                method_mapping=MethodMapping().add(caller="fit", callee="fit"),
            )
            .add(
                splitter=cv,
                method_mapping=MethodMapping().add(caller="fit", callee="split"),
            )
            .add(
                scorer=scorer,
                method_mapping=MethodMapping().add(caller="fit", callee="score"),
            )
        )

        try:
            routed_params = process_routing(router, "fit", **params)
        except UnsetMetadataPassedError as e:
            # The default exception would mention `fit` since in the above
            # `process_routing` code, we pass `fit` as the caller. However,
            # the user is not calling `fit` directly, so we change the message
            # to make it more suitable for this case.
            unrequested_params = sorted(e.unrequested_params)
            raise UnsetMetadataPassedError(
                message=(
                    f"{unrequested_params} are passed to `permutation_test_score`"
                    " but are not explicitly set as requested or not requested"
                    " for permutation_test_score's"
                    f" estimator: {estimator.__class__.__name__}. Call"
                    " `.set_fit_request({{metadata}}=True)` on the estimator for"
                    f" each metadata in {unrequested_params} that you"
                    " want to use and `metadata=False` for not using it. See the"
                    " Metadata Routing User guide"
                    " <https://scikit-learn.org/stable/metadata_routing.html> for more"
                    " information."
                ),
                unrequested_params=e.unrequested_params,
                routed_params=e.routed_params,
            )

    else:
        routed_params = Bunch()
        routed_params.estimator = Bunch(fit=params)
        routed_params.splitter = Bunch(split={"groups": groups})
        routed_params.scorer = Bunch(score={})

    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    score = _permutation_test_score(
        clone(estimator),
        X,
        y,
        cv,
        scorer,
        split_params=routed_params.splitter.split,
        fit_params=routed_params.estimator.fit,
        score_params=routed_params.scorer.score,
    )
    permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)(
        delayed(_permutation_test_score)(
            clone(estimator),
            X,
            _shuffle(y, groups, random_state),
            cv,
            scorer,
            split_params=routed_params.splitter.split,
            fit_params=routed_params.estimator.fit,
            score_params=routed_params.scorer.score,
        )
        for _ in range(n_permutations)
    )
    permutation_scores = np.array(permutation_scores)
    pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1)
    return score, permutation_scores, pvalue


def _permutation_test_score(
    estimator, X, y, cv, scorer, split_params, fit_params, score_params
):
    """Auxiliary function for permutation_test_score"""
    # Adjust length of sample weights
    fit_params = fit_params if fit_params is not None else {}
    score_params = score_params if score_params is not None else {}

    avg_score = []
    for train, test in cv.split(X, y, **split_params):
        X_train, y_train = _safe_split(estimator, X, y, train)
        X_test, y_test = _safe_split(estimator, X, y, test, train)
        fit_params_train = _check_method_params(X, params=fit_params, indices=train)
        score_params_test = _check_method_params(X, params=score_params, indices=test)
        estimator.fit(X_train, y_train, **fit_params_train)
        avg_score.append(scorer(estimator, X_test, y_test, **score_params_test))
    return np.mean(avg_score)


def _shuffle(y, groups, random_state):
    """Return a shuffled copy of y eventually shuffle among same groups."""
    if groups is None:
        indices = random_state.permutation(len(y))
    else:
        indices = np.arange(len(groups))
        for group in np.unique(groups):
            this_mask = groups == group
            indices[this_mask] = random_state.permutation(indices[this_mask])
    return _safe_indexing(y, indices)


@validate_params(
    {
        "estimator": [HasMethods(["fit"])],
        "X": ["array-like", "sparse matrix"],
        "y": ["array-like", None],
        "groups": ["array-like", None],
        "train_sizes": ["array-like"],
        "cv": ["cv_object"],
        "scoring": [StrOptions(set(get_scorer_names())), callable, None],
        "exploit_incremental_learning": ["boolean"],
        "n_jobs": [Integral, None],
        "pre_dispatch": [Integral, str],
        "verbose": ["verbose"],
        "shuffle": ["boolean"],
        "random_state": ["random_state"],
        "error_score": [StrOptions({"raise"}), Real],
        "return_times": ["boolean"],
        "fit_params": [dict, None],
        "params": [dict, None],
    },
    prefer_skip_nested_validation=False,  # estimator is not validated yet
)
def learning_curve(
    estimator,
    X,
    y,
    *,
    groups=None,
    train_sizes=np.linspace(0.1, 1.0, 5),
    cv=None,
    scoring=None,
    exploit_incremental_learning=False,
    n_jobs=None,
    pre_dispatch="all",
    verbose=0,
    shuffle=False,
    random_state=None,
    error_score=np.nan,
    return_times=False,
    fit_params=None,
    params=None,
):
    """Learning curve.

    Determines cross-validated training and test scores for different training
    set sizes.

    A cross-validation generator splits the whole dataset k times in training
    and test data. Subsets of the training set with varying sizes will be used
    to train the estimator and a score for each training subset size and the
    test set will be computed. Afterwards, the scores will be averaged over
    all k runs for each training subset size.

    Read more in the :ref:`User Guide <learning_curve>`.

    Parameters
    ----------
    estimator : object type that implements the "fit" method
        An object of that type which is cloned for each validation. It must
        also implement "predict" unless `scoring` is a callable that doesn't
        rely on "predict" to compute a score.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training vector, where `n_samples` is the number of samples and
        `n_features` is the number of features.

    y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
        Target relative to X for classification or regression;
        None for unsupervised learning.

    groups : array-like of shape (n_samples,), default=None
        Group labels for the samples used while splitting the dataset into
        train/test set. Only used in conjunction with a "Group" :term:`cv`
        instance (e.g., :class:`GroupKFold`).

        .. versionchanged:: 1.6
            ``groups`` can only be passed if metadata routing is not enabled
            via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
            is enabled, pass ``groups`` alongside other metadata via the ``params``
            argument instead. E.g.:
            ``learning_curve(..., params={'groups': groups})``.

    train_sizes : array-like of shape (n_ticks,), \
            default=np.linspace(0.1, 1.0, 5)
        Relative or absolute numbers of training examples that will be used to
        generate the learning curve. If the dtype is float, it is regarded as a
        fraction of the maximum size of the training set (that is determined
        by the selected validation method), i.e. it has to be within (0, 1].
        Otherwise it is interpreted as absolute sizes of the training sets.
        Note that for classification the number of samples usually has to
        be big enough to contain at least one sample from each class.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 5-fold cross validation,
        - int, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For int/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used. These splitters are instantiated
        with `shuffle=False` so the splits will be the same across calls.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.22
            ``cv`` default value if None changed from 3-fold to 5-fold.

    scoring : str or callable, default=None
        A str (see :ref:`scoring_parameter`) or a scorer callable object / function with
        signature ``scorer(estimator, X, y)``.

    exploit_incremental_learning : bool, default=False
        If the estimator supports incremental learning, this will be
        used to speed up fitting for different training set sizes.

    n_jobs : int, default=None
        Number of jobs to run in parallel. Training the estimator and computing
        the score are parallelized over the different training and test sets.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    pre_dispatch : int or str, default='all'
        Number of predispatched jobs for parallel execution (default is
        all). The option can reduce the allocated memory. The str can
        be an expression like '2*n_jobs'.

    verbose : int, default=0
        Controls the verbosity: the higher, the more messages.

    shuffle : bool, default=False
        Whether to shuffle training data before taking prefixes of it
        based on``train_sizes``.

    random_state : int, RandomState instance or None, default=None
        Used when ``shuffle`` is True. Pass an int for reproducible
        output across multiple function calls.
        See :term:`Glossary <random_state>`.

    error_score : 'raise' or numeric, default=np.nan
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised.
        If a numeric value is given, FitFailedWarning is raised.

        .. versionadded:: 0.20

    return_times : bool, default=False
        Whether to return the fit and score times.

    fit_params : dict, default=None
        Parameters to pass to the fit method of the estimator.

        .. deprecated:: 1.6
            This parameter is deprecated and will be removed in version 1.8. Use
            ``params`` instead.

    params : dict, default=None
        Parameters to pass to the `fit` method of the estimator and to the scorer.

        - If `enable_metadata_routing=False` (default): Parameters directly passed to
          the `fit` method of the estimator.

        - If `enable_metadata_routing=True`: Parameters safely routed to the `fit`
          method of the estimator. See :ref:`Metadata Routing User Guide
          <metadata_routing>` for more details.

        .. versionadded:: 1.6

    Returns
    -------
    train_sizes_abs : array of shape (n_unique_ticks,)
        Numbers of training examples that has been used to generate the
        learning curve. Note that the number of ticks might be less
        than n_ticks because duplicate entries will be removed.

    train_scores : array of shape (n_ticks, n_cv_folds)
        Scores on training sets.

    test_scores : array of shape (n_ticks, n_cv_folds)
        Scores on test set.

    fit_times : array of shape (n_ticks, n_cv_folds)
        Times spent for fitting in seconds. Only present if ``return_times``
        is True.

    score_times : array of shape (n_ticks, n_cv_folds)
        Times spent for scoring in seconds. Only present if ``return_times``
        is True.

    Examples
    --------
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.tree import DecisionTreeClassifier
    >>> from sklearn.model_selection import learning_curve
    >>> X, y = make_classification(n_samples=100, n_features=10, random_state=42)
    >>> tree = DecisionTreeClassifier(max_depth=4, random_state=42)
    >>> train_size_abs, train_scores, test_scores = learning_curve(
    ...     tree, X, y, train_sizes=[0.3, 0.6, 0.9]
    ... )
    >>> for train_size, cv_train_scores, cv_test_scores in zip(
    ...     train_size_abs, train_scores, test_scores
    ... ):
    ...     print(f"{train_size} samples were used to train the model")
    ...     print(f"The average train accuracy is {cv_train_scores.mean():.2f}")
    ...     print(f"The average test accuracy is {cv_test_scores.mean():.2f}")
    24 samples were used to train the model
    The average train accuracy is 1.00
    The average test accuracy is 0.85
    48 samples were used to train the model
    The average train accuracy is 1.00
    The average test accuracy is 0.90
    72 samples were used to train the model
    The average train accuracy is 1.00
    The average test accuracy is 0.93
    """
    if exploit_incremental_learning and not hasattr(estimator, "partial_fit"):
        raise ValueError(
            "An estimator must support the partial_fit interface "
            "to exploit incremental learning"
        )

    params = _check_params_groups_deprecation(fit_params, params, groups, "1.8")

    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))

    scorer = check_scoring(estimator, scoring=scoring)

    if _routing_enabled():
        router = (
            MetadataRouter(owner="learning_curve")
            .add(
                estimator=estimator,
                # TODO(SLEP6): also pass metadata to the predict method for
                # scoring?
                method_mapping=MethodMapping()
                .add(caller="fit", callee="fit")
                .add(caller="fit", callee="partial_fit"),
            )
            .add(
                splitter=cv,
                method_mapping=MethodMapping().add(caller="fit", callee="split"),
            )
            .add(
                scorer=scorer,
                method_mapping=MethodMapping().add(caller="fit", callee="score"),
            )
        )

        try:
            routed_params = process_routing(router, "fit", **params)
        except UnsetMetadataPassedError as e:
            # The default exception would mention `fit` since in the above
            # `process_routing` code, we pass `fit` as the caller. However,
            # the user is not calling `fit` directly, so we change the message
            # to make it more suitable for this case.
            unrequested_params = sorted(e.unrequested_params)
            raise UnsetMetadataPassedError(
                message=(
                    f"{unrequested_params} are passed to `learning_curve` but are not"
                    " explicitly set as requested or not requested for learning_curve's"
                    f" estimator: {estimator.__class__.__name__}. Call"
                    " `.set_fit_request({{metadata}}=True)` on the estimator for"
                    f" each metadata in {unrequested_params} that you"
                    " want to use and `metadata=False` for not using it. See the"
                    " Metadata Routing User guide"
                    " <https://scikit-learn.org/stable/metadata_routing.html> for more"
                    " information."
                ),
                unrequested_params=e.unrequested_params,
                routed_params=e.routed_params,
            )

    else:
        routed_params = Bunch()
        routed_params.estimator = Bunch(fit=params, partial_fit=params)
        routed_params.splitter = Bunch(split={"groups": groups})
        routed_params.scorer = Bunch(score={})

    # Store cv as list as we will be iterating over the list multiple times
    cv_iter = list(cv.split(X, y, **routed_params.splitter.split))

    n_max_training_samples = len(cv_iter[0][0])
    # Because the lengths of folds can be significantly different, it is
    # not guaranteed that we use all of the available training data when we
    # use the first 'n_max_training_samples' samples.
    train_sizes_abs = _translate_train_sizes(train_sizes, n_max_training_samples)
    n_unique_ticks = train_sizes_abs.shape[0]
    if verbose > 0:
        print("[learning_curve] Training set sizes: " + str(train_sizes_abs))

    parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose)

    if shuffle:
        rng = check_random_state(random_state)
        cv_iter = ((rng.permutation(train), test) for train, test in cv_iter)

    if exploit_incremental_learning:
        classes = np.unique(y) if is_classifier(estimator) else None
        out = parallel(
            delayed(_incremental_fit_estimator)(
                clone(estimator),
                X,
                y,
                classes,
                train,
                test,
                train_sizes_abs,
                scorer,
                return_times,
                error_score=error_score,
                fit_params=routed_params.estimator.partial_fit,
                score_params=routed_params.scorer.score,
            )
            for train, test in cv_iter
        )
        out = np.asarray(out).transpose((2, 1, 0))
    else:
        train_test_proportions = []
        for train, test in cv_iter:
            for n_train_samples in train_sizes_abs:
                train_test_proportions.append((train[:n_train_samples], test))

        results = parallel(
            delayed(_fit_and_score)(
                clone(estimator),
                X,
                y,
                scorer=scorer,
                train=train,
                test=test,
                verbose=verbose,
                parameters=None,
                fit_params=routed_params.estimator.fit,
                score_params=routed_params.scorer.score,
                return_train_score=True,
                error_score=error_score,
                return_times=return_times,
            )
            for train, test in train_test_proportions
        )
        _warn_or_raise_about_fit_failures(results, error_score)
        results = _aggregate_score_dicts(results)
        train_scores = results["train_scores"].reshape(-1, n_unique_ticks).T
        test_scores = results["test_scores"].reshape(-1, n_unique_ticks).T
        out = [train_scores, test_scores]

        if return_times:
            fit_times = results["fit_time"].reshape(-1, n_unique_ticks).T
            score_times = results["score_time"].reshape(-1, n_unique_ticks).T
            out.extend([fit_times, score_times])

    ret = train_sizes_abs, out[0], out[1]

    if return_times:
        ret = ret + (out[2], out[3])

    return ret


def _translate_train_sizes(train_sizes, n_max_training_samples):
    """Determine absolute sizes of training subsets and validate 'train_sizes'.

    Examples:
        _translate_train_sizes([0.5, 1.0], 10) -> [5, 10]
        _translate_train_sizes([5, 10], 10) -> [5, 10]

    Parameters
    ----------
    train_sizes : array-like of shape (n_ticks,)
        Numbers of training examples that will be used to generate the
        learning curve. If the dtype is float, it is regarded as a
        fraction of 'n_max_training_samples', i.e. it has to be within (0, 1].

    n_max_training_samples : int
        Maximum number of training samples (upper bound of 'train_sizes').

    Returns
    -------
    train_sizes_abs : array of shape (n_unique_ticks,)
        Numbers of training examples that will be used to generate the
        learning curve. Note that the number of ticks might be less
        than n_ticks because duplicate entries will be removed.
    """
    train_sizes_abs = np.asarray(train_sizes)
    n_ticks = train_sizes_abs.shape[0]
    n_min_required_samples = np.min(train_sizes_abs)
    n_max_required_samples = np.max(train_sizes_abs)
    if np.issubdtype(train_sizes_abs.dtype, np.floating):
        if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0:
            raise ValueError(
                "train_sizes has been interpreted as fractions "
                "of the maximum number of training samples and "
                "must be within (0, 1], but is within [%f, %f]."
                % (n_min_required_samples, n_max_required_samples)
            )
        train_sizes_abs = (train_sizes_abs * n_max_training_samples).astype(
            dtype=int, copy=False
        )
        train_sizes_abs = np.clip(train_sizes_abs, 1, n_max_training_samples)
    else:
        if (
            n_min_required_samples <= 0
            or n_max_required_samples > n_max_training_samples
        ):
            raise ValueError(
                "train_sizes has been interpreted as absolute "
                "numbers of training samples and must be within "
                "(0, %d], but is within [%d, %d]."
                % (
                    n_max_training_samples,
                    n_min_required_samples,
                    n_max_required_samples,
                )
            )

    train_sizes_abs = np.unique(train_sizes_abs)
    if n_ticks > train_sizes_abs.shape[0]:
        warnings.warn(
            "Removed duplicate entries from 'train_sizes'. Number "
            "of ticks will be less than the size of "
            "'train_sizes': %d instead of %d." % (train_sizes_abs.shape[0], n_ticks),
            RuntimeWarning,
        )

    return train_sizes_abs


def _incremental_fit_estimator(
    estimator,
    X,
    y,
    classes,
    train,
    test,
    train_sizes,
    scorer,
    return_times,
    error_score,
    fit_params,
    score_params,
):
    """Train estimator on training subsets incrementally and compute scores."""
    train_scores, test_scores, fit_times, score_times = [], [], [], []
    partitions = zip(train_sizes, np.split(train, train_sizes)[:-1])
    if fit_params is None:
        fit_params = {}
    if classes is None:
        partial_fit_func = partial(estimator.partial_fit, **fit_params)
    else:
        partial_fit_func = partial(estimator.partial_fit, classes=classes, **fit_params)
    score_params = score_params if score_params is not None else {}
    score_params_train = _check_method_params(X, params=score_params, indices=train)
    score_params_test = _check_method_params(X, params=score_params, indices=test)

    for n_train_samples, partial_train in partitions:
        train_subset = train[:n_train_samples]
        X_train, y_train = _safe_split(estimator, X, y, train_subset)
        X_partial_train, y_partial_train = _safe_split(estimator, X, y, partial_train)
        X_test, y_test = _safe_split(estimator, X, y, test, train_subset)
        start_fit = time.time()
        if y_partial_train is None:
            partial_fit_func(X_partial_train)
        else:
            partial_fit_func(X_partial_train, y_partial_train)
        fit_time = time.time() - start_fit
        fit_times.append(fit_time)

        start_score = time.time()

        test_scores.append(
            _score(
                estimator,
                X_test,
                y_test,
                scorer,
                score_params=score_params_test,
                error_score=error_score,
            )
        )
        train_scores.append(
            _score(
                estimator,
                X_train,
                y_train,
                scorer,
                score_params=score_params_train,
                error_score=error_score,
            )
        )
        score_time = time.time() - start_score
        score_times.append(score_time)

    ret = (
        (train_scores, test_scores, fit_times, score_times)
        if return_times
        else (train_scores, test_scores)
    )

    return np.array(ret).T


@validate_params(
    {
        "estimator": [HasMethods(["fit"])],
        "X": ["array-like", "sparse matrix"],
        "y": ["array-like", None],
        "param_name": [str],
        "param_range": ["array-like"],
        "groups": ["array-like", None],
        "cv": ["cv_object"],
        "scoring": [StrOptions(set(get_scorer_names())), callable, None],
        "n_jobs": [Integral, None],
        "pre_dispatch": [Integral, str],
        "verbose": ["verbose"],
        "error_score": [StrOptions({"raise"}), Real],
        "fit_params": [dict, None],
        "params": [dict, None],
    },
    prefer_skip_nested_validation=False,  # estimator is not validated yet
)
def validation_curve(
    estimator,
    X,
    y,
    *,
    param_name,
    param_range,
    groups=None,
    cv=None,
    scoring=None,
    n_jobs=None,
    pre_dispatch="all",
    verbose=0,
    error_score=np.nan,
    fit_params=None,
    params=None,
):
    """Validation curve.

    Determine training and test scores for varying parameter values.

    Compute scores for an estimator with different values of a specified
    parameter. This is similar to grid search with one parameter. However, this
    will also compute training scores and is merely a utility for plotting the
    results.

    Read more in the :ref:`User Guide <validation_curve>`.

    Parameters
    ----------
    estimator : object type that implements the "fit" method
        An object of that type which is cloned for each validation. It must
        also implement "predict" unless `scoring` is a callable that doesn't
        rely on "predict" to compute a score.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training vector, where `n_samples` is the number of samples and
        `n_features` is the number of features.

    y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
        Target relative to X for classification or regression;
        None for unsupervised learning.

    param_name : str
        Name of the parameter that will be varied.

    param_range : array-like of shape (n_values,)
        The values of the parameter that will be evaluated.

    groups : array-like of shape (n_samples,), default=None
        Group labels for the samples used while splitting the dataset into
        train/test set. Only used in conjunction with a "Group" :term:`cv`
        instance (e.g., :class:`GroupKFold`).

        .. versionchanged:: 1.6
            ``groups`` can only be passed if metadata routing is not enabled
            via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
            is enabled, pass ``groups`` alongside other metadata via the ``params``
            argument instead. E.g.:
            ``validation_curve(..., params={'groups': groups})``.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 5-fold cross validation,
        - int, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For int/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used. These splitters are instantiated
        with `shuffle=False` so the splits will be the same across calls.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.22
            ``cv`` default value if None changed from 3-fold to 5-fold.

    scoring : str or callable, default=None
        A str (see :ref:`scoring_parameter`) or a scorer callable object / function with
        signature ``scorer(estimator, X, y)``.

    n_jobs : int, default=None
        Number of jobs to run in parallel. Training the estimator and computing
        the score are parallelized over the combinations of each parameter
        value and each cross-validation split.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    pre_dispatch : int or str, default='all'
        Number of predispatched jobs for parallel execution (default is
        all). The option can reduce the allocated memory. The str can
        be an expression like '2*n_jobs'.

    verbose : int, default=0
        Controls the verbosity: the higher, the more messages.

    error_score : 'raise' or numeric, default=np.nan
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised.
        If a numeric value is given, FitFailedWarning is raised.

        .. versionadded:: 0.20

    fit_params : dict, default=None
        Parameters to pass to the fit method of the estimator.

        .. deprecated:: 1.6
            This parameter is deprecated and will be removed in version 1.8. Use
            ``params`` instead.

    params : dict, default=None
        Parameters to pass to the estimator, scorer and cross-validation object.

        - If `enable_metadata_routing=False` (default): Parameters directly passed to
          the `fit` method of the estimator.

        - If `enable_metadata_routing=True`: Parameters safely routed to the `fit`
          method of the estimator, to the scorer and to the cross-validation object.
          See :ref:`Metadata Routing User Guide <metadata_routing>` for more details.

        .. versionadded:: 1.6

    Returns
    -------
    train_scores : array of shape (n_ticks, n_cv_folds)
        Scores on training sets.

    test_scores : array of shape (n_ticks, n_cv_folds)
        Scores on test set.

    Notes
    -----
    See :ref:`sphx_glr_auto_examples_model_selection_plot_train_error_vs_test_error.py`

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.model_selection import validation_curve
    >>> from sklearn.linear_model import LogisticRegression
    >>> X, y = make_classification(n_samples=1_000, random_state=0)
    >>> logistic_regression = LogisticRegression()
    >>> param_name, param_range = "C", np.logspace(-8, 3, 10)
    >>> train_scores, test_scores = validation_curve(
    ...     logistic_regression, X, y, param_name=param_name, param_range=param_range
    ... )
    >>> print(f"The average train accuracy is {train_scores.mean():.2f}")
    The average train accuracy is 0.81
    >>> print(f"The average test accuracy is {test_scores.mean():.2f}")
    The average test accuracy is 0.81
    """
    params = _check_params_groups_deprecation(fit_params, params, groups, "1.8")
    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))
    scorer = check_scoring(estimator, scoring=scoring)

    if _routing_enabled():
        router = (
            MetadataRouter(owner="validation_curve")
            .add(
                estimator=estimator,
                method_mapping=MethodMapping().add(caller="fit", callee="fit"),
            )
            .add(
                splitter=cv,
                method_mapping=MethodMapping().add(caller="fit", callee="split"),
            )
            .add(
                scorer=scorer,
                method_mapping=MethodMapping().add(caller="fit", callee="score"),
            )
        )

        try:
            routed_params = process_routing(router, "fit", **params)
        except UnsetMetadataPassedError as e:
            # The default exception would mention `fit` since in the above
            # `process_routing` code, we pass `fit` as the caller. However,
            # the user is not calling `fit` directly, so we change the message
            # to make it more suitable for this case.
            unrequested_params = sorted(e.unrequested_params)
            raise UnsetMetadataPassedError(
                message=(
                    f"{unrequested_params} are passed to `validation_curve` but are not"
                    " explicitly set as requested or not requested for"
                    f" validation_curve's estimator: {estimator.__class__.__name__}."
                    " Call `.set_fit_request({{metadata}}=True)` on the estimator for"
                    f" each metadata in {unrequested_params} that you"
                    " want to use and `metadata=False` for not using it. See the"
                    " Metadata Routing User guide"
                    " <https://scikit-learn.org/stable/metadata_routing.html> for more"
                    " information."
                ),
                unrequested_params=e.unrequested_params,
                routed_params=e.routed_params,
            )

    else:
        routed_params = Bunch()
        routed_params.estimator = Bunch(fit=params)
        routed_params.splitter = Bunch(split={"groups": groups})
        routed_params.scorer = Bunch(score={})

    parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose)
    results = parallel(
        delayed(_fit_and_score)(
            clone(estimator),
            X,
            y,
            scorer=scorer,
            train=train,
            test=test,
            verbose=verbose,
            parameters={param_name: v},
            fit_params=routed_params.estimator.fit,
            score_params=routed_params.scorer.score,
            return_train_score=True,
            error_score=error_score,
        )
        # NOTE do not change order of iteration to allow one time cv splitters
        for train, test in cv.split(X, y, **routed_params.splitter.split)
        for v in param_range
    )
    n_params = len(param_range)

    results = _aggregate_score_dicts(results)
    train_scores = results["train_scores"].reshape(-1, n_params).T
    test_scores = results["test_scores"].reshape(-1, n_params).T

    return train_scores, test_scores


def _aggregate_score_dicts(scores):
    """Aggregate the list of dict to dict of np ndarray

    The aggregated output of _aggregate_score_dicts will be a list of dict
    of form [{'prec': 0.1, 'acc':1.0}, {'prec': 0.1, 'acc':1.0}, ...]
    Convert it to a dict of array {'prec': np.array([0.1 ...]), ...}

    Parameters
    ----------

    scores : list of dict
        List of dicts of the scores for all scorers. This is a flat list,
        assumed originally to be of row major order.

    Example
    -------

    >>> scores = [{'a': 1, 'b':10}, {'a': 2, 'b':2}, {'a': 3, 'b':3},
    ...           {'a': 10, 'b': 10}]                         # doctest: +SKIP
    >>> _aggregate_score_dicts(scores)                        # doctest: +SKIP
    {'a': array([1, 2, 3, 10]),
     'b': array([10, 2, 3, 10])}
    """
    return {
        key: (
            np.asarray([score[key] for score in scores])
            if isinstance(scores[0][key], numbers.Number)
            else [score[key] for score in scores]
        )
        for key in scores[0]
    }