File size: 97,769 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 |
"""
The :mod:`sklearn.model_selection._validation` module includes classes and
functions to validate the model.
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import numbers
import time
import warnings
from collections import Counter
from contextlib import suppress
from functools import partial
from numbers import Real
from traceback import format_exc
import numpy as np
import scipy.sparse as sp
from joblib import logger
from ..base import clone, is_classifier
from ..exceptions import FitFailedWarning, UnsetMetadataPassedError
from ..metrics import check_scoring, get_scorer_names
from ..metrics._scorer import _MultimetricScorer
from ..preprocessing import LabelEncoder
from ..utils import Bunch, _safe_indexing, check_random_state, indexable
from ..utils._array_api import device, get_namespace
from ..utils._param_validation import (
HasMethods,
Integral,
Interval,
StrOptions,
validate_params,
)
from ..utils.metadata_routing import (
MetadataRouter,
MethodMapping,
_routing_enabled,
process_routing,
)
from ..utils.metaestimators import _safe_split
from ..utils.parallel import Parallel, delayed
from ..utils.validation import _check_method_params, _num_samples
from ._split import check_cv
__all__ = [
"cross_validate",
"cross_val_score",
"cross_val_predict",
"permutation_test_score",
"learning_curve",
"validation_curve",
]
def _check_params_groups_deprecation(fit_params, params, groups, version):
"""A helper function to check deprecations on `groups` and `fit_params`.
# TODO(SLEP6): To be removed when set_config(enable_metadata_routing=False) is not
# possible.
"""
if params is not None and fit_params is not None:
raise ValueError(
"`params` and `fit_params` cannot both be provided. Pass parameters "
"via `params`. `fit_params` is deprecated and will be removed in "
f"version {version}."
)
elif fit_params is not None:
warnings.warn(
(
"`fit_params` is deprecated and will be removed in version {version}. "
"Pass parameters via `params` instead."
),
FutureWarning,
)
params = fit_params
params = {} if params is None else params
_check_groups_routing_disabled(groups)
return params
# TODO(SLEP6): To be removed when set_config(enable_metadata_routing=False) is not
# possible.
def _check_groups_routing_disabled(groups):
if groups is not None and _routing_enabled():
raise ValueError(
"`groups` can only be passed if metadata routing is not enabled via"
" `sklearn.set_config(enable_metadata_routing=True)`. When routing is"
" enabled, pass `groups` alongside other metadata via the `params` argument"
" instead."
)
@validate_params(
{
"estimator": [HasMethods("fit")],
"X": ["array-like", "sparse matrix"],
"y": ["array-like", None],
"groups": ["array-like", None],
"scoring": [
StrOptions(set(get_scorer_names())),
callable,
list,
tuple,
dict,
None,
],
"cv": ["cv_object"],
"n_jobs": [Integral, None],
"verbose": ["verbose"],
"params": [dict, None],
"pre_dispatch": [Integral, str],
"return_train_score": ["boolean"],
"return_estimator": ["boolean"],
"return_indices": ["boolean"],
"error_score": [StrOptions({"raise"}), Real],
},
prefer_skip_nested_validation=False, # estimator is not validated yet
)
def cross_validate(
estimator,
X,
y=None,
*,
groups=None,
scoring=None,
cv=None,
n_jobs=None,
verbose=0,
params=None,
pre_dispatch="2*n_jobs",
return_train_score=False,
return_estimator=False,
return_indices=False,
error_score=np.nan,
):
"""Evaluate metric(s) by cross-validation and also record fit/score times.
Read more in the :ref:`User Guide <multimetric_cross_validation>`.
Parameters
----------
estimator : estimator object implementing 'fit'
The object to use to fit the data.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The data to fit. Can be for example a list, or an array.
y : array-like of shape (n_samples,) or (n_samples, n_outputs), default=None
The target variable to try to predict in the case of
supervised learning.
groups : array-like of shape (n_samples,), default=None
Group labels for the samples used while splitting the dataset into
train/test set. Only used in conjunction with a "Group" :term:`cv`
instance (e.g., :class:`GroupKFold`).
.. versionchanged:: 1.4
``groups`` can only be passed if metadata routing is not enabled
via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
is enabled, pass ``groups`` alongside other metadata via the ``params``
argument instead. E.g.:
``cross_validate(..., params={'groups': groups})``.
scoring : str, callable, list, tuple, or dict, default=None
Strategy to evaluate the performance of the cross-validated model on
the test set. If `None`, the
:ref:`default evaluation criterion <scoring_api_overview>` of the estimator
is used.
If `scoring` represents a single score, one can use:
- a single string (see :ref:`scoring_parameter`);
- a callable (see :ref:`scoring_callable`) that returns a single value.
If `scoring` represents multiple scores, one can use:
- a list or tuple of unique strings;
- a callable returning a dictionary where the keys are the metric
names and the values are the metric scores;
- a dictionary with metric names as keys and callables a values.
See :ref:`multimetric_grid_search` for an example.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross validation,
- int, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For int/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass, :class:`StratifiedKFold` is used. In all
other cases, :class:`KFold` is used. These splitters are instantiated
with `shuffle=False` so the splits will be the same across calls.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value if None changed from 3-fold to 5-fold.
n_jobs : int, default=None
Number of jobs to run in parallel. Training the estimator and computing
the score are parallelized over the cross-validation splits.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
verbose : int, default=0
The verbosity level.
params : dict, default=None
Parameters to pass to the underlying estimator's ``fit``, the scorer,
and the CV splitter.
.. versionadded:: 1.4
pre_dispatch : int or str, default='2*n_jobs'
Controls the number of jobs that get dispatched during parallel
execution. Reducing this number can be useful to avoid an
explosion of memory consumption when more jobs get dispatched
than CPUs can process. This parameter can be:
- An int, giving the exact number of total jobs that are spawned
- A str, giving an expression as a function of n_jobs, as in '2*n_jobs'
return_train_score : bool, default=False
Whether to include train scores.
Computing training scores is used to get insights on how different
parameter settings impact the overfitting/underfitting trade-off.
However computing the scores on the training set can be computationally
expensive and is not strictly required to select the parameters that
yield the best generalization performance.
.. versionadded:: 0.19
.. versionchanged:: 0.21
Default value was changed from ``True`` to ``False``
return_estimator : bool, default=False
Whether to return the estimators fitted on each split.
.. versionadded:: 0.20
return_indices : bool, default=False
Whether to return the train-test indices selected for each split.
.. versionadded:: 1.3
error_score : 'raise' or numeric, default=np.nan
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised.
If a numeric value is given, FitFailedWarning is raised.
.. versionadded:: 0.20
Returns
-------
scores : dict of float arrays of shape (n_splits,)
Array of scores of the estimator for each run of the cross validation.
A dict of arrays containing the score/time arrays for each scorer is
returned. The possible keys for this ``dict`` are:
``test_score``
The score array for test scores on each cv split.
Suffix ``_score`` in ``test_score`` changes to a specific
metric like ``test_r2`` or ``test_auc`` if there are
multiple scoring metrics in the scoring parameter.
``train_score``
The score array for train scores on each cv split.
Suffix ``_score`` in ``train_score`` changes to a specific
metric like ``train_r2`` or ``train_auc`` if there are
multiple scoring metrics in the scoring parameter.
This is available only if ``return_train_score`` parameter
is ``True``.
``fit_time``
The time for fitting the estimator on the train
set for each cv split.
``score_time``
The time for scoring the estimator on the test set for each
cv split. (Note time for scoring on the train set is not
included even if ``return_train_score`` is set to ``True``
``estimator``
The estimator objects for each cv split.
This is available only if ``return_estimator`` parameter
is set to ``True``.
``indices``
The train/test positional indices for each cv split. A dictionary
is returned where the keys are either `"train"` or `"test"`
and the associated values are a list of integer-dtyped NumPy
arrays with the indices. Available only if `return_indices=True`.
See Also
--------
cross_val_score : Run cross-validation for single metric evaluation.
cross_val_predict : Get predictions from each split of cross-validation for
diagnostic purposes.
sklearn.metrics.make_scorer : Make a scorer from a performance metric or
loss function.
Examples
--------
>>> from sklearn import datasets, linear_model
>>> from sklearn.model_selection import cross_validate
>>> from sklearn.metrics import make_scorer
>>> from sklearn.metrics import confusion_matrix
>>> from sklearn.svm import LinearSVC
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()
Single metric evaluation using ``cross_validate``
>>> cv_results = cross_validate(lasso, X, y, cv=3)
>>> sorted(cv_results.keys())
['fit_time', 'score_time', 'test_score']
>>> cv_results['test_score']
array([0.3315057 , 0.08022103, 0.03531816])
Multiple metric evaluation using ``cross_validate``
(please refer the ``scoring`` parameter doc for more information)
>>> scores = cross_validate(lasso, X, y, cv=3,
... scoring=('r2', 'neg_mean_squared_error'),
... return_train_score=True)
>>> print(scores['test_neg_mean_squared_error'])
[-3635.5... -3573.3... -6114.7...]
>>> print(scores['train_r2'])
[0.28009951 0.3908844 0.22784907]
"""
_check_groups_routing_disabled(groups)
X, y = indexable(X, y)
params = {} if params is None else params
cv = check_cv(cv, y, classifier=is_classifier(estimator))
scorers = check_scoring(
estimator, scoring=scoring, raise_exc=(error_score == "raise")
)
if _routing_enabled():
# For estimators, a MetadataRouter is created in get_metadata_routing
# methods. For these router methods, we create the router to use
# `process_routing` on it.
router = (
MetadataRouter(owner="cross_validate")
.add(
splitter=cv,
method_mapping=MethodMapping().add(caller="fit", callee="split"),
)
.add(
estimator=estimator,
# TODO(SLEP6): also pass metadata to the predict method for
# scoring?
method_mapping=MethodMapping().add(caller="fit", callee="fit"),
)
.add(
scorer=scorers,
method_mapping=MethodMapping().add(caller="fit", callee="score"),
)
)
try:
routed_params = process_routing(router, "fit", **params)
except UnsetMetadataPassedError as e:
# The default exception would mention `fit` since in the above
# `process_routing` code, we pass `fit` as the caller. However,
# the user is not calling `fit` directly, so we change the message
# to make it more suitable for this case.
unrequested_params = sorted(e.unrequested_params)
raise UnsetMetadataPassedError(
message=(
f"{unrequested_params} are passed to cross validation but are not"
" explicitly set as requested or not requested for cross_validate's"
f" estimator: {estimator.__class__.__name__}. Call"
" `.set_fit_request({{metadata}}=True)` on the estimator for"
f" each metadata in {unrequested_params} that you"
" want to use and `metadata=False` for not using it. See the"
" Metadata Routing User guide"
" <https://scikit-learn.org/stable/metadata_routing.html> for more"
" information."
),
unrequested_params=e.unrequested_params,
routed_params=e.routed_params,
)
else:
routed_params = Bunch()
routed_params.splitter = Bunch(split={"groups": groups})
routed_params.estimator = Bunch(fit=params)
routed_params.scorer = Bunch(score={})
indices = cv.split(X, y, **routed_params.splitter.split)
if return_indices:
# materialize the indices since we need to store them in the returned dict
indices = list(indices)
# We clone the estimator to make sure that all the folds are
# independent, and that it is pickle-able.
parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
results = parallel(
delayed(_fit_and_score)(
clone(estimator),
X,
y,
scorer=scorers,
train=train,
test=test,
verbose=verbose,
parameters=None,
fit_params=routed_params.estimator.fit,
score_params=routed_params.scorer.score,
return_train_score=return_train_score,
return_times=True,
return_estimator=return_estimator,
error_score=error_score,
)
for train, test in indices
)
_warn_or_raise_about_fit_failures(results, error_score)
# For callable scoring, the return type is only know after calling. If the
# return type is a dictionary, the error scores can now be inserted with
# the correct key.
if callable(scoring):
_insert_error_scores(results, error_score)
results = _aggregate_score_dicts(results)
ret = {}
ret["fit_time"] = results["fit_time"]
ret["score_time"] = results["score_time"]
if return_estimator:
ret["estimator"] = results["estimator"]
if return_indices:
ret["indices"] = {}
ret["indices"]["train"], ret["indices"]["test"] = zip(*indices)
test_scores_dict = _normalize_score_results(results["test_scores"])
if return_train_score:
train_scores_dict = _normalize_score_results(results["train_scores"])
for name in test_scores_dict:
ret["test_%s" % name] = test_scores_dict[name]
if return_train_score:
key = "train_%s" % name
ret[key] = train_scores_dict[name]
return ret
def _insert_error_scores(results, error_score):
"""Insert error in `results` by replacing them inplace with `error_score`.
This only applies to multimetric scores because `_fit_and_score` will
handle the single metric case.
"""
successful_score = None
failed_indices = []
for i, result in enumerate(results):
if result["fit_error"] is not None:
failed_indices.append(i)
elif successful_score is None:
successful_score = result["test_scores"]
if isinstance(successful_score, dict):
formatted_error = {name: error_score for name in successful_score}
for i in failed_indices:
results[i]["test_scores"] = formatted_error.copy()
if "train_scores" in results[i]:
results[i]["train_scores"] = formatted_error.copy()
def _normalize_score_results(scores, scaler_score_key="score"):
"""Creates a scoring dictionary based on the type of `scores`"""
if isinstance(scores[0], dict):
# multimetric scoring
return _aggregate_score_dicts(scores)
# scaler
return {scaler_score_key: scores}
def _warn_or_raise_about_fit_failures(results, error_score):
fit_errors = [
result["fit_error"] for result in results if result["fit_error"] is not None
]
if fit_errors:
num_failed_fits = len(fit_errors)
num_fits = len(results)
fit_errors_counter = Counter(fit_errors)
delimiter = "-" * 80 + "\n"
fit_errors_summary = "\n".join(
f"{delimiter}{n} fits failed with the following error:\n{error}"
for error, n in fit_errors_counter.items()
)
if num_failed_fits == num_fits:
all_fits_failed_message = (
f"\nAll the {num_fits} fits failed.\n"
"It is very likely that your model is misconfigured.\n"
"You can try to debug the error by setting error_score='raise'.\n\n"
f"Below are more details about the failures:\n{fit_errors_summary}"
)
raise ValueError(all_fits_failed_message)
else:
some_fits_failed_message = (
f"\n{num_failed_fits} fits failed out of a total of {num_fits}.\n"
"The score on these train-test partitions for these parameters"
f" will be set to {error_score}.\n"
"If these failures are not expected, you can try to debug them "
"by setting error_score='raise'.\n\n"
f"Below are more details about the failures:\n{fit_errors_summary}"
)
warnings.warn(some_fits_failed_message, FitFailedWarning)
@validate_params(
{
"estimator": [HasMethods("fit")],
"X": ["array-like", "sparse matrix"],
"y": ["array-like", None],
"groups": ["array-like", None],
"scoring": [StrOptions(set(get_scorer_names())), callable, None],
"cv": ["cv_object"],
"n_jobs": [Integral, None],
"verbose": ["verbose"],
"params": [dict, None],
"pre_dispatch": [Integral, str, None],
"error_score": [StrOptions({"raise"}), Real],
},
prefer_skip_nested_validation=False, # estimator is not validated yet
)
def cross_val_score(
estimator,
X,
y=None,
*,
groups=None,
scoring=None,
cv=None,
n_jobs=None,
verbose=0,
params=None,
pre_dispatch="2*n_jobs",
error_score=np.nan,
):
"""Evaluate a score by cross-validation.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
estimator : estimator object implementing 'fit'
The object to use to fit the data.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The data to fit. Can be for example a list, or an array.
y : array-like of shape (n_samples,) or (n_samples, n_outputs), \
default=None
The target variable to try to predict in the case of
supervised learning.
groups : array-like of shape (n_samples,), default=None
Group labels for the samples used while splitting the dataset into
train/test set. Only used in conjunction with a "Group" :term:`cv`
instance (e.g., :class:`GroupKFold`).
.. versionchanged:: 1.4
``groups`` can only be passed if metadata routing is not enabled
via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
is enabled, pass ``groups`` alongside other metadata via the ``params``
argument instead. E.g.:
``cross_val_score(..., params={'groups': groups})``.
scoring : str or callable, default=None
A str (see :ref:`scoring_parameter`) or a scorer callable object / function with
signature ``scorer(estimator, X, y)`` which should return only a single value.
Similar to :func:`cross_validate`
but only a single metric is permitted.
If `None`, the estimator's default scorer (if available) is used.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- `None`, to use the default 5-fold cross validation,
- int, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable that generates (train, test) splits as arrays of indices.
For `int`/`None` inputs, if the estimator is a classifier and `y` is
either binary or multiclass, :class:`StratifiedKFold` is used. In all
other cases, :class:`KFold` is used. These splitters are instantiated
with `shuffle=False` so the splits will be the same across calls.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
`cv` default value if `None` changed from 3-fold to 5-fold.
n_jobs : int, default=None
Number of jobs to run in parallel. Training the estimator and computing
the score are parallelized over the cross-validation splits.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
verbose : int, default=0
The verbosity level.
params : dict, default=None
Parameters to pass to the underlying estimator's ``fit``, the scorer,
and the CV splitter.
.. versionadded:: 1.4
pre_dispatch : int or str, default='2*n_jobs'
Controls the number of jobs that get dispatched during parallel
execution. Reducing this number can be useful to avoid an
explosion of memory consumption when more jobs get dispatched
than CPUs can process. This parameter can be:
- ``None``, in which case all the jobs are immediately created and spawned. Use
this for lightweight and fast-running jobs, to avoid delays due to on-demand
spawning of the jobs
- An int, giving the exact number of total jobs that are spawned
- A str, giving an expression as a function of n_jobs, as in '2*n_jobs'
error_score : 'raise' or numeric, default=np.nan
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised.
If a numeric value is given, FitFailedWarning is raised.
.. versionadded:: 0.20
Returns
-------
scores : ndarray of float of shape=(len(list(cv)),)
Array of scores of the estimator for each run of the cross validation.
See Also
--------
cross_validate : To run cross-validation on multiple metrics and also to
return train scores, fit times and score times.
cross_val_predict : Get predictions from each split of cross-validation for
diagnostic purposes.
sklearn.metrics.make_scorer : Make a scorer from a performance metric or
loss function.
Examples
--------
>>> from sklearn import datasets, linear_model
>>> from sklearn.model_selection import cross_val_score
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()
>>> print(cross_val_score(lasso, X, y, cv=3))
[0.3315057 0.08022103 0.03531816]
"""
# To ensure multimetric format is not supported
scorer = check_scoring(estimator, scoring=scoring)
cv_results = cross_validate(
estimator=estimator,
X=X,
y=y,
groups=groups,
scoring={"score": scorer},
cv=cv,
n_jobs=n_jobs,
verbose=verbose,
params=params,
pre_dispatch=pre_dispatch,
error_score=error_score,
)
return cv_results["test_score"]
def _fit_and_score(
estimator,
X,
y,
*,
scorer,
train,
test,
verbose,
parameters,
fit_params,
score_params,
return_train_score=False,
return_parameters=False,
return_n_test_samples=False,
return_times=False,
return_estimator=False,
split_progress=None,
candidate_progress=None,
error_score=np.nan,
):
"""Fit estimator and compute scores for a given dataset split.
Parameters
----------
estimator : estimator object implementing 'fit'
The object to use to fit the data.
X : array-like of shape (n_samples, n_features)
The data to fit.
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
The target variable to try to predict in the case of
supervised learning.
scorer : A single callable or dict mapping scorer name to the callable
If it is a single callable, the return value for ``train_scores`` and
``test_scores`` is a single float.
For a dict, it should be one mapping the scorer name to the scorer
callable object / function.
The callable object / fn should have signature
``scorer(estimator, X, y)``.
train : array-like of shape (n_train_samples,)
Indices of training samples.
test : array-like of shape (n_test_samples,)
Indices of test samples.
verbose : int
The verbosity level.
error_score : 'raise' or numeric, default=np.nan
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised.
If a numeric value is given, FitFailedWarning is raised.
parameters : dict or None
Parameters to be set on the estimator.
fit_params : dict or None
Parameters that will be passed to ``estimator.fit``.
score_params : dict or None
Parameters that will be passed to the scorer.
return_train_score : bool, default=False
Compute and return score on training set.
return_parameters : bool, default=False
Return parameters that has been used for the estimator.
split_progress : {list, tuple} of int, default=None
A list or tuple of format (<current_split_id>, <total_num_of_splits>).
candidate_progress : {list, tuple} of int, default=None
A list or tuple of format
(<current_candidate_id>, <total_number_of_candidates>).
return_n_test_samples : bool, default=False
Whether to return the ``n_test_samples``.
return_times : bool, default=False
Whether to return the fit/score times.
return_estimator : bool, default=False
Whether to return the fitted estimator.
Returns
-------
result : dict with the following attributes
train_scores : dict of scorer name -> float
Score on training set (for all the scorers),
returned only if `return_train_score` is `True`.
test_scores : dict of scorer name -> float
Score on testing set (for all the scorers).
n_test_samples : int
Number of test samples.
fit_time : float
Time spent for fitting in seconds.
score_time : float
Time spent for scoring in seconds.
parameters : dict or None
The parameters that have been evaluated.
estimator : estimator object
The fitted estimator.
fit_error : str or None
Traceback str if the fit failed, None if the fit succeeded.
"""
xp, _ = get_namespace(X)
X_device = device(X)
# Make sure that we can fancy index X even if train and test are provided
# as NumPy arrays by NumPy only cross-validation splitters.
train, test = xp.asarray(train, device=X_device), xp.asarray(test, device=X_device)
if not isinstance(error_score, numbers.Number) and error_score != "raise":
raise ValueError(
"error_score must be the string 'raise' or a numeric value. "
"(Hint: if using 'raise', please make sure that it has been "
"spelled correctly.)"
)
progress_msg = ""
if verbose > 2:
if split_progress is not None:
progress_msg = f" {split_progress[0]+1}/{split_progress[1]}"
if candidate_progress and verbose > 9:
progress_msg += f"; {candidate_progress[0]+1}/{candidate_progress[1]}"
if verbose > 1:
if parameters is None:
params_msg = ""
else:
sorted_keys = sorted(parameters) # Ensure deterministic o/p
params_msg = ", ".join(f"{k}={parameters[k]}" for k in sorted_keys)
if verbose > 9:
start_msg = f"[CV{progress_msg}] START {params_msg}"
print(f"{start_msg}{(80 - len(start_msg)) * '.'}")
# Adjust length of sample weights
fit_params = fit_params if fit_params is not None else {}
fit_params = _check_method_params(X, params=fit_params, indices=train)
score_params = score_params if score_params is not None else {}
score_params_train = _check_method_params(X, params=score_params, indices=train)
score_params_test = _check_method_params(X, params=score_params, indices=test)
if parameters is not None:
# here we clone the parameters, since sometimes the parameters
# themselves might be estimators, e.g. when we search over different
# estimators in a pipeline.
# ref: https://github.com/scikit-learn/scikit-learn/pull/26786
estimator = estimator.set_params(**clone(parameters, safe=False))
start_time = time.time()
X_train, y_train = _safe_split(estimator, X, y, train)
X_test, y_test = _safe_split(estimator, X, y, test, train)
result = {}
try:
if y_train is None:
estimator.fit(X_train, **fit_params)
else:
estimator.fit(X_train, y_train, **fit_params)
except Exception:
# Note fit time as time until error
fit_time = time.time() - start_time
score_time = 0.0
if error_score == "raise":
raise
elif isinstance(error_score, numbers.Number):
if isinstance(scorer, _MultimetricScorer):
test_scores = {name: error_score for name in scorer._scorers}
if return_train_score:
train_scores = test_scores.copy()
else:
test_scores = error_score
if return_train_score:
train_scores = error_score
result["fit_error"] = format_exc()
else:
result["fit_error"] = None
fit_time = time.time() - start_time
test_scores = _score(
estimator, X_test, y_test, scorer, score_params_test, error_score
)
score_time = time.time() - start_time - fit_time
if return_train_score:
train_scores = _score(
estimator, X_train, y_train, scorer, score_params_train, error_score
)
if verbose > 1:
total_time = score_time + fit_time
end_msg = f"[CV{progress_msg}] END "
result_msg = params_msg + (";" if params_msg else "")
if verbose > 2:
if isinstance(test_scores, dict):
for scorer_name in sorted(test_scores):
result_msg += f" {scorer_name}: ("
if return_train_score:
scorer_scores = train_scores[scorer_name]
result_msg += f"train={scorer_scores:.3f}, "
result_msg += f"test={test_scores[scorer_name]:.3f})"
else:
result_msg += ", score="
if return_train_score:
result_msg += f"(train={train_scores:.3f}, test={test_scores:.3f})"
else:
result_msg += f"{test_scores:.3f}"
result_msg += f" total time={logger.short_format_time(total_time)}"
# Right align the result_msg
end_msg += "." * (80 - len(end_msg) - len(result_msg))
end_msg += result_msg
print(end_msg)
result["test_scores"] = test_scores
if return_train_score:
result["train_scores"] = train_scores
if return_n_test_samples:
result["n_test_samples"] = _num_samples(X_test)
if return_times:
result["fit_time"] = fit_time
result["score_time"] = score_time
if return_parameters:
result["parameters"] = parameters
if return_estimator:
result["estimator"] = estimator
return result
def _score(estimator, X_test, y_test, scorer, score_params, error_score="raise"):
"""Compute the score(s) of an estimator on a given test set.
Will return a dict of floats if `scorer` is a _MultiMetricScorer, otherwise a single
float is returned.
"""
score_params = {} if score_params is None else score_params
try:
if y_test is None:
scores = scorer(estimator, X_test, **score_params)
else:
scores = scorer(estimator, X_test, y_test, **score_params)
except Exception:
if isinstance(scorer, _MultimetricScorer):
# If `_MultimetricScorer` raises exception, the `error_score`
# parameter is equal to "raise".
raise
else:
if error_score == "raise":
raise
else:
scores = error_score
warnings.warn(
(
"Scoring failed. The score on this train-test partition for "
f"these parameters will be set to {error_score}. Details: \n"
f"{format_exc()}"
),
UserWarning,
)
# Check non-raised error messages in `_MultimetricScorer`
if isinstance(scorer, _MultimetricScorer):
exception_messages = [
(name, str_e) for name, str_e in scores.items() if isinstance(str_e, str)
]
if exception_messages:
# error_score != "raise"
for name, str_e in exception_messages:
scores[name] = error_score
warnings.warn(
(
"Scoring failed. The score on this train-test partition for "
f"these parameters will be set to {error_score}. Details: \n"
f"{str_e}"
),
UserWarning,
)
error_msg = "scoring must return a number, got %s (%s) instead. (scorer=%s)"
if isinstance(scores, dict):
for name, score in scores.items():
if hasattr(score, "item"):
with suppress(ValueError):
# e.g. unwrap memmapped scalars
score = score.item()
if not isinstance(score, numbers.Number):
raise ValueError(error_msg % (score, type(score), name))
scores[name] = score
else: # scalar
if hasattr(scores, "item"):
with suppress(ValueError):
# e.g. unwrap memmapped scalars
scores = scores.item()
if not isinstance(scores, numbers.Number):
raise ValueError(error_msg % (scores, type(scores), scorer))
return scores
@validate_params(
{
"estimator": [HasMethods(["fit", "predict"])],
"X": ["array-like", "sparse matrix"],
"y": ["array-like", "sparse matrix", None],
"groups": ["array-like", None],
"cv": ["cv_object"],
"n_jobs": [Integral, None],
"verbose": ["verbose"],
"params": [dict, None],
"pre_dispatch": [Integral, str, None],
"method": [
StrOptions(
{
"predict",
"predict_proba",
"predict_log_proba",
"decision_function",
}
)
],
},
prefer_skip_nested_validation=False, # estimator is not validated yet
)
def cross_val_predict(
estimator,
X,
y=None,
*,
groups=None,
cv=None,
n_jobs=None,
verbose=0,
params=None,
pre_dispatch="2*n_jobs",
method="predict",
):
"""Generate cross-validated estimates for each input data point.
The data is split according to the cv parameter. Each sample belongs
to exactly one test set, and its prediction is computed with an
estimator fitted on the corresponding training set.
Passing these predictions into an evaluation metric may not be a valid
way to measure generalization performance. Results can differ from
:func:`cross_validate` and :func:`cross_val_score` unless all tests sets
have equal size and the metric decomposes over samples.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
estimator : estimator
The estimator instance to use to fit the data. It must implement a `fit`
method and the method given by the `method` parameter.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The data to fit. Can be, for example a list, or an array at least 2d.
y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs), \
default=None
The target variable to try to predict in the case of
supervised learning.
groups : array-like of shape (n_samples,), default=None
Group labels for the samples used while splitting the dataset into
train/test set. Only used in conjunction with a "Group" :term:`cv`
instance (e.g., :class:`GroupKFold`).
.. versionchanged:: 1.4
``groups`` can only be passed if metadata routing is not enabled
via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
is enabled, pass ``groups`` alongside other metadata via the ``params``
argument instead. E.g.:
``cross_val_predict(..., params={'groups': groups})``.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross validation,
- int, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable that generates (train, test) splits as arrays of indices.
For int/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass, :class:`StratifiedKFold` is used. In all
other cases, :class:`KFold` is used. These splitters are instantiated
with `shuffle=False` so the splits will be the same across calls.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value if None changed from 3-fold to 5-fold.
n_jobs : int, default=None
Number of jobs to run in parallel. Training the estimator and
predicting are parallelized over the cross-validation splits.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
verbose : int, default=0
The verbosity level.
params : dict, default=None
Parameters to pass to the underlying estimator's ``fit`` and the CV
splitter.
.. versionadded:: 1.4
pre_dispatch : int or str, default='2*n_jobs'
Controls the number of jobs that get dispatched during parallel
execution. Reducing this number can be useful to avoid an
explosion of memory consumption when more jobs get dispatched
than CPUs can process. This parameter can be:
- None, in which case all the jobs are immediately created and spawned. Use
this for lightweight and fast-running jobs, to avoid delays due to on-demand
spawning of the jobs
- An int, giving the exact number of total jobs that are spawned
- A str, giving an expression as a function of n_jobs, as in '2*n_jobs'
method : {'predict', 'predict_proba', 'predict_log_proba', \
'decision_function'}, default='predict'
The method to be invoked by `estimator`.
Returns
-------
predictions : ndarray
This is the result of calling `method`. Shape:
- When `method` is 'predict' and in special case where `method` is
'decision_function' and the target is binary: (n_samples,)
- When `method` is one of {'predict_proba', 'predict_log_proba',
'decision_function'} (unless special case above):
(n_samples, n_classes)
- If `estimator` is :term:`multioutput`, an extra dimension
'n_outputs' is added to the end of each shape above.
See Also
--------
cross_val_score : Calculate score for each CV split.
cross_validate : Calculate one or more scores and timings for each CV
split.
Notes
-----
In the case that one or more classes are absent in a training portion, a
default score needs to be assigned to all instances for that class if
``method`` produces columns per class, as in {'decision_function',
'predict_proba', 'predict_log_proba'}. For ``predict_proba`` this value is
0. In order to ensure finite output, we approximate negative infinity by
the minimum finite float value for the dtype in other cases.
Examples
--------
>>> from sklearn import datasets, linear_model
>>> from sklearn.model_selection import cross_val_predict
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()
>>> y_pred = cross_val_predict(lasso, X, y, cv=3)
"""
_check_groups_routing_disabled(groups)
X, y = indexable(X, y)
params = {} if params is None else params
if _routing_enabled():
# For estimators, a MetadataRouter is created in get_metadata_routing
# methods. For these router methods, we create the router to use
# `process_routing` on it.
router = (
MetadataRouter(owner="cross_validate")
.add(
splitter=cv,
method_mapping=MethodMapping().add(caller="fit", callee="split"),
)
.add(
estimator=estimator,
# TODO(SLEP6): also pass metadata for the predict method.
method_mapping=MethodMapping().add(caller="fit", callee="fit"),
)
)
try:
routed_params = process_routing(router, "fit", **params)
except UnsetMetadataPassedError as e:
# The default exception would mention `fit` since in the above
# `process_routing` code, we pass `fit` as the caller. However,
# the user is not calling `fit` directly, so we change the message
# to make it more suitable for this case.
unrequested_params = sorted(e.unrequested_params)
raise UnsetMetadataPassedError(
message=(
f"{unrequested_params} are passed to `cross_val_predict` but are"
" not explicitly set as requested or not requested for"
f" cross_validate's estimator: {estimator.__class__.__name__} Call"
" `.set_fit_request({{metadata}}=True)` on the estimator for"
f" each metadata in {unrequested_params} that you want to use and"
" `metadata=False` for not using it. See the Metadata Routing User"
" guide <https://scikit-learn.org/stable/metadata_routing.html>"
" for more information."
),
unrequested_params=e.unrequested_params,
routed_params=e.routed_params,
)
else:
routed_params = Bunch()
routed_params.splitter = Bunch(split={"groups": groups})
routed_params.estimator = Bunch(fit=params)
cv = check_cv(cv, y, classifier=is_classifier(estimator))
splits = list(cv.split(X, y, **routed_params.splitter.split))
test_indices = np.concatenate([test for _, test in splits])
if not _check_is_permutation(test_indices, _num_samples(X)):
raise ValueError("cross_val_predict only works for partitions")
# If classification methods produce multiple columns of output,
# we need to manually encode classes to ensure consistent column ordering.
encode = (
method in ["decision_function", "predict_proba", "predict_log_proba"]
and y is not None
)
if encode:
y = np.asarray(y)
if y.ndim == 1:
le = LabelEncoder()
y = le.fit_transform(y)
elif y.ndim == 2:
y_enc = np.zeros_like(y, dtype=int)
for i_label in range(y.shape[1]):
y_enc[:, i_label] = LabelEncoder().fit_transform(y[:, i_label])
y = y_enc
# We clone the estimator to make sure that all the folds are
# independent, and that it is pickle-able.
parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
predictions = parallel(
delayed(_fit_and_predict)(
clone(estimator),
X,
y,
train,
test,
routed_params.estimator.fit,
method,
)
for train, test in splits
)
inv_test_indices = np.empty(len(test_indices), dtype=int)
inv_test_indices[test_indices] = np.arange(len(test_indices))
if sp.issparse(predictions[0]):
predictions = sp.vstack(predictions, format=predictions[0].format)
elif encode and isinstance(predictions[0], list):
# `predictions` is a list of method outputs from each fold.
# If each of those is also a list, then treat this as a
# multioutput-multiclass task. We need to separately concatenate
# the method outputs for each label into an `n_labels` long list.
n_labels = y.shape[1]
concat_pred = []
for i_label in range(n_labels):
label_preds = np.concatenate([p[i_label] for p in predictions])
concat_pred.append(label_preds)
predictions = concat_pred
else:
predictions = np.concatenate(predictions)
if isinstance(predictions, list):
return [p[inv_test_indices] for p in predictions]
else:
return predictions[inv_test_indices]
def _fit_and_predict(estimator, X, y, train, test, fit_params, method):
"""Fit estimator and predict values for a given dataset split.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
estimator : estimator object implementing 'fit' and 'predict'
The object to use to fit the data.
X : array-like of shape (n_samples, n_features)
The data to fit.
.. versionchanged:: 0.20
X is only required to be an object with finite length or shape now
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
The target variable to try to predict in the case of
supervised learning.
train : array-like of shape (n_train_samples,)
Indices of training samples.
test : array-like of shape (n_test_samples,)
Indices of test samples.
fit_params : dict or None
Parameters that will be passed to ``estimator.fit``.
method : str
Invokes the passed method name of the passed estimator.
Returns
-------
predictions : sequence
Result of calling 'estimator.method'
"""
# Adjust length of sample weights
fit_params = fit_params if fit_params is not None else {}
fit_params = _check_method_params(X, params=fit_params, indices=train)
X_train, y_train = _safe_split(estimator, X, y, train)
X_test, _ = _safe_split(estimator, X, y, test, train)
if y_train is None:
estimator.fit(X_train, **fit_params)
else:
estimator.fit(X_train, y_train, **fit_params)
func = getattr(estimator, method)
predictions = func(X_test)
encode = (
method in ["decision_function", "predict_proba", "predict_log_proba"]
and y is not None
)
if encode:
if isinstance(predictions, list):
predictions = [
_enforce_prediction_order(
estimator.classes_[i_label],
predictions[i_label],
n_classes=len(set(y[:, i_label])),
method=method,
)
for i_label in range(len(predictions))
]
else:
# A 2D y array should be a binary label indicator matrix
n_classes = len(set(y)) if y.ndim == 1 else y.shape[1]
predictions = _enforce_prediction_order(
estimator.classes_, predictions, n_classes, method
)
return predictions
def _enforce_prediction_order(classes, predictions, n_classes, method):
"""Ensure that prediction arrays have correct column order
When doing cross-validation, if one or more classes are
not present in the subset of data used for training,
then the output prediction array might not have the same
columns as other folds. Use the list of class names
(assumed to be ints) to enforce the correct column order.
Note that `classes` is the list of classes in this fold
(a subset of the classes in the full training set)
and `n_classes` is the number of classes in the full training set.
"""
if n_classes != len(classes):
recommendation = (
"To fix this, use a cross-validation "
"technique resulting in properly "
"stratified folds"
)
warnings.warn(
"Number of classes in training fold ({}) does "
"not match total number of classes ({}). "
"Results may not be appropriate for your use case. "
"{}".format(len(classes), n_classes, recommendation),
RuntimeWarning,
)
if method == "decision_function":
if predictions.ndim == 2 and predictions.shape[1] != len(classes):
# This handles the case when the shape of predictions
# does not match the number of classes used to train
# it with. This case is found when sklearn.svm.SVC is
# set to `decision_function_shape='ovo'`.
raise ValueError(
"Output shape {} of {} does not match "
"number of classes ({}) in fold. "
"Irregular decision_function outputs "
"are not currently supported by "
"cross_val_predict".format(predictions.shape, method, len(classes))
)
if len(classes) <= 2:
# In this special case, `predictions` contains a 1D array.
raise ValueError(
"Only {} class/es in training fold, but {} "
"in overall dataset. This "
"is not supported for decision_function "
"with imbalanced folds. {}".format(
len(classes), n_classes, recommendation
)
)
float_min = np.finfo(predictions.dtype).min
default_values = {
"decision_function": float_min,
"predict_log_proba": float_min,
"predict_proba": 0,
}
predictions_for_all_classes = np.full(
(_num_samples(predictions), n_classes),
default_values[method],
dtype=predictions.dtype,
)
predictions_for_all_classes[:, classes] = predictions
predictions = predictions_for_all_classes
return predictions
def _check_is_permutation(indices, n_samples):
"""Check whether indices is a reordering of the array np.arange(n_samples)
Parameters
----------
indices : ndarray
int array to test
n_samples : int
number of expected elements
Returns
-------
is_partition : bool
True iff sorted(indices) is np.arange(n)
"""
if len(indices) != n_samples:
return False
hit = np.zeros(n_samples, dtype=bool)
hit[indices] = True
if not np.all(hit):
return False
return True
@validate_params(
{
"estimator": [HasMethods("fit")],
"X": ["array-like", "sparse matrix"],
"y": ["array-like", None],
"groups": ["array-like", None],
"cv": ["cv_object"],
"n_permutations": [Interval(Integral, 1, None, closed="left")],
"n_jobs": [Integral, None],
"random_state": ["random_state"],
"verbose": ["verbose"],
"scoring": [StrOptions(set(get_scorer_names())), callable, None],
"fit_params": [dict, None],
"params": [dict, None],
},
prefer_skip_nested_validation=False, # estimator is not validated yet
)
def permutation_test_score(
estimator,
X,
y,
*,
groups=None,
cv=None,
n_permutations=100,
n_jobs=None,
random_state=0,
verbose=0,
scoring=None,
fit_params=None,
params=None,
):
"""Evaluate the significance of a cross-validated score with permutations.
Permutes targets to generate 'randomized data' and compute the empirical
p-value against the null hypothesis that features and targets are
independent.
The p-value represents the fraction of randomized data sets where the
estimator performed as well or better than in the original data. A small
p-value suggests that there is a real dependency between features and
targets which has been used by the estimator to give good predictions.
A large p-value may be due to lack of real dependency between features
and targets or the estimator was not able to use the dependency to
give good predictions.
Read more in the :ref:`User Guide <permutation_test_score>`.
Parameters
----------
estimator : estimator object implementing 'fit'
The object to use to fit the data.
X : array-like of shape at least 2D
The data to fit.
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
The target variable to try to predict in the case of
supervised learning.
groups : array-like of shape (n_samples,), default=None
Labels to constrain permutation within groups, i.e. ``y`` values
are permuted among samples with the same group identifier.
When not specified, ``y`` values are permuted among all samples.
When a grouped cross-validator is used, the group labels are
also passed on to the ``split`` method of the cross-validator. The
cross-validator uses them for grouping the samples while splitting
the dataset into train/test set.
.. versionchanged:: 1.6
``groups`` can only be passed if metadata routing is not enabled
via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
is enabled, pass ``groups`` alongside other metadata via the ``params``
argument instead. E.g.:
``permutation_test_score(..., params={'groups': groups})``.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- `None`, to use the default 5-fold cross validation,
- int, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For `int`/`None` inputs, if the estimator is a classifier and `y` is
either binary or multiclass, :class:`StratifiedKFold` is used. In all
other cases, :class:`KFold` is used. These splitters are instantiated
with `shuffle=False` so the splits will be the same across calls.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
`cv` default value if `None` changed from 3-fold to 5-fold.
n_permutations : int, default=100
Number of times to permute ``y``.
n_jobs : int, default=None
Number of jobs to run in parallel. Training the estimator and computing
the cross-validated score are parallelized over the permutations.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
random_state : int, RandomState instance or None, default=0
Pass an int for reproducible output for permutation of
``y`` values among samples. See :term:`Glossary <random_state>`.
verbose : int, default=0
The verbosity level.
scoring : str or callable, default=None
A single str (see :ref:`scoring_parameter`) or a callable
(see :ref:`scoring_callable`) to evaluate the predictions on the test set.
If `None` the estimator's score method is used.
fit_params : dict, default=None
Parameters to pass to the fit method of the estimator.
.. deprecated:: 1.6
This parameter is deprecated and will be removed in version 1.6. Use
``params`` instead.
params : dict, default=None
Parameters to pass to the `fit` method of the estimator, the scorer
and the cv splitter.
- If `enable_metadata_routing=False` (default): Parameters directly passed to
the `fit` method of the estimator.
- If `enable_metadata_routing=True`: Parameters safely routed to the `fit`
method of the estimator, `cv` object and `scorer`. See :ref:`Metadata Routing
User Guide <metadata_routing>` for more details.
.. versionadded:: 1.6
Returns
-------
score : float
The true score without permuting targets.
permutation_scores : array of shape (n_permutations,)
The scores obtained for each permutations.
pvalue : float
The p-value, which approximates the probability that the score would
be obtained by chance. This is calculated as:
`(C + 1) / (n_permutations + 1)`
Where C is the number of permutations whose score >= the true score.
The best possible p-value is 1/(n_permutations + 1), the worst is 1.0.
Notes
-----
This function implements Test 1 in:
Ojala and Garriga. `Permutation Tests for Studying Classifier Performance
<http://www.jmlr.org/papers/volume11/ojala10a/ojala10a.pdf>`_. The
Journal of Machine Learning Research (2010) vol. 11
Examples
--------
>>> from sklearn.datasets import make_classification
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.model_selection import permutation_test_score
>>> X, y = make_classification(random_state=0)
>>> estimator = LogisticRegression()
>>> score, permutation_scores, pvalue = permutation_test_score(
... estimator, X, y, random_state=0
... )
>>> print(f"Original Score: {score:.3f}")
Original Score: 0.810
>>> print(
... f"Permutation Scores: {permutation_scores.mean():.3f} +/- "
... f"{permutation_scores.std():.3f}"
... )
Permutation Scores: 0.505 +/- 0.057
>>> print(f"P-value: {pvalue:.3f}")
P-value: 0.010
"""
params = _check_params_groups_deprecation(fit_params, params, groups, "1.8")
X, y, groups = indexable(X, y, groups)
cv = check_cv(cv, y, classifier=is_classifier(estimator))
scorer = check_scoring(estimator, scoring=scoring)
random_state = check_random_state(random_state)
if _routing_enabled():
router = (
MetadataRouter(owner="permutation_test_score")
.add(
estimator=estimator,
# TODO(SLEP6): also pass metadata to the predict method for
# scoring?
method_mapping=MethodMapping().add(caller="fit", callee="fit"),
)
.add(
splitter=cv,
method_mapping=MethodMapping().add(caller="fit", callee="split"),
)
.add(
scorer=scorer,
method_mapping=MethodMapping().add(caller="fit", callee="score"),
)
)
try:
routed_params = process_routing(router, "fit", **params)
except UnsetMetadataPassedError as e:
# The default exception would mention `fit` since in the above
# `process_routing` code, we pass `fit` as the caller. However,
# the user is not calling `fit` directly, so we change the message
# to make it more suitable for this case.
unrequested_params = sorted(e.unrequested_params)
raise UnsetMetadataPassedError(
message=(
f"{unrequested_params} are passed to `permutation_test_score`"
" but are not explicitly set as requested or not requested"
" for permutation_test_score's"
f" estimator: {estimator.__class__.__name__}. Call"
" `.set_fit_request({{metadata}}=True)` on the estimator for"
f" each metadata in {unrequested_params} that you"
" want to use and `metadata=False` for not using it. See the"
" Metadata Routing User guide"
" <https://scikit-learn.org/stable/metadata_routing.html> for more"
" information."
),
unrequested_params=e.unrequested_params,
routed_params=e.routed_params,
)
else:
routed_params = Bunch()
routed_params.estimator = Bunch(fit=params)
routed_params.splitter = Bunch(split={"groups": groups})
routed_params.scorer = Bunch(score={})
# We clone the estimator to make sure that all the folds are
# independent, and that it is pickle-able.
score = _permutation_test_score(
clone(estimator),
X,
y,
cv,
scorer,
split_params=routed_params.splitter.split,
fit_params=routed_params.estimator.fit,
score_params=routed_params.scorer.score,
)
permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)(
delayed(_permutation_test_score)(
clone(estimator),
X,
_shuffle(y, groups, random_state),
cv,
scorer,
split_params=routed_params.splitter.split,
fit_params=routed_params.estimator.fit,
score_params=routed_params.scorer.score,
)
for _ in range(n_permutations)
)
permutation_scores = np.array(permutation_scores)
pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1)
return score, permutation_scores, pvalue
def _permutation_test_score(
estimator, X, y, cv, scorer, split_params, fit_params, score_params
):
"""Auxiliary function for permutation_test_score"""
# Adjust length of sample weights
fit_params = fit_params if fit_params is not None else {}
score_params = score_params if score_params is not None else {}
avg_score = []
for train, test in cv.split(X, y, **split_params):
X_train, y_train = _safe_split(estimator, X, y, train)
X_test, y_test = _safe_split(estimator, X, y, test, train)
fit_params_train = _check_method_params(X, params=fit_params, indices=train)
score_params_test = _check_method_params(X, params=score_params, indices=test)
estimator.fit(X_train, y_train, **fit_params_train)
avg_score.append(scorer(estimator, X_test, y_test, **score_params_test))
return np.mean(avg_score)
def _shuffle(y, groups, random_state):
"""Return a shuffled copy of y eventually shuffle among same groups."""
if groups is None:
indices = random_state.permutation(len(y))
else:
indices = np.arange(len(groups))
for group in np.unique(groups):
this_mask = groups == group
indices[this_mask] = random_state.permutation(indices[this_mask])
return _safe_indexing(y, indices)
@validate_params(
{
"estimator": [HasMethods(["fit"])],
"X": ["array-like", "sparse matrix"],
"y": ["array-like", None],
"groups": ["array-like", None],
"train_sizes": ["array-like"],
"cv": ["cv_object"],
"scoring": [StrOptions(set(get_scorer_names())), callable, None],
"exploit_incremental_learning": ["boolean"],
"n_jobs": [Integral, None],
"pre_dispatch": [Integral, str],
"verbose": ["verbose"],
"shuffle": ["boolean"],
"random_state": ["random_state"],
"error_score": [StrOptions({"raise"}), Real],
"return_times": ["boolean"],
"fit_params": [dict, None],
"params": [dict, None],
},
prefer_skip_nested_validation=False, # estimator is not validated yet
)
def learning_curve(
estimator,
X,
y,
*,
groups=None,
train_sizes=np.linspace(0.1, 1.0, 5),
cv=None,
scoring=None,
exploit_incremental_learning=False,
n_jobs=None,
pre_dispatch="all",
verbose=0,
shuffle=False,
random_state=None,
error_score=np.nan,
return_times=False,
fit_params=None,
params=None,
):
"""Learning curve.
Determines cross-validated training and test scores for different training
set sizes.
A cross-validation generator splits the whole dataset k times in training
and test data. Subsets of the training set with varying sizes will be used
to train the estimator and a score for each training subset size and the
test set will be computed. Afterwards, the scores will be averaged over
all k runs for each training subset size.
Read more in the :ref:`User Guide <learning_curve>`.
Parameters
----------
estimator : object type that implements the "fit" method
An object of that type which is cloned for each validation. It must
also implement "predict" unless `scoring` is a callable that doesn't
rely on "predict" to compute a score.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
Target relative to X for classification or regression;
None for unsupervised learning.
groups : array-like of shape (n_samples,), default=None
Group labels for the samples used while splitting the dataset into
train/test set. Only used in conjunction with a "Group" :term:`cv`
instance (e.g., :class:`GroupKFold`).
.. versionchanged:: 1.6
``groups`` can only be passed if metadata routing is not enabled
via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
is enabled, pass ``groups`` alongside other metadata via the ``params``
argument instead. E.g.:
``learning_curve(..., params={'groups': groups})``.
train_sizes : array-like of shape (n_ticks,), \
default=np.linspace(0.1, 1.0, 5)
Relative or absolute numbers of training examples that will be used to
generate the learning curve. If the dtype is float, it is regarded as a
fraction of the maximum size of the training set (that is determined
by the selected validation method), i.e. it has to be within (0, 1].
Otherwise it is interpreted as absolute sizes of the training sets.
Note that for classification the number of samples usually has to
be big enough to contain at least one sample from each class.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross validation,
- int, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For int/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass, :class:`StratifiedKFold` is used. In all
other cases, :class:`KFold` is used. These splitters are instantiated
with `shuffle=False` so the splits will be the same across calls.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value if None changed from 3-fold to 5-fold.
scoring : str or callable, default=None
A str (see :ref:`scoring_parameter`) or a scorer callable object / function with
signature ``scorer(estimator, X, y)``.
exploit_incremental_learning : bool, default=False
If the estimator supports incremental learning, this will be
used to speed up fitting for different training set sizes.
n_jobs : int, default=None
Number of jobs to run in parallel. Training the estimator and computing
the score are parallelized over the different training and test sets.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
pre_dispatch : int or str, default='all'
Number of predispatched jobs for parallel execution (default is
all). The option can reduce the allocated memory. The str can
be an expression like '2*n_jobs'.
verbose : int, default=0
Controls the verbosity: the higher, the more messages.
shuffle : bool, default=False
Whether to shuffle training data before taking prefixes of it
based on``train_sizes``.
random_state : int, RandomState instance or None, default=None
Used when ``shuffle`` is True. Pass an int for reproducible
output across multiple function calls.
See :term:`Glossary <random_state>`.
error_score : 'raise' or numeric, default=np.nan
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised.
If a numeric value is given, FitFailedWarning is raised.
.. versionadded:: 0.20
return_times : bool, default=False
Whether to return the fit and score times.
fit_params : dict, default=None
Parameters to pass to the fit method of the estimator.
.. deprecated:: 1.6
This parameter is deprecated and will be removed in version 1.8. Use
``params`` instead.
params : dict, default=None
Parameters to pass to the `fit` method of the estimator and to the scorer.
- If `enable_metadata_routing=False` (default): Parameters directly passed to
the `fit` method of the estimator.
- If `enable_metadata_routing=True`: Parameters safely routed to the `fit`
method of the estimator. See :ref:`Metadata Routing User Guide
<metadata_routing>` for more details.
.. versionadded:: 1.6
Returns
-------
train_sizes_abs : array of shape (n_unique_ticks,)
Numbers of training examples that has been used to generate the
learning curve. Note that the number of ticks might be less
than n_ticks because duplicate entries will be removed.
train_scores : array of shape (n_ticks, n_cv_folds)
Scores on training sets.
test_scores : array of shape (n_ticks, n_cv_folds)
Scores on test set.
fit_times : array of shape (n_ticks, n_cv_folds)
Times spent for fitting in seconds. Only present if ``return_times``
is True.
score_times : array of shape (n_ticks, n_cv_folds)
Times spent for scoring in seconds. Only present if ``return_times``
is True.
Examples
--------
>>> from sklearn.datasets import make_classification
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.model_selection import learning_curve
>>> X, y = make_classification(n_samples=100, n_features=10, random_state=42)
>>> tree = DecisionTreeClassifier(max_depth=4, random_state=42)
>>> train_size_abs, train_scores, test_scores = learning_curve(
... tree, X, y, train_sizes=[0.3, 0.6, 0.9]
... )
>>> for train_size, cv_train_scores, cv_test_scores in zip(
... train_size_abs, train_scores, test_scores
... ):
... print(f"{train_size} samples were used to train the model")
... print(f"The average train accuracy is {cv_train_scores.mean():.2f}")
... print(f"The average test accuracy is {cv_test_scores.mean():.2f}")
24 samples were used to train the model
The average train accuracy is 1.00
The average test accuracy is 0.85
48 samples were used to train the model
The average train accuracy is 1.00
The average test accuracy is 0.90
72 samples were used to train the model
The average train accuracy is 1.00
The average test accuracy is 0.93
"""
if exploit_incremental_learning and not hasattr(estimator, "partial_fit"):
raise ValueError(
"An estimator must support the partial_fit interface "
"to exploit incremental learning"
)
params = _check_params_groups_deprecation(fit_params, params, groups, "1.8")
X, y, groups = indexable(X, y, groups)
cv = check_cv(cv, y, classifier=is_classifier(estimator))
scorer = check_scoring(estimator, scoring=scoring)
if _routing_enabled():
router = (
MetadataRouter(owner="learning_curve")
.add(
estimator=estimator,
# TODO(SLEP6): also pass metadata to the predict method for
# scoring?
method_mapping=MethodMapping()
.add(caller="fit", callee="fit")
.add(caller="fit", callee="partial_fit"),
)
.add(
splitter=cv,
method_mapping=MethodMapping().add(caller="fit", callee="split"),
)
.add(
scorer=scorer,
method_mapping=MethodMapping().add(caller="fit", callee="score"),
)
)
try:
routed_params = process_routing(router, "fit", **params)
except UnsetMetadataPassedError as e:
# The default exception would mention `fit` since in the above
# `process_routing` code, we pass `fit` as the caller. However,
# the user is not calling `fit` directly, so we change the message
# to make it more suitable for this case.
unrequested_params = sorted(e.unrequested_params)
raise UnsetMetadataPassedError(
message=(
f"{unrequested_params} are passed to `learning_curve` but are not"
" explicitly set as requested or not requested for learning_curve's"
f" estimator: {estimator.__class__.__name__}. Call"
" `.set_fit_request({{metadata}}=True)` on the estimator for"
f" each metadata in {unrequested_params} that you"
" want to use and `metadata=False` for not using it. See the"
" Metadata Routing User guide"
" <https://scikit-learn.org/stable/metadata_routing.html> for more"
" information."
),
unrequested_params=e.unrequested_params,
routed_params=e.routed_params,
)
else:
routed_params = Bunch()
routed_params.estimator = Bunch(fit=params, partial_fit=params)
routed_params.splitter = Bunch(split={"groups": groups})
routed_params.scorer = Bunch(score={})
# Store cv as list as we will be iterating over the list multiple times
cv_iter = list(cv.split(X, y, **routed_params.splitter.split))
n_max_training_samples = len(cv_iter[0][0])
# Because the lengths of folds can be significantly different, it is
# not guaranteed that we use all of the available training data when we
# use the first 'n_max_training_samples' samples.
train_sizes_abs = _translate_train_sizes(train_sizes, n_max_training_samples)
n_unique_ticks = train_sizes_abs.shape[0]
if verbose > 0:
print("[learning_curve] Training set sizes: " + str(train_sizes_abs))
parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose)
if shuffle:
rng = check_random_state(random_state)
cv_iter = ((rng.permutation(train), test) for train, test in cv_iter)
if exploit_incremental_learning:
classes = np.unique(y) if is_classifier(estimator) else None
out = parallel(
delayed(_incremental_fit_estimator)(
clone(estimator),
X,
y,
classes,
train,
test,
train_sizes_abs,
scorer,
return_times,
error_score=error_score,
fit_params=routed_params.estimator.partial_fit,
score_params=routed_params.scorer.score,
)
for train, test in cv_iter
)
out = np.asarray(out).transpose((2, 1, 0))
else:
train_test_proportions = []
for train, test in cv_iter:
for n_train_samples in train_sizes_abs:
train_test_proportions.append((train[:n_train_samples], test))
results = parallel(
delayed(_fit_and_score)(
clone(estimator),
X,
y,
scorer=scorer,
train=train,
test=test,
verbose=verbose,
parameters=None,
fit_params=routed_params.estimator.fit,
score_params=routed_params.scorer.score,
return_train_score=True,
error_score=error_score,
return_times=return_times,
)
for train, test in train_test_proportions
)
_warn_or_raise_about_fit_failures(results, error_score)
results = _aggregate_score_dicts(results)
train_scores = results["train_scores"].reshape(-1, n_unique_ticks).T
test_scores = results["test_scores"].reshape(-1, n_unique_ticks).T
out = [train_scores, test_scores]
if return_times:
fit_times = results["fit_time"].reshape(-1, n_unique_ticks).T
score_times = results["score_time"].reshape(-1, n_unique_ticks).T
out.extend([fit_times, score_times])
ret = train_sizes_abs, out[0], out[1]
if return_times:
ret = ret + (out[2], out[3])
return ret
def _translate_train_sizes(train_sizes, n_max_training_samples):
"""Determine absolute sizes of training subsets and validate 'train_sizes'.
Examples:
_translate_train_sizes([0.5, 1.0], 10) -> [5, 10]
_translate_train_sizes([5, 10], 10) -> [5, 10]
Parameters
----------
train_sizes : array-like of shape (n_ticks,)
Numbers of training examples that will be used to generate the
learning curve. If the dtype is float, it is regarded as a
fraction of 'n_max_training_samples', i.e. it has to be within (0, 1].
n_max_training_samples : int
Maximum number of training samples (upper bound of 'train_sizes').
Returns
-------
train_sizes_abs : array of shape (n_unique_ticks,)
Numbers of training examples that will be used to generate the
learning curve. Note that the number of ticks might be less
than n_ticks because duplicate entries will be removed.
"""
train_sizes_abs = np.asarray(train_sizes)
n_ticks = train_sizes_abs.shape[0]
n_min_required_samples = np.min(train_sizes_abs)
n_max_required_samples = np.max(train_sizes_abs)
if np.issubdtype(train_sizes_abs.dtype, np.floating):
if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0:
raise ValueError(
"train_sizes has been interpreted as fractions "
"of the maximum number of training samples and "
"must be within (0, 1], but is within [%f, %f]."
% (n_min_required_samples, n_max_required_samples)
)
train_sizes_abs = (train_sizes_abs * n_max_training_samples).astype(
dtype=int, copy=False
)
train_sizes_abs = np.clip(train_sizes_abs, 1, n_max_training_samples)
else:
if (
n_min_required_samples <= 0
or n_max_required_samples > n_max_training_samples
):
raise ValueError(
"train_sizes has been interpreted as absolute "
"numbers of training samples and must be within "
"(0, %d], but is within [%d, %d]."
% (
n_max_training_samples,
n_min_required_samples,
n_max_required_samples,
)
)
train_sizes_abs = np.unique(train_sizes_abs)
if n_ticks > train_sizes_abs.shape[0]:
warnings.warn(
"Removed duplicate entries from 'train_sizes'. Number "
"of ticks will be less than the size of "
"'train_sizes': %d instead of %d." % (train_sizes_abs.shape[0], n_ticks),
RuntimeWarning,
)
return train_sizes_abs
def _incremental_fit_estimator(
estimator,
X,
y,
classes,
train,
test,
train_sizes,
scorer,
return_times,
error_score,
fit_params,
score_params,
):
"""Train estimator on training subsets incrementally and compute scores."""
train_scores, test_scores, fit_times, score_times = [], [], [], []
partitions = zip(train_sizes, np.split(train, train_sizes)[:-1])
if fit_params is None:
fit_params = {}
if classes is None:
partial_fit_func = partial(estimator.partial_fit, **fit_params)
else:
partial_fit_func = partial(estimator.partial_fit, classes=classes, **fit_params)
score_params = score_params if score_params is not None else {}
score_params_train = _check_method_params(X, params=score_params, indices=train)
score_params_test = _check_method_params(X, params=score_params, indices=test)
for n_train_samples, partial_train in partitions:
train_subset = train[:n_train_samples]
X_train, y_train = _safe_split(estimator, X, y, train_subset)
X_partial_train, y_partial_train = _safe_split(estimator, X, y, partial_train)
X_test, y_test = _safe_split(estimator, X, y, test, train_subset)
start_fit = time.time()
if y_partial_train is None:
partial_fit_func(X_partial_train)
else:
partial_fit_func(X_partial_train, y_partial_train)
fit_time = time.time() - start_fit
fit_times.append(fit_time)
start_score = time.time()
test_scores.append(
_score(
estimator,
X_test,
y_test,
scorer,
score_params=score_params_test,
error_score=error_score,
)
)
train_scores.append(
_score(
estimator,
X_train,
y_train,
scorer,
score_params=score_params_train,
error_score=error_score,
)
)
score_time = time.time() - start_score
score_times.append(score_time)
ret = (
(train_scores, test_scores, fit_times, score_times)
if return_times
else (train_scores, test_scores)
)
return np.array(ret).T
@validate_params(
{
"estimator": [HasMethods(["fit"])],
"X": ["array-like", "sparse matrix"],
"y": ["array-like", None],
"param_name": [str],
"param_range": ["array-like"],
"groups": ["array-like", None],
"cv": ["cv_object"],
"scoring": [StrOptions(set(get_scorer_names())), callable, None],
"n_jobs": [Integral, None],
"pre_dispatch": [Integral, str],
"verbose": ["verbose"],
"error_score": [StrOptions({"raise"}), Real],
"fit_params": [dict, None],
"params": [dict, None],
},
prefer_skip_nested_validation=False, # estimator is not validated yet
)
def validation_curve(
estimator,
X,
y,
*,
param_name,
param_range,
groups=None,
cv=None,
scoring=None,
n_jobs=None,
pre_dispatch="all",
verbose=0,
error_score=np.nan,
fit_params=None,
params=None,
):
"""Validation curve.
Determine training and test scores for varying parameter values.
Compute scores for an estimator with different values of a specified
parameter. This is similar to grid search with one parameter. However, this
will also compute training scores and is merely a utility for plotting the
results.
Read more in the :ref:`User Guide <validation_curve>`.
Parameters
----------
estimator : object type that implements the "fit" method
An object of that type which is cloned for each validation. It must
also implement "predict" unless `scoring` is a callable that doesn't
rely on "predict" to compute a score.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
Target relative to X for classification or regression;
None for unsupervised learning.
param_name : str
Name of the parameter that will be varied.
param_range : array-like of shape (n_values,)
The values of the parameter that will be evaluated.
groups : array-like of shape (n_samples,), default=None
Group labels for the samples used while splitting the dataset into
train/test set. Only used in conjunction with a "Group" :term:`cv`
instance (e.g., :class:`GroupKFold`).
.. versionchanged:: 1.6
``groups`` can only be passed if metadata routing is not enabled
via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
is enabled, pass ``groups`` alongside other metadata via the ``params``
argument instead. E.g.:
``validation_curve(..., params={'groups': groups})``.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross validation,
- int, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For int/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass, :class:`StratifiedKFold` is used. In all
other cases, :class:`KFold` is used. These splitters are instantiated
with `shuffle=False` so the splits will be the same across calls.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value if None changed from 3-fold to 5-fold.
scoring : str or callable, default=None
A str (see :ref:`scoring_parameter`) or a scorer callable object / function with
signature ``scorer(estimator, X, y)``.
n_jobs : int, default=None
Number of jobs to run in parallel. Training the estimator and computing
the score are parallelized over the combinations of each parameter
value and each cross-validation split.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
pre_dispatch : int or str, default='all'
Number of predispatched jobs for parallel execution (default is
all). The option can reduce the allocated memory. The str can
be an expression like '2*n_jobs'.
verbose : int, default=0
Controls the verbosity: the higher, the more messages.
error_score : 'raise' or numeric, default=np.nan
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised.
If a numeric value is given, FitFailedWarning is raised.
.. versionadded:: 0.20
fit_params : dict, default=None
Parameters to pass to the fit method of the estimator.
.. deprecated:: 1.6
This parameter is deprecated and will be removed in version 1.8. Use
``params`` instead.
params : dict, default=None
Parameters to pass to the estimator, scorer and cross-validation object.
- If `enable_metadata_routing=False` (default): Parameters directly passed to
the `fit` method of the estimator.
- If `enable_metadata_routing=True`: Parameters safely routed to the `fit`
method of the estimator, to the scorer and to the cross-validation object.
See :ref:`Metadata Routing User Guide <metadata_routing>` for more details.
.. versionadded:: 1.6
Returns
-------
train_scores : array of shape (n_ticks, n_cv_folds)
Scores on training sets.
test_scores : array of shape (n_ticks, n_cv_folds)
Scores on test set.
Notes
-----
See :ref:`sphx_glr_auto_examples_model_selection_plot_train_error_vs_test_error.py`
Examples
--------
>>> import numpy as np
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import validation_curve
>>> from sklearn.linear_model import LogisticRegression
>>> X, y = make_classification(n_samples=1_000, random_state=0)
>>> logistic_regression = LogisticRegression()
>>> param_name, param_range = "C", np.logspace(-8, 3, 10)
>>> train_scores, test_scores = validation_curve(
... logistic_regression, X, y, param_name=param_name, param_range=param_range
... )
>>> print(f"The average train accuracy is {train_scores.mean():.2f}")
The average train accuracy is 0.81
>>> print(f"The average test accuracy is {test_scores.mean():.2f}")
The average test accuracy is 0.81
"""
params = _check_params_groups_deprecation(fit_params, params, groups, "1.8")
X, y, groups = indexable(X, y, groups)
cv = check_cv(cv, y, classifier=is_classifier(estimator))
scorer = check_scoring(estimator, scoring=scoring)
if _routing_enabled():
router = (
MetadataRouter(owner="validation_curve")
.add(
estimator=estimator,
method_mapping=MethodMapping().add(caller="fit", callee="fit"),
)
.add(
splitter=cv,
method_mapping=MethodMapping().add(caller="fit", callee="split"),
)
.add(
scorer=scorer,
method_mapping=MethodMapping().add(caller="fit", callee="score"),
)
)
try:
routed_params = process_routing(router, "fit", **params)
except UnsetMetadataPassedError as e:
# The default exception would mention `fit` since in the above
# `process_routing` code, we pass `fit` as the caller. However,
# the user is not calling `fit` directly, so we change the message
# to make it more suitable for this case.
unrequested_params = sorted(e.unrequested_params)
raise UnsetMetadataPassedError(
message=(
f"{unrequested_params} are passed to `validation_curve` but are not"
" explicitly set as requested or not requested for"
f" validation_curve's estimator: {estimator.__class__.__name__}."
" Call `.set_fit_request({{metadata}}=True)` on the estimator for"
f" each metadata in {unrequested_params} that you"
" want to use and `metadata=False` for not using it. See the"
" Metadata Routing User guide"
" <https://scikit-learn.org/stable/metadata_routing.html> for more"
" information."
),
unrequested_params=e.unrequested_params,
routed_params=e.routed_params,
)
else:
routed_params = Bunch()
routed_params.estimator = Bunch(fit=params)
routed_params.splitter = Bunch(split={"groups": groups})
routed_params.scorer = Bunch(score={})
parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose)
results = parallel(
delayed(_fit_and_score)(
clone(estimator),
X,
y,
scorer=scorer,
train=train,
test=test,
verbose=verbose,
parameters={param_name: v},
fit_params=routed_params.estimator.fit,
score_params=routed_params.scorer.score,
return_train_score=True,
error_score=error_score,
)
# NOTE do not change order of iteration to allow one time cv splitters
for train, test in cv.split(X, y, **routed_params.splitter.split)
for v in param_range
)
n_params = len(param_range)
results = _aggregate_score_dicts(results)
train_scores = results["train_scores"].reshape(-1, n_params).T
test_scores = results["test_scores"].reshape(-1, n_params).T
return train_scores, test_scores
def _aggregate_score_dicts(scores):
"""Aggregate the list of dict to dict of np ndarray
The aggregated output of _aggregate_score_dicts will be a list of dict
of form [{'prec': 0.1, 'acc':1.0}, {'prec': 0.1, 'acc':1.0}, ...]
Convert it to a dict of array {'prec': np.array([0.1 ...]), ...}
Parameters
----------
scores : list of dict
List of dicts of the scores for all scorers. This is a flat list,
assumed originally to be of row major order.
Example
-------
>>> scores = [{'a': 1, 'b':10}, {'a': 2, 'b':2}, {'a': 3, 'b':3},
... {'a': 10, 'b': 10}] # doctest: +SKIP
>>> _aggregate_score_dicts(scores) # doctest: +SKIP
{'a': array([1, 2, 3, 10]),
'b': array([10, 2, 3, 10])}
"""
return {
key: (
np.asarray([score[key] for score in scores])
if isinstance(scores[0][key], numbers.Number)
else [score[key] for score in scores]
)
for key in scores[0]
}
|