File size: 58,636 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 |
import warnings
from types import GeneratorType
import numpy as np
import pytest
from numpy import linalg
from scipy.sparse import issparse
from scipy.spatial.distance import (
cdist,
cityblock,
cosine,
minkowski,
pdist,
squareform,
)
from sklearn import config_context
from sklearn.exceptions import DataConversionWarning
from sklearn.metrics.pairwise import (
PAIRED_DISTANCES,
PAIRWISE_BOOLEAN_FUNCTIONS,
PAIRWISE_DISTANCE_FUNCTIONS,
PAIRWISE_KERNEL_FUNCTIONS,
_euclidean_distances_upcast,
additive_chi2_kernel,
check_paired_arrays,
check_pairwise_arrays,
chi2_kernel,
cosine_distances,
cosine_similarity,
euclidean_distances,
haversine_distances,
laplacian_kernel,
linear_kernel,
manhattan_distances,
nan_euclidean_distances,
paired_cosine_distances,
paired_distances,
paired_euclidean_distances,
paired_manhattan_distances,
pairwise_distances,
pairwise_distances_argmin,
pairwise_distances_argmin_min,
pairwise_distances_chunked,
pairwise_kernels,
polynomial_kernel,
rbf_kernel,
sigmoid_kernel,
)
from sklearn.preprocessing import normalize
from sklearn.utils._testing import (
assert_allclose,
assert_almost_equal,
assert_array_equal,
ignore_warnings,
)
from sklearn.utils.fixes import (
BSR_CONTAINERS,
COO_CONTAINERS,
CSC_CONTAINERS,
CSR_CONTAINERS,
DOK_CONTAINERS,
)
from sklearn.utils.parallel import Parallel, delayed
def test_pairwise_distances_for_dense_data(global_dtype):
# Test the pairwise_distance helper function.
rng = np.random.RandomState(0)
# Euclidean distance should be equivalent to calling the function.
X = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
S = pairwise_distances(X, metric="euclidean")
S2 = euclidean_distances(X)
assert_allclose(S, S2)
assert S.dtype == S2.dtype == global_dtype
# Euclidean distance, with Y != X.
Y = rng.random_sample((2, 4)).astype(global_dtype, copy=False)
S = pairwise_distances(X, Y, metric="euclidean")
S2 = euclidean_distances(X, Y)
assert_allclose(S, S2)
assert S.dtype == S2.dtype == global_dtype
# Check to ensure NaNs work with pairwise_distances.
X_masked = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
Y_masked = rng.random_sample((2, 4)).astype(global_dtype, copy=False)
X_masked[0, 0] = np.nan
Y_masked[0, 0] = np.nan
S_masked = pairwise_distances(X_masked, Y_masked, metric="nan_euclidean")
S2_masked = nan_euclidean_distances(X_masked, Y_masked)
assert_allclose(S_masked, S2_masked)
assert S_masked.dtype == S2_masked.dtype == global_dtype
# Test with tuples as X and Y
X_tuples = tuple([tuple([v for v in row]) for row in X])
Y_tuples = tuple([tuple([v for v in row]) for row in Y])
S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean")
assert_allclose(S, S2)
assert S.dtype == S2.dtype == global_dtype
# Test haversine distance
# The data should be valid latitude and longitude
# haversine converts to float64 currently so we don't check dtypes.
X = rng.random_sample((5, 2)).astype(global_dtype, copy=False)
X[:, 0] = (X[:, 0] - 0.5) * 2 * np.pi / 2
X[:, 1] = (X[:, 1] - 0.5) * 2 * np.pi
S = pairwise_distances(X, metric="haversine")
S2 = haversine_distances(X)
assert_allclose(S, S2)
# Test haversine distance, with Y != X
Y = rng.random_sample((2, 2)).astype(global_dtype, copy=False)
Y[:, 0] = (Y[:, 0] - 0.5) * 2 * np.pi / 2
Y[:, 1] = (Y[:, 1] - 0.5) * 2 * np.pi
S = pairwise_distances(X, Y, metric="haversine")
S2 = haversine_distances(X, Y)
assert_allclose(S, S2)
# "cityblock" uses scikit-learn metric, cityblock (function) is
# scipy.spatial.
# The metric functions from scipy converts to float64 so we don't check the dtypes.
S = pairwise_distances(X, metric="cityblock")
S2 = pairwise_distances(X, metric=cityblock)
assert S.shape[0] == S.shape[1]
assert S.shape[0] == X.shape[0]
assert_allclose(S, S2)
# The manhattan metric should be equivalent to cityblock.
S = pairwise_distances(X, Y, metric="manhattan")
S2 = pairwise_distances(X, Y, metric=cityblock)
assert S.shape[0] == X.shape[0]
assert S.shape[1] == Y.shape[0]
assert_allclose(S, S2)
# Test cosine as a string metric versus cosine callable
# The string "cosine" uses sklearn.metric,
# while the function cosine is scipy.spatial
S = pairwise_distances(X, Y, metric="cosine")
S2 = pairwise_distances(X, Y, metric=cosine)
assert S.shape[0] == X.shape[0]
assert S.shape[1] == Y.shape[0]
assert_allclose(S, S2)
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
@pytest.mark.parametrize("bsr_container", BSR_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pairwise_distances_for_sparse_data(
coo_container, csc_container, bsr_container, csr_container, global_dtype
):
# Test the pairwise_distance helper function.
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
Y = rng.random_sample((2, 4)).astype(global_dtype, copy=False)
# Test with sparse X and Y,
# currently only supported for Euclidean, L1 and cosine.
X_sparse = csr_container(X)
Y_sparse = csr_container(Y)
S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean")
S2 = euclidean_distances(X_sparse, Y_sparse)
assert_allclose(S, S2)
assert S.dtype == S2.dtype == global_dtype
S = pairwise_distances(X_sparse, Y_sparse, metric="cosine")
S2 = cosine_distances(X_sparse, Y_sparse)
assert_allclose(S, S2)
assert S.dtype == S2.dtype == global_dtype
S = pairwise_distances(X_sparse, csc_container(Y), metric="manhattan")
S2 = manhattan_distances(bsr_container(X), coo_container(Y))
assert_allclose(S, S2)
if global_dtype == np.float64:
assert S.dtype == S2.dtype == global_dtype
else:
# TODO Fix manhattan_distances to preserve dtype.
# currently pairwise_distances uses manhattan_distances but converts the result
# back to the input dtype
with pytest.raises(AssertionError):
assert S.dtype == S2.dtype == global_dtype
S2 = manhattan_distances(X, Y)
assert_allclose(S, S2)
if global_dtype == np.float64:
assert S.dtype == S2.dtype == global_dtype
else:
# TODO Fix manhattan_distances to preserve dtype.
# currently pairwise_distances uses manhattan_distances but converts the result
# back to the input dtype
with pytest.raises(AssertionError):
assert S.dtype == S2.dtype == global_dtype
# Test with scipy.spatial.distance metric, with a kwd
kwds = {"p": 2.0}
S = pairwise_distances(X, Y, metric="minkowski", **kwds)
S2 = pairwise_distances(X, Y, metric=minkowski, **kwds)
assert_allclose(S, S2)
# same with Y = None
kwds = {"p": 2.0}
S = pairwise_distances(X, metric="minkowski", **kwds)
S2 = pairwise_distances(X, metric=minkowski, **kwds)
assert_allclose(S, S2)
# Test that scipy distance metrics throw an error if sparse matrix given
with pytest.raises(TypeError):
pairwise_distances(X_sparse, metric="minkowski")
with pytest.raises(TypeError):
pairwise_distances(X, Y_sparse, metric="minkowski")
# Some scipy metrics are deprecated (depending on the scipy version) but we
# still want to test them.
@ignore_warnings(category=DeprecationWarning)
@pytest.mark.parametrize("metric", PAIRWISE_BOOLEAN_FUNCTIONS)
def test_pairwise_boolean_distance(metric):
# test that we convert to boolean arrays for boolean distances
rng = np.random.RandomState(0)
X = rng.randn(5, 4)
Y = X.copy()
Y[0, 0] = 1 - Y[0, 0]
# ignore conversion to boolean in pairwise_distances
with ignore_warnings(category=DataConversionWarning):
for Z in [Y, None]:
res = pairwise_distances(X, Z, metric=metric)
np.nan_to_num(res, nan=0, posinf=0, neginf=0, copy=False)
assert np.sum(res != 0) == 0
# non-boolean arrays are converted to boolean for boolean
# distance metrics with a data conversion warning
msg = "Data was converted to boolean for metric %s" % metric
with pytest.warns(DataConversionWarning, match=msg):
pairwise_distances(X, metric=metric)
# Check that the warning is raised if X is boolean by Y is not boolean:
with pytest.warns(DataConversionWarning, match=msg):
pairwise_distances(X.astype(bool), Y=Y, metric=metric)
# Check that no warning is raised if X is already boolean and Y is None:
with warnings.catch_warnings():
warnings.simplefilter("error", DataConversionWarning)
pairwise_distances(X.astype(bool), metric=metric)
def test_no_data_conversion_warning():
# No warnings issued if metric is not a boolean distance function
rng = np.random.RandomState(0)
X = rng.randn(5, 4)
with warnings.catch_warnings():
warnings.simplefilter("error", DataConversionWarning)
pairwise_distances(X, metric="minkowski")
@pytest.mark.parametrize("func", [pairwise_distances, pairwise_kernels])
def test_pairwise_precomputed(func):
# Test correct shape
with pytest.raises(ValueError, match=".* shape .*"):
func(np.zeros((5, 3)), metric="precomputed")
# with two args
with pytest.raises(ValueError, match=".* shape .*"):
func(np.zeros((5, 3)), np.zeros((4, 4)), metric="precomputed")
# even if shape[1] agrees (although thus second arg is spurious)
with pytest.raises(ValueError, match=".* shape .*"):
func(np.zeros((5, 3)), np.zeros((4, 3)), metric="precomputed")
# Test not copied (if appropriate dtype)
S = np.zeros((5, 5))
S2 = func(S, metric="precomputed")
assert S is S2
# with two args
S = np.zeros((5, 3))
S2 = func(S, np.zeros((3, 3)), metric="precomputed")
assert S is S2
# Test always returns float dtype
S = func(np.array([[1]], dtype="int"), metric="precomputed")
assert "f" == S.dtype.kind
# Test converts list to array-like
S = func([[1.0]], metric="precomputed")
assert isinstance(S, np.ndarray)
def test_pairwise_precomputed_non_negative():
# Test non-negative values
with pytest.raises(ValueError, match=".* non-negative values.*"):
pairwise_distances(np.full((5, 5), -1), metric="precomputed")
_minkowski_kwds = {"w": np.arange(1, 5).astype("double", copy=False), "p": 1}
def callable_rbf_kernel(x, y, **kwds):
# Callable version of pairwise.rbf_kernel.
K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds)
# unpack the output since this is a scalar packed in a 0-dim array
return K.item()
@pytest.mark.parametrize(
"func, metric, kwds",
[
(pairwise_distances, "euclidean", {}),
(
pairwise_distances,
minkowski,
_minkowski_kwds,
),
(
pairwise_distances,
"minkowski",
_minkowski_kwds,
),
(pairwise_kernels, "polynomial", {"degree": 1}),
(pairwise_kernels, callable_rbf_kernel, {"gamma": 0.1}),
],
)
@pytest.mark.parametrize("dtype", [np.float64, np.float32, int])
def test_pairwise_parallel(func, metric, kwds, dtype):
rng = np.random.RandomState(0)
X = np.array(5 * rng.random_sample((5, 4)), dtype=dtype)
Y = np.array(5 * rng.random_sample((3, 4)), dtype=dtype)
S = func(X, metric=metric, n_jobs=1, **kwds)
S2 = func(X, metric=metric, n_jobs=2, **kwds)
assert_allclose(S, S2)
S = func(X, Y, metric=metric, n_jobs=1, **kwds)
S2 = func(X, Y, metric=metric, n_jobs=2, **kwds)
assert_allclose(S, S2)
def test_pairwise_callable_nonstrict_metric():
# paired_distances should allow callable metric where metric(x, x) != 0
# Knowing that the callable is a strict metric would allow the diagonal to
# be left uncalculated and set to 0.
assert pairwise_distances([[1.0]], metric=lambda x, y: 5)[0, 0] == 5
# Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS.
@pytest.mark.parametrize(
"metric",
["rbf", "laplacian", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"],
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pairwise_kernels(metric, csr_container):
# Test the pairwise_kernels helper function.
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((2, 4))
function = PAIRWISE_KERNEL_FUNCTIONS[metric]
# Test with Y=None
K1 = pairwise_kernels(X, metric=metric)
K2 = function(X)
assert_allclose(K1, K2)
# Test with Y=Y
K1 = pairwise_kernels(X, Y=Y, metric=metric)
K2 = function(X, Y=Y)
assert_allclose(K1, K2)
# Test with tuples as X and Y
X_tuples = tuple([tuple([v for v in row]) for row in X])
Y_tuples = tuple([tuple([v for v in row]) for row in Y])
K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric)
assert_allclose(K1, K2)
# Test with sparse X and Y
X_sparse = csr_container(X)
Y_sparse = csr_container(Y)
if metric in ["chi2", "additive_chi2"]:
# these don't support sparse matrices yet
return
K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric)
assert_allclose(K1, K2)
def test_pairwise_kernels_callable():
# Test the pairwise_kernels helper function
# with a callable function, with given keywords.
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((2, 4))
metric = callable_rbf_kernel
kwds = {"gamma": 0.1}
K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds)
K2 = rbf_kernel(X, Y=Y, **kwds)
assert_allclose(K1, K2)
# callable function, X=Y
K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds)
K2 = rbf_kernel(X, Y=X, **kwds)
assert_allclose(K1, K2)
def test_pairwise_kernels_filter_param():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((2, 4))
K = rbf_kernel(X, Y, gamma=0.1)
params = {"gamma": 0.1, "blabla": ":)"}
K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params)
assert_allclose(K, K2)
with pytest.raises(TypeError):
pairwise_kernels(X, Y, metric="rbf", **params)
@pytest.mark.parametrize("metric, func", PAIRED_DISTANCES.items())
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_paired_distances(metric, func, csr_container):
# Test the pairwise_distance helper function.
rng = np.random.RandomState(0)
# Euclidean distance should be equivalent to calling the function.
X = rng.random_sample((5, 4))
# Euclidean distance, with Y != X.
Y = rng.random_sample((5, 4))
S = paired_distances(X, Y, metric=metric)
S2 = func(X, Y)
assert_allclose(S, S2)
S3 = func(csr_container(X), csr_container(Y))
assert_allclose(S, S3)
if metric in PAIRWISE_DISTANCE_FUNCTIONS:
# Check the pairwise_distances implementation
# gives the same value
distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y)
distances = np.diag(distances)
assert_allclose(distances, S)
def test_paired_distances_callable(global_dtype):
# Test the paired_distance helper function
# with the callable implementation
rng = np.random.RandomState(0)
# Euclidean distance should be equivalent to calling the function.
X = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
# Euclidean distance, with Y != X.
Y = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
S = paired_distances(X, Y, metric="manhattan")
S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0))
assert_allclose(S, S2)
# Test that a value error is raised when the lengths of X and Y should not
# differ
Y = rng.random_sample((3, 4))
with pytest.raises(ValueError):
paired_distances(X, Y)
@pytest.mark.parametrize("dok_container", DOK_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pairwise_distances_argmin_min(dok_container, csr_container, global_dtype):
# Check pairwise minimum distances computation for any metric
X = np.asarray([[0], [1]], dtype=global_dtype)
Y = np.asarray([[-2], [3]], dtype=global_dtype)
Xsp = dok_container(X)
Ysp = csr_container(Y, dtype=global_dtype)
expected_idx = [0, 1]
expected_vals = [2, 2]
expected_vals_sq = [4, 4]
# euclidean metric
idx, vals = pairwise_distances_argmin_min(X, Y, metric="euclidean")
idx2 = pairwise_distances_argmin(X, Y, metric="euclidean")
assert_allclose(idx, expected_idx)
assert_allclose(idx2, expected_idx)
assert_allclose(vals, expected_vals)
# sparse matrix case
idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean")
idxsp2 = pairwise_distances_argmin(Xsp, Ysp, metric="euclidean")
assert_allclose(idxsp, expected_idx)
assert_allclose(idxsp2, expected_idx)
assert_allclose(valssp, expected_vals)
# We don't want np.matrix here
assert type(idxsp) == np.ndarray
assert type(valssp) == np.ndarray
# Squared Euclidean metric
idx, vals = pairwise_distances_argmin_min(X, Y, metric="sqeuclidean")
idx2, vals2 = pairwise_distances_argmin_min(
X, Y, metric="euclidean", metric_kwargs={"squared": True}
)
idx3 = pairwise_distances_argmin(X, Y, metric="sqeuclidean")
idx4 = pairwise_distances_argmin(
X, Y, metric="euclidean", metric_kwargs={"squared": True}
)
assert_allclose(vals, expected_vals_sq)
assert_allclose(vals2, expected_vals_sq)
assert_allclose(idx, expected_idx)
assert_allclose(idx2, expected_idx)
assert_allclose(idx3, expected_idx)
assert_allclose(idx4, expected_idx)
# Non-euclidean scikit-learn metric
idx, vals = pairwise_distances_argmin_min(X, Y, metric="manhattan")
idx2 = pairwise_distances_argmin(X, Y, metric="manhattan")
assert_allclose(idx, expected_idx)
assert_allclose(idx2, expected_idx)
assert_allclose(vals, expected_vals)
# sparse matrix case
idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan")
idxsp2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan")
assert_allclose(idxsp, expected_idx)
assert_allclose(idxsp2, expected_idx)
assert_allclose(valssp, expected_vals)
# Non-euclidean Scipy distance (callable)
idx, vals = pairwise_distances_argmin_min(
X, Y, metric=minkowski, metric_kwargs={"p": 2}
)
assert_allclose(idx, expected_idx)
assert_allclose(vals, expected_vals)
# Non-euclidean Scipy distance (string)
idx, vals = pairwise_distances_argmin_min(
X, Y, metric="minkowski", metric_kwargs={"p": 2}
)
assert_allclose(idx, expected_idx)
assert_allclose(vals, expected_vals)
# Compare with naive implementation
rng = np.random.RandomState(0)
X = rng.randn(97, 149)
Y = rng.randn(111, 149)
dist = pairwise_distances(X, Y, metric="manhattan")
dist_orig_ind = dist.argmin(axis=0)
dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))]
dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min(
X, Y, axis=0, metric="manhattan"
)
assert_allclose(dist_orig_ind, dist_chunked_ind, rtol=1e-7)
assert_allclose(dist_orig_val, dist_chunked_val, rtol=1e-7)
# Changing the axis and permuting datasets must give the same results
argmin_0, dist_0 = pairwise_distances_argmin_min(X, Y, axis=0)
argmin_1, dist_1 = pairwise_distances_argmin_min(Y, X, axis=1)
assert_allclose(dist_0, dist_1)
assert_array_equal(argmin_0, argmin_1)
argmin_0, dist_0 = pairwise_distances_argmin_min(X, X, axis=0)
argmin_1, dist_1 = pairwise_distances_argmin_min(X, X, axis=1)
assert_allclose(dist_0, dist_1)
assert_array_equal(argmin_0, argmin_1)
# Changing the axis and permuting datasets must give the same results
argmin_0 = pairwise_distances_argmin(X, Y, axis=0)
argmin_1 = pairwise_distances_argmin(Y, X, axis=1)
assert_array_equal(argmin_0, argmin_1)
argmin_0 = pairwise_distances_argmin(X, X, axis=0)
argmin_1 = pairwise_distances_argmin(X, X, axis=1)
assert_array_equal(argmin_0, argmin_1)
# F-contiguous arrays must be supported and must return identical results.
argmin_C_contiguous = pairwise_distances_argmin(X, Y)
argmin_F_contiguous = pairwise_distances_argmin(
np.asfortranarray(X), np.asfortranarray(Y)
)
assert_array_equal(argmin_C_contiguous, argmin_F_contiguous)
def _reduce_func(dist, start):
return dist[:, :100]
def test_pairwise_distances_chunked_reduce(global_dtype):
rng = np.random.RandomState(0)
X = rng.random_sample((400, 4)).astype(global_dtype, copy=False)
# Reduced Euclidean distance
S = pairwise_distances(X)[:, :100]
S_chunks = pairwise_distances_chunked(
X, None, reduce_func=_reduce_func, working_memory=2**-16
)
assert isinstance(S_chunks, GeneratorType)
S_chunks = list(S_chunks)
assert len(S_chunks) > 1
assert S_chunks[0].dtype == X.dtype
# atol is for diagonal where S is explicitly zeroed on the diagonal
assert_allclose(np.vstack(S_chunks), S, atol=1e-7)
def test_pairwise_distances_chunked_reduce_none(global_dtype):
# check that the reduce func is allowed to return None
rng = np.random.RandomState(0)
X = rng.random_sample((10, 4)).astype(global_dtype, copy=False)
S_chunks = pairwise_distances_chunked(
X, None, reduce_func=lambda dist, start: None, working_memory=2**-16
)
assert isinstance(S_chunks, GeneratorType)
S_chunks = list(S_chunks)
assert len(S_chunks) > 1
assert all(chunk is None for chunk in S_chunks)
@pytest.mark.parametrize(
"good_reduce",
[
lambda D, start: list(D),
lambda D, start: np.array(D),
lambda D, start: (list(D), list(D)),
]
+ [
lambda D, start, scipy_csr_type=scipy_csr_type: scipy_csr_type(D)
for scipy_csr_type in CSR_CONTAINERS
]
+ [
lambda D, start, scipy_dok_type=scipy_dok_type: (
scipy_dok_type(D),
np.array(D),
list(D),
)
for scipy_dok_type in DOK_CONTAINERS
],
)
def test_pairwise_distances_chunked_reduce_valid(good_reduce):
X = np.arange(10).reshape(-1, 1)
S_chunks = pairwise_distances_chunked(
X, None, reduce_func=good_reduce, working_memory=64
)
next(S_chunks)
@pytest.mark.parametrize(
("bad_reduce", "err_type", "message"),
[
(
lambda D, s: np.concatenate([D, D[-1:]]),
ValueError,
r"length 11\..* input: 10\.",
),
(
lambda D, s: (D, np.concatenate([D, D[-1:]])),
ValueError,
r"length \(10, 11\)\..* input: 10\.",
),
(lambda D, s: (D[:9], D), ValueError, r"length \(9, 10\)\..* input: 10\."),
(
lambda D, s: 7,
TypeError,
r"returned 7\. Expected sequence\(s\) of length 10\.",
),
(
lambda D, s: (7, 8),
TypeError,
r"returned \(7, 8\)\. Expected sequence\(s\) of length 10\.",
),
(
lambda D, s: (np.arange(10), 9),
TypeError,
r", 9\)\. Expected sequence\(s\) of length 10\.",
),
],
)
def test_pairwise_distances_chunked_reduce_invalid(
global_dtype, bad_reduce, err_type, message
):
X = np.arange(10).reshape(-1, 1).astype(global_dtype, copy=False)
S_chunks = pairwise_distances_chunked(
X, None, reduce_func=bad_reduce, working_memory=64
)
with pytest.raises(err_type, match=message):
next(S_chunks)
def check_pairwise_distances_chunked(X, Y, working_memory, metric="euclidean"):
gen = pairwise_distances_chunked(X, Y, working_memory=working_memory, metric=metric)
assert isinstance(gen, GeneratorType)
blockwise_distances = list(gen)
Y = X if Y is None else Y
min_block_mib = len(Y) * 8 * 2**-20
for block in blockwise_distances:
memory_used = block.nbytes
assert memory_used <= max(working_memory, min_block_mib) * 2**20
blockwise_distances = np.vstack(blockwise_distances)
S = pairwise_distances(X, Y, metric=metric)
assert_allclose(blockwise_distances, S, atol=1e-7)
@pytest.mark.parametrize("metric", ("euclidean", "l2", "sqeuclidean"))
def test_pairwise_distances_chunked_diagonal(metric, global_dtype):
rng = np.random.RandomState(0)
X = rng.normal(size=(1000, 10), scale=1e10).astype(global_dtype, copy=False)
chunks = list(pairwise_distances_chunked(X, working_memory=1, metric=metric))
assert len(chunks) > 1
assert_allclose(np.diag(np.vstack(chunks)), 0, rtol=1e-10)
@pytest.mark.parametrize("metric", ("euclidean", "l2", "sqeuclidean"))
def test_parallel_pairwise_distances_diagonal(metric, global_dtype):
rng = np.random.RandomState(0)
X = rng.normal(size=(1000, 10), scale=1e10).astype(global_dtype, copy=False)
distances = pairwise_distances(X, metric=metric, n_jobs=2)
assert_allclose(np.diag(distances), 0, atol=1e-10)
@pytest.mark.filterwarnings("ignore:Could not adhere to working_memory config")
def test_pairwise_distances_chunked(global_dtype):
# Test the pairwise_distance helper function.
rng = np.random.RandomState(0)
# Euclidean distance should be equivalent to calling the function.
X = rng.random_sample((200, 4)).astype(global_dtype, copy=False)
check_pairwise_distances_chunked(X, None, working_memory=1, metric="euclidean")
# Test small amounts of memory
for power in range(-16, 0):
check_pairwise_distances_chunked(
X, None, working_memory=2**power, metric="euclidean"
)
# X as list
check_pairwise_distances_chunked(
X.tolist(), None, working_memory=1, metric="euclidean"
)
# Euclidean distance, with Y != X.
Y = rng.random_sample((100, 4)).astype(global_dtype, copy=False)
check_pairwise_distances_chunked(X, Y, working_memory=1, metric="euclidean")
check_pairwise_distances_chunked(
X.tolist(), Y.tolist(), working_memory=1, metric="euclidean"
)
# absurdly large working_memory
check_pairwise_distances_chunked(X, Y, working_memory=10000, metric="euclidean")
# "cityblock" uses scikit-learn metric, cityblock (function) is
# scipy.spatial.
check_pairwise_distances_chunked(X, Y, working_memory=1, metric="cityblock")
# Test precomputed returns all at once
D = pairwise_distances(X)
gen = pairwise_distances_chunked(D, working_memory=2**-16, metric="precomputed")
assert isinstance(gen, GeneratorType)
assert next(gen) is D
with pytest.raises(StopIteration):
next(gen)
@pytest.mark.parametrize(
"x_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
@pytest.mark.parametrize(
"y_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_known_result(x_array_constr, y_array_constr):
# Check the pairwise Euclidean distances computation on known result
X = x_array_constr([[0]])
Y = y_array_constr([[1], [2]])
D = euclidean_distances(X, Y)
assert_allclose(D, [[1.0, 2.0]])
@pytest.mark.parametrize(
"y_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_with_norms(global_dtype, y_array_constr):
# check that we still get the right answers with {X,Y}_norm_squared
# and that we get a wrong answer with wrong {X,Y}_norm_squared
rng = np.random.RandomState(0)
X = rng.random_sample((10, 10)).astype(global_dtype, copy=False)
Y = rng.random_sample((20, 10)).astype(global_dtype, copy=False)
# norms will only be used if their dtype is float64
X_norm_sq = (X.astype(np.float64) ** 2).sum(axis=1).reshape(1, -1)
Y_norm_sq = (Y.astype(np.float64) ** 2).sum(axis=1).reshape(1, -1)
Y = y_array_constr(Y)
D1 = euclidean_distances(X, Y)
D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq)
D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq)
D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq)
assert_allclose(D2, D1)
assert_allclose(D3, D1)
assert_allclose(D4, D1)
# check we get the wrong answer with wrong {X,Y}_norm_squared
wrong_D = euclidean_distances(
X,
Y,
X_norm_squared=np.zeros_like(X_norm_sq),
Y_norm_squared=np.zeros_like(Y_norm_sq),
)
with pytest.raises(AssertionError):
assert_allclose(wrong_D, D1)
@pytest.mark.parametrize("symmetric", [True, False])
def test_euclidean_distances_float32_norms(global_random_seed, symmetric):
# Non-regression test for #27621
rng = np.random.RandomState(global_random_seed)
X = rng.random_sample((10, 10))
Y = X if symmetric else rng.random_sample((20, 10))
X_norm_sq = (X.astype(np.float32) ** 2).sum(axis=1).reshape(1, -1)
Y_norm_sq = (Y.astype(np.float32) ** 2).sum(axis=1).reshape(1, -1)
D1 = euclidean_distances(X, Y)
D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq)
D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq)
D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq)
assert_allclose(D2, D1)
assert_allclose(D3, D1)
assert_allclose(D4, D1)
def test_euclidean_distances_norm_shapes():
# Check all accepted shapes for the norms or appropriate error messages.
rng = np.random.RandomState(0)
X = rng.random_sample((10, 10))
Y = rng.random_sample((20, 10))
X_norm_squared = (X**2).sum(axis=1)
Y_norm_squared = (Y**2).sum(axis=1)
D1 = euclidean_distances(
X, Y, X_norm_squared=X_norm_squared, Y_norm_squared=Y_norm_squared
)
D2 = euclidean_distances(
X,
Y,
X_norm_squared=X_norm_squared.reshape(-1, 1),
Y_norm_squared=Y_norm_squared.reshape(-1, 1),
)
D3 = euclidean_distances(
X,
Y,
X_norm_squared=X_norm_squared.reshape(1, -1),
Y_norm_squared=Y_norm_squared.reshape(1, -1),
)
assert_allclose(D2, D1)
assert_allclose(D3, D1)
with pytest.raises(ValueError, match="Incompatible dimensions for X"):
euclidean_distances(X, Y, X_norm_squared=X_norm_squared[:5])
with pytest.raises(ValueError, match="Incompatible dimensions for Y"):
euclidean_distances(X, Y, Y_norm_squared=Y_norm_squared[:5])
@pytest.mark.parametrize(
"x_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
@pytest.mark.parametrize(
"y_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances(global_dtype, x_array_constr, y_array_constr):
# check that euclidean distances gives same result as scipy cdist
# when X and Y != X are provided
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10)).astype(global_dtype, copy=False)
X[X < 0.8] = 0
Y = rng.random_sample((10, 10)).astype(global_dtype, copy=False)
Y[Y < 0.8] = 0
expected = cdist(X, Y)
X = x_array_constr(X)
Y = y_array_constr(Y)
distances = euclidean_distances(X, Y)
# the default rtol=1e-7 is too close to the float32 precision
# and fails due to rounding errors.
assert_allclose(distances, expected, rtol=1e-6)
assert distances.dtype == global_dtype
@pytest.mark.parametrize(
"x_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_sym(global_dtype, x_array_constr):
# check that euclidean distances gives same result as scipy pdist
# when only X is provided
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10)).astype(global_dtype, copy=False)
X[X < 0.8] = 0
expected = squareform(pdist(X))
X = x_array_constr(X)
distances = euclidean_distances(X)
# the default rtol=1e-7 is too close to the float32 precision
# and fails due to rounding errors.
assert_allclose(distances, expected, rtol=1e-6)
assert distances.dtype == global_dtype
@pytest.mark.parametrize("batch_size", [None, 5, 7, 101])
@pytest.mark.parametrize(
"x_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
@pytest.mark.parametrize(
"y_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_upcast(batch_size, x_array_constr, y_array_constr):
# check batches handling when Y != X (#13910)
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10)).astype(np.float32)
X[X < 0.8] = 0
Y = rng.random_sample((10, 10)).astype(np.float32)
Y[Y < 0.8] = 0
expected = cdist(X, Y)
X = x_array_constr(X)
Y = y_array_constr(Y)
distances = _euclidean_distances_upcast(X, Y=Y, batch_size=batch_size)
distances = np.sqrt(np.maximum(distances, 0))
# the default rtol=1e-7 is too close to the float32 precision
# and fails due to rounding errors.
assert_allclose(distances, expected, rtol=1e-6)
@pytest.mark.parametrize("batch_size", [None, 5, 7, 101])
@pytest.mark.parametrize(
"x_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_upcast_sym(batch_size, x_array_constr):
# check batches handling when X is Y (#13910)
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10)).astype(np.float32)
X[X < 0.8] = 0
expected = squareform(pdist(X))
X = x_array_constr(X)
distances = _euclidean_distances_upcast(X, Y=X, batch_size=batch_size)
distances = np.sqrt(np.maximum(distances, 0))
# the default rtol=1e-7 is too close to the float32 precision
# and fails due to rounding errors.
assert_allclose(distances, expected, rtol=1e-6)
@pytest.mark.parametrize(
"dtype, eps, rtol",
[
(np.float32, 1e-4, 1e-5),
pytest.param(
np.float64,
1e-8,
0.99,
marks=pytest.mark.xfail(reason="failing due to lack of precision"),
),
],
)
@pytest.mark.parametrize("dim", [1, 1000000])
def test_euclidean_distances_extreme_values(dtype, eps, rtol, dim):
# check that euclidean distances is correct with float32 input thanks to
# upcasting. On float64 there are still precision issues.
X = np.array([[1.0] * dim], dtype=dtype)
Y = np.array([[1.0 + eps] * dim], dtype=dtype)
distances = euclidean_distances(X, Y)
expected = cdist(X, Y)
assert_allclose(distances, expected, rtol=1e-5)
@pytest.mark.parametrize("squared", [True, False])
def test_nan_euclidean_distances_equal_to_euclidean_distance(squared):
# with no nan values
rng = np.random.RandomState(1337)
X = rng.randn(3, 4)
Y = rng.randn(4, 4)
normal_distance = euclidean_distances(X, Y=Y, squared=squared)
nan_distance = nan_euclidean_distances(X, Y=Y, squared=squared)
assert_allclose(normal_distance, nan_distance)
@pytest.mark.parametrize("X", [np.array([[np.inf, 0]]), np.array([[0, -np.inf]])])
@pytest.mark.parametrize("Y", [np.array([[np.inf, 0]]), np.array([[0, -np.inf]]), None])
def test_nan_euclidean_distances_infinite_values(X, Y):
with pytest.raises(ValueError) as excinfo:
nan_euclidean_distances(X, Y=Y)
exp_msg = "Input contains infinity or a value too large for dtype('float64')."
assert exp_msg == str(excinfo.value)
@pytest.mark.parametrize(
"X, X_diag, missing_value",
[
(np.array([[0, 1], [1, 0]]), np.sqrt(2), np.nan),
(np.array([[0, 1], [1, np.nan]]), np.sqrt(2), np.nan),
(np.array([[np.nan, 1], [1, np.nan]]), np.nan, np.nan),
(np.array([[np.nan, 1], [np.nan, 0]]), np.sqrt(2), np.nan),
(np.array([[0, np.nan], [1, np.nan]]), np.sqrt(2), np.nan),
(np.array([[0, 1], [1, 0]]), np.sqrt(2), -1),
(np.array([[0, 1], [1, -1]]), np.sqrt(2), -1),
(np.array([[-1, 1], [1, -1]]), np.nan, -1),
(np.array([[-1, 1], [-1, 0]]), np.sqrt(2), -1),
(np.array([[0, -1], [1, -1]]), np.sqrt(2), -1),
],
)
def test_nan_euclidean_distances_2x2(X, X_diag, missing_value):
exp_dist = np.array([[0.0, X_diag], [X_diag, 0]])
dist = nan_euclidean_distances(X, missing_values=missing_value)
assert_allclose(exp_dist, dist)
dist_sq = nan_euclidean_distances(X, squared=True, missing_values=missing_value)
assert_allclose(exp_dist**2, dist_sq)
dist_two = nan_euclidean_distances(X, X, missing_values=missing_value)
assert_allclose(exp_dist, dist_two)
dist_two_copy = nan_euclidean_distances(X, X.copy(), missing_values=missing_value)
assert_allclose(exp_dist, dist_two_copy)
@pytest.mark.parametrize("missing_value", [np.nan, -1])
def test_nan_euclidean_distances_complete_nan(missing_value):
X = np.array([[missing_value, missing_value], [0, 1]])
exp_dist = np.array([[np.nan, np.nan], [np.nan, 0]])
dist = nan_euclidean_distances(X, missing_values=missing_value)
assert_allclose(exp_dist, dist)
dist = nan_euclidean_distances(X, X.copy(), missing_values=missing_value)
assert_allclose(exp_dist, dist)
@pytest.mark.parametrize("missing_value", [np.nan, -1])
def test_nan_euclidean_distances_not_trival(missing_value):
X = np.array(
[
[1.0, missing_value, 3.0, 4.0, 2.0],
[missing_value, 4.0, 6.0, 1.0, missing_value],
[3.0, missing_value, missing_value, missing_value, 1.0],
]
)
Y = np.array(
[
[missing_value, 7.0, 7.0, missing_value, 2.0],
[missing_value, missing_value, 5.0, 4.0, 7.0],
[missing_value, missing_value, missing_value, 4.0, 5.0],
]
)
# Check for symmetry
D1 = nan_euclidean_distances(X, Y, missing_values=missing_value)
D2 = nan_euclidean_distances(Y, X, missing_values=missing_value)
assert_almost_equal(D1, D2.T)
# Check with explicit formula and squared=True
assert_allclose(
nan_euclidean_distances(
X[:1], Y[:1], squared=True, missing_values=missing_value
),
[[5.0 / 2.0 * ((7 - 3) ** 2 + (2 - 2) ** 2)]],
)
# Check with explicit formula and squared=False
assert_allclose(
nan_euclidean_distances(
X[1:2], Y[1:2], squared=False, missing_values=missing_value
),
[[np.sqrt(5.0 / 2.0 * ((6 - 5) ** 2 + (1 - 4) ** 2))]],
)
# Check when Y = X is explicitly passed
D3 = nan_euclidean_distances(X, missing_values=missing_value)
D4 = nan_euclidean_distances(X, X, missing_values=missing_value)
D5 = nan_euclidean_distances(X, X.copy(), missing_values=missing_value)
assert_allclose(D3, D4)
assert_allclose(D4, D5)
# Check copy = True against copy = False
D6 = nan_euclidean_distances(X, Y, copy=True)
D7 = nan_euclidean_distances(X, Y, copy=False)
assert_allclose(D6, D7)
@pytest.mark.parametrize("missing_value", [np.nan, -1])
def test_nan_euclidean_distances_one_feature_match_positive(missing_value):
# First feature is the only feature that is non-nan and in both
# samples. The result of `nan_euclidean_distances` with squared=True
# should be non-negative. The non-squared version should all be close to 0.
X = np.array(
[
[-122.27, 648.0, missing_value, 37.85],
[-122.27, missing_value, 2.34701493, missing_value],
]
)
dist_squared = nan_euclidean_distances(
X, missing_values=missing_value, squared=True
)
assert np.all(dist_squared >= 0)
dist = nan_euclidean_distances(X, missing_values=missing_value, squared=False)
assert_allclose(dist, 0.0)
def test_cosine_distances():
# Check the pairwise Cosine distances computation
rng = np.random.RandomState(1337)
x = np.abs(rng.rand(910))
XA = np.vstack([x, x])
D = cosine_distances(XA)
assert_allclose(D, [[0.0, 0.0], [0.0, 0.0]], atol=1e-10)
# check that all elements are in [0, 2]
assert np.all(D >= 0.0)
assert np.all(D <= 2.0)
# check that diagonal elements are equal to 0
assert_allclose(D[np.diag_indices_from(D)], [0.0, 0.0])
XB = np.vstack([x, -x])
D2 = cosine_distances(XB)
# check that all elements are in [0, 2]
assert np.all(D2 >= 0.0)
assert np.all(D2 <= 2.0)
# check that diagonal elements are equal to 0 and non diagonal to 2
assert_allclose(D2, [[0.0, 2.0], [2.0, 0.0]])
# check large random matrix
X = np.abs(rng.rand(1000, 5000))
D = cosine_distances(X)
# check that diagonal elements are equal to 0
assert_allclose(D[np.diag_indices_from(D)], [0.0] * D.shape[0])
assert np.all(D >= 0.0)
assert np.all(D <= 2.0)
def test_haversine_distances():
# Check haversine distance with distances computation
def slow_haversine_distances(x, y):
diff_lat = y[0] - x[0]
diff_lon = y[1] - x[1]
a = np.sin(diff_lat / 2) ** 2 + (
np.cos(x[0]) * np.cos(y[0]) * np.sin(diff_lon / 2) ** 2
)
c = 2 * np.arcsin(np.sqrt(a))
return c
rng = np.random.RandomState(0)
X = rng.random_sample((5, 2))
Y = rng.random_sample((10, 2))
D1 = np.array([[slow_haversine_distances(x, y) for y in Y] for x in X])
D2 = haversine_distances(X, Y)
assert_allclose(D1, D2)
# Test haversine distance does not accept X where n_feature != 2
X = rng.random_sample((10, 3))
err_msg = "Haversine distance only valid in 2 dimensions"
with pytest.raises(ValueError, match=err_msg):
haversine_distances(X)
# Paired distances
def test_paired_euclidean_distances():
# Check the paired Euclidean distances computation
X = [[0], [0]]
Y = [[1], [2]]
D = paired_euclidean_distances(X, Y)
assert_allclose(D, [1.0, 2.0])
def test_paired_manhattan_distances():
# Check the paired manhattan distances computation
X = [[0], [0]]
Y = [[1], [2]]
D = paired_manhattan_distances(X, Y)
assert_allclose(D, [1.0, 2.0])
def test_paired_cosine_distances():
# Check the paired manhattan distances computation
X = [[0], [0]]
Y = [[1], [2]]
D = paired_cosine_distances(X, Y)
assert_allclose(D, [0.5, 0.5])
def test_chi_square_kernel():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((10, 4))
K_add = additive_chi2_kernel(X, Y)
gamma = 0.1
K = chi2_kernel(X, Y, gamma=gamma)
assert K.dtype == float
for i, x in enumerate(X):
for j, y in enumerate(Y):
chi2 = -np.sum((x - y) ** 2 / (x + y))
chi2_exp = np.exp(gamma * chi2)
assert_almost_equal(K_add[i, j], chi2)
assert_almost_equal(K[i, j], chi2_exp)
# check diagonal is ones for data with itself
K = chi2_kernel(Y)
assert_array_equal(np.diag(K), 1)
# check off-diagonal is < 1 but > 0:
assert np.all(K > 0)
assert np.all(K - np.diag(np.diag(K)) < 1)
# check that float32 is preserved
X = rng.random_sample((5, 4)).astype(np.float32)
Y = rng.random_sample((10, 4)).astype(np.float32)
K = chi2_kernel(X, Y)
assert K.dtype == np.float32
# check integer type gets converted,
# check that zeros are handled
X = rng.random_sample((10, 4)).astype(np.int32)
K = chi2_kernel(X, X)
assert np.isfinite(K).all()
assert K.dtype == float
# check that kernel of similar things is greater than dissimilar ones
X = [[0.3, 0.7], [1.0, 0]]
Y = [[0, 1], [0.9, 0.1]]
K = chi2_kernel(X, Y)
assert K[0, 0] > K[0, 1]
assert K[1, 1] > K[1, 0]
# test negative input
with pytest.raises(ValueError):
chi2_kernel([[0, -1]])
with pytest.raises(ValueError):
chi2_kernel([[0, -1]], [[-1, -1]])
with pytest.raises(ValueError):
chi2_kernel([[0, 1]], [[-1, -1]])
# different n_features in X and Y
with pytest.raises(ValueError):
chi2_kernel([[0, 1]], [[0.2, 0.2, 0.6]])
@pytest.mark.parametrize(
"kernel",
(
linear_kernel,
polynomial_kernel,
rbf_kernel,
laplacian_kernel,
sigmoid_kernel,
cosine_similarity,
),
)
def test_kernel_symmetry(kernel):
# Valid kernels should be symmetric
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
K = kernel(X, X)
assert_allclose(K, K.T, 15)
@pytest.mark.parametrize(
"kernel",
(
linear_kernel,
polynomial_kernel,
rbf_kernel,
laplacian_kernel,
sigmoid_kernel,
cosine_similarity,
),
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_kernel_sparse(kernel, csr_container):
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
X_sparse = csr_container(X)
K = kernel(X, X)
K2 = kernel(X_sparse, X_sparse)
assert_allclose(K, K2)
def test_linear_kernel():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
K = linear_kernel(X, X)
# the diagonal elements of a linear kernel are their squared norm
assert_allclose(K.flat[::6], [linalg.norm(x) ** 2 for x in X])
def test_rbf_kernel():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
K = rbf_kernel(X, X)
# the diagonal elements of a rbf kernel are 1
assert_allclose(K.flat[::6], np.ones(5))
def test_laplacian_kernel():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
K = laplacian_kernel(X, X)
# the diagonal elements of a laplacian kernel are 1
assert_allclose(np.diag(K), np.ones(5))
# off-diagonal elements are < 1 but > 0:
assert np.all(K > 0)
assert np.all(K - np.diag(np.diag(K)) < 1)
@pytest.mark.parametrize(
"metric, pairwise_func",
[("linear", linear_kernel), ("cosine", cosine_similarity)],
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pairwise_similarity_sparse_output(metric, pairwise_func, csr_container):
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((3, 4))
Xcsr = csr_container(X)
Ycsr = csr_container(Y)
# should be sparse
K1 = pairwise_func(Xcsr, Ycsr, dense_output=False)
assert issparse(K1)
# should be dense, and equal to K1
K2 = pairwise_func(X, Y, dense_output=True)
assert not issparse(K2)
assert_allclose(K1.toarray(), K2)
# show the kernel output equal to the sparse.toarray()
K3 = pairwise_kernels(X, Y=Y, metric=metric)
assert_allclose(K1.toarray(), K3)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_cosine_similarity(csr_container):
# Test the cosine_similarity.
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((3, 4))
Xcsr = csr_container(X)
Ycsr = csr_container(Y)
for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)):
# Test that the cosine is kernel is equal to a linear kernel when data
# has been previously normalized by L2-norm.
K1 = pairwise_kernels(X_, Y=Y_, metric="cosine")
X_ = normalize(X_)
if Y_ is not None:
Y_ = normalize(Y_)
K2 = pairwise_kernels(X_, Y=Y_, metric="linear")
assert_allclose(K1, K2)
def test_check_dense_matrices():
# Ensure that pairwise array check works for dense matrices.
# Check that if XB is None, XB is returned as reference to XA
XA = np.resize(np.arange(40), (5, 8))
XA_checked, XB_checked = check_pairwise_arrays(XA, None)
assert XA_checked is XB_checked
assert_array_equal(XA, XA_checked)
def test_check_XB_returned():
# Ensure that if XA and XB are given correctly, they return as equal.
# Check that if XB is not None, it is returned equal.
# Note that the second dimension of XB is the same as XA.
XA = np.resize(np.arange(40), (5, 8))
XB = np.resize(np.arange(32), (4, 8))
XA_checked, XB_checked = check_pairwise_arrays(XA, XB)
assert_array_equal(XA, XA_checked)
assert_array_equal(XB, XB_checked)
XB = np.resize(np.arange(40), (5, 8))
XA_checked, XB_checked = check_paired_arrays(XA, XB)
assert_array_equal(XA, XA_checked)
assert_array_equal(XB, XB_checked)
def test_check_different_dimensions():
# Ensure an error is raised if the dimensions are different.
XA = np.resize(np.arange(45), (5, 9))
XB = np.resize(np.arange(32), (4, 8))
with pytest.raises(ValueError):
check_pairwise_arrays(XA, XB)
XB = np.resize(np.arange(4 * 9), (4, 9))
with pytest.raises(ValueError):
check_paired_arrays(XA, XB)
def test_check_invalid_dimensions():
# Ensure an error is raised on 1D input arrays.
# The modified tests are not 1D. In the old test, the array was internally
# converted to 2D anyways
XA = np.arange(45).reshape(9, 5)
XB = np.arange(32).reshape(4, 8)
with pytest.raises(ValueError):
check_pairwise_arrays(XA, XB)
XA = np.arange(45).reshape(9, 5)
XB = np.arange(32).reshape(4, 8)
with pytest.raises(ValueError):
check_pairwise_arrays(XA, XB)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_check_sparse_arrays(csr_container):
# Ensures that checks return valid sparse matrices.
rng = np.random.RandomState(0)
XA = rng.random_sample((5, 4))
XA_sparse = csr_container(XA)
XB = rng.random_sample((5, 4))
XB_sparse = csr_container(XB)
XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse)
# compare their difference because testing csr matrices for
# equality with '==' does not work as expected.
assert issparse(XA_checked)
assert abs(XA_sparse - XA_checked).sum() == 0
assert issparse(XB_checked)
assert abs(XB_sparse - XB_checked).sum() == 0
XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse)
assert issparse(XA_checked)
assert abs(XA_sparse - XA_checked).sum() == 0
assert issparse(XA_2_checked)
assert abs(XA_2_checked - XA_checked).sum() == 0
def tuplify(X):
# Turns a numpy matrix (any n-dimensional array) into tuples.
s = X.shape
if len(s) > 1:
# Tuplify each sub-array in the input.
return tuple(tuplify(row) for row in X)
else:
# Single dimension input, just return tuple of contents.
return tuple(r for r in X)
def test_check_tuple_input():
# Ensures that checks return valid tuples.
rng = np.random.RandomState(0)
XA = rng.random_sample((5, 4))
XA_tuples = tuplify(XA)
XB = rng.random_sample((5, 4))
XB_tuples = tuplify(XB)
XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples)
assert_array_equal(XA_tuples, XA_checked)
assert_array_equal(XB_tuples, XB_checked)
def test_check_preserve_type():
# Ensures that type float32 is preserved.
XA = np.resize(np.arange(40), (5, 8)).astype(np.float32)
XB = np.resize(np.arange(40), (5, 8)).astype(np.float32)
XA_checked, XB_checked = check_pairwise_arrays(XA, None)
assert XA_checked.dtype == np.float32
# both float32
XA_checked, XB_checked = check_pairwise_arrays(XA, XB)
assert XA_checked.dtype == np.float32
assert XB_checked.dtype == np.float32
# mismatched A
XA_checked, XB_checked = check_pairwise_arrays(XA.astype(float), XB)
assert XA_checked.dtype == float
assert XB_checked.dtype == float
# mismatched B
XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(float))
assert XA_checked.dtype == float
assert XB_checked.dtype == float
@pytest.mark.parametrize("n_jobs", [1, 2])
@pytest.mark.parametrize("metric", ["seuclidean", "mahalanobis"])
@pytest.mark.parametrize(
"dist_function", [pairwise_distances, pairwise_distances_chunked]
)
def test_pairwise_distances_data_derived_params(n_jobs, metric, dist_function):
# check that pairwise_distances give the same result in sequential and
# parallel, when metric has data-derived parameters.
with config_context(working_memory=0.1): # to have more than 1 chunk
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10))
expected_dist = squareform(pdist(X, metric=metric))
dist = np.vstack(tuple(dist_function(X, metric=metric, n_jobs=n_jobs)))
assert_allclose(dist, expected_dist)
@pytest.mark.parametrize("metric", ["seuclidean", "mahalanobis"])
def test_pairwise_distances_data_derived_params_error(metric):
# check that pairwise_distances raises an error when Y is passed but
# metric has data-derived params that are not provided by the user.
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10))
Y = rng.random_sample((100, 10))
with pytest.raises(
ValueError,
match=rf"The '(V|VI)' parameter is required for the " rf"{metric} metric",
):
pairwise_distances(X, Y, metric=metric)
@pytest.mark.parametrize(
"metric",
[
"braycurtis",
"canberra",
"chebyshev",
"correlation",
"hamming",
"mahalanobis",
"minkowski",
"seuclidean",
"sqeuclidean",
"cityblock",
"cosine",
"euclidean",
],
)
@pytest.mark.parametrize("y_is_x", [True, False], ids=["Y is X", "Y is not X"])
def test_numeric_pairwise_distances_datatypes(metric, global_dtype, y_is_x):
# Check that pairwise distances gives the same result as pdist and cdist
# regardless of input datatype when using any scipy metric for comparing
# numeric vectors
#
# This test is necessary because pairwise_distances used to throw an
# error when using metric='seuclidean' and the input data was not
# of type np.float64 (#15730)
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
params = {}
if y_is_x:
Y = X
expected_dist = squareform(pdist(X, metric=metric))
else:
Y = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
expected_dist = cdist(X, Y, metric=metric)
# precompute parameters for seuclidean & mahalanobis when x is not y
if metric == "seuclidean":
params = {"V": np.var(np.vstack([X, Y]), axis=0, ddof=1, dtype=np.float64)}
elif metric == "mahalanobis":
params = {"VI": np.linalg.inv(np.cov(np.vstack([X, Y]).T)).T}
dist = pairwise_distances(X, Y, metric=metric, **params)
assert_allclose(dist, expected_dist)
@pytest.mark.parametrize(
"pairwise_distances_func",
[pairwise_distances, pairwise_distances_argmin, pairwise_distances_argmin_min],
)
def test_nan_euclidean_support(pairwise_distances_func):
"""Check that `nan_euclidean` is lenient with `nan` values."""
X = [[0, 1], [1, np.nan], [2, 3], [3, 5]]
output = pairwise_distances_func(X, X, metric="nan_euclidean")
assert not np.isnan(output).any()
def test_nan_euclidean_constant_input_argmin():
"""Check that the behavior of constant input is the same in the case of
full of nan vector and full of zero vector.
"""
X_nan = [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]]
argmin_nan = pairwise_distances_argmin(X_nan, X_nan, metric="nan_euclidean")
X_const = [[0, 0], [0, 0], [0, 0]]
argmin_const = pairwise_distances_argmin(X_const, X_const, metric="nan_euclidean")
assert_allclose(argmin_nan, argmin_const)
@pytest.mark.parametrize(
"X,Y,expected_distance",
[
(
["a", "ab", "abc"],
None,
[[0.0, 1.0, 2.0], [1.0, 0.0, 1.0], [2.0, 1.0, 0.0]],
),
(
["a", "ab", "abc"],
["a", "ab"],
[[0.0, 1.0], [1.0, 0.0], [2.0, 1.0]],
),
],
)
def test_pairwise_dist_custom_metric_for_string(X, Y, expected_distance):
"""Check pairwise_distances with lists of strings as input."""
def dummy_string_similarity(x, y):
return np.abs(len(x) - len(y))
actual_distance = pairwise_distances(X=X, Y=Y, metric=dummy_string_similarity)
assert_allclose(actual_distance, expected_distance)
def test_pairwise_dist_custom_metric_for_bool():
"""Check that pairwise_distances does not convert boolean input to float
when using a custom metric.
"""
def dummy_bool_dist(v1, v2):
# dummy distance func using `&` and thus relying on the input data being boolean
return 1 - (v1 & v2).sum() / (v1 | v2).sum()
X = np.array([[1, 0, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]], dtype=bool)
expected_distance = np.array(
[
[0.0, 0.5, 0.75],
[0.5, 0.0, 0.5],
[0.75, 0.5, 0.0],
]
)
actual_distance = pairwise_distances(X=X, metric=dummy_bool_dist)
assert_allclose(actual_distance, expected_distance)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_sparse_manhattan_readonly_dataset(csr_container):
# Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/7981
matrices1 = [csr_container(np.ones((5, 5)))]
matrices2 = [csr_container(np.ones((5, 5)))]
# Joblib memory maps datasets which makes them read-only.
# The following call was reporting as failing in #7981, but this must pass.
Parallel(n_jobs=2, max_nbytes=0)(
delayed(manhattan_distances)(m1, m2) for m1, m2 in zip(matrices1, matrices2)
)
# TODO(1.8): remove
def test_force_all_finite_rename_warning():
X = np.random.uniform(size=(10, 10))
Y = np.random.uniform(size=(10, 10))
msg = "'force_all_finite' was renamed to 'ensure_all_finite'"
with pytest.warns(FutureWarning, match=msg):
check_pairwise_arrays(X, Y, force_all_finite=True)
with pytest.warns(FutureWarning, match=msg):
pairwise_distances(X, Y, force_all_finite=True)
|