File size: 58,636 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
import warnings
from types import GeneratorType

import numpy as np
import pytest
from numpy import linalg
from scipy.sparse import issparse
from scipy.spatial.distance import (
    cdist,
    cityblock,
    cosine,
    minkowski,
    pdist,
    squareform,
)

from sklearn import config_context
from sklearn.exceptions import DataConversionWarning
from sklearn.metrics.pairwise import (
    PAIRED_DISTANCES,
    PAIRWISE_BOOLEAN_FUNCTIONS,
    PAIRWISE_DISTANCE_FUNCTIONS,
    PAIRWISE_KERNEL_FUNCTIONS,
    _euclidean_distances_upcast,
    additive_chi2_kernel,
    check_paired_arrays,
    check_pairwise_arrays,
    chi2_kernel,
    cosine_distances,
    cosine_similarity,
    euclidean_distances,
    haversine_distances,
    laplacian_kernel,
    linear_kernel,
    manhattan_distances,
    nan_euclidean_distances,
    paired_cosine_distances,
    paired_distances,
    paired_euclidean_distances,
    paired_manhattan_distances,
    pairwise_distances,
    pairwise_distances_argmin,
    pairwise_distances_argmin_min,
    pairwise_distances_chunked,
    pairwise_kernels,
    polynomial_kernel,
    rbf_kernel,
    sigmoid_kernel,
)
from sklearn.preprocessing import normalize
from sklearn.utils._testing import (
    assert_allclose,
    assert_almost_equal,
    assert_array_equal,
    ignore_warnings,
)
from sklearn.utils.fixes import (
    BSR_CONTAINERS,
    COO_CONTAINERS,
    CSC_CONTAINERS,
    CSR_CONTAINERS,
    DOK_CONTAINERS,
)
from sklearn.utils.parallel import Parallel, delayed


def test_pairwise_distances_for_dense_data(global_dtype):
    # Test the pairwise_distance helper function.
    rng = np.random.RandomState(0)

    # Euclidean distance should be equivalent to calling the function.
    X = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
    S = pairwise_distances(X, metric="euclidean")
    S2 = euclidean_distances(X)
    assert_allclose(S, S2)
    assert S.dtype == S2.dtype == global_dtype

    # Euclidean distance, with Y != X.
    Y = rng.random_sample((2, 4)).astype(global_dtype, copy=False)
    S = pairwise_distances(X, Y, metric="euclidean")
    S2 = euclidean_distances(X, Y)
    assert_allclose(S, S2)
    assert S.dtype == S2.dtype == global_dtype

    # Check to ensure NaNs work with pairwise_distances.
    X_masked = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
    Y_masked = rng.random_sample((2, 4)).astype(global_dtype, copy=False)
    X_masked[0, 0] = np.nan
    Y_masked[0, 0] = np.nan
    S_masked = pairwise_distances(X_masked, Y_masked, metric="nan_euclidean")
    S2_masked = nan_euclidean_distances(X_masked, Y_masked)
    assert_allclose(S_masked, S2_masked)
    assert S_masked.dtype == S2_masked.dtype == global_dtype

    # Test with tuples as X and Y
    X_tuples = tuple([tuple([v for v in row]) for row in X])
    Y_tuples = tuple([tuple([v for v in row]) for row in Y])
    S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean")
    assert_allclose(S, S2)
    assert S.dtype == S2.dtype == global_dtype

    # Test haversine distance
    # The data should be valid latitude and longitude
    # haversine converts to float64 currently so we don't check dtypes.
    X = rng.random_sample((5, 2)).astype(global_dtype, copy=False)
    X[:, 0] = (X[:, 0] - 0.5) * 2 * np.pi / 2
    X[:, 1] = (X[:, 1] - 0.5) * 2 * np.pi
    S = pairwise_distances(X, metric="haversine")
    S2 = haversine_distances(X)
    assert_allclose(S, S2)

    # Test haversine distance, with Y != X
    Y = rng.random_sample((2, 2)).astype(global_dtype, copy=False)
    Y[:, 0] = (Y[:, 0] - 0.5) * 2 * np.pi / 2
    Y[:, 1] = (Y[:, 1] - 0.5) * 2 * np.pi
    S = pairwise_distances(X, Y, metric="haversine")
    S2 = haversine_distances(X, Y)
    assert_allclose(S, S2)

    # "cityblock" uses scikit-learn metric, cityblock (function) is
    # scipy.spatial.
    # The metric functions from scipy converts to float64 so we don't check the dtypes.
    S = pairwise_distances(X, metric="cityblock")
    S2 = pairwise_distances(X, metric=cityblock)
    assert S.shape[0] == S.shape[1]
    assert S.shape[0] == X.shape[0]
    assert_allclose(S, S2)

    # The manhattan metric should be equivalent to cityblock.
    S = pairwise_distances(X, Y, metric="manhattan")
    S2 = pairwise_distances(X, Y, metric=cityblock)
    assert S.shape[0] == X.shape[0]
    assert S.shape[1] == Y.shape[0]
    assert_allclose(S, S2)

    # Test cosine as a string metric versus cosine callable
    # The string "cosine" uses sklearn.metric,
    # while the function cosine is scipy.spatial
    S = pairwise_distances(X, Y, metric="cosine")
    S2 = pairwise_distances(X, Y, metric=cosine)
    assert S.shape[0] == X.shape[0]
    assert S.shape[1] == Y.shape[0]
    assert_allclose(S, S2)


@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
@pytest.mark.parametrize("bsr_container", BSR_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pairwise_distances_for_sparse_data(
    coo_container, csc_container, bsr_container, csr_container, global_dtype
):
    # Test the pairwise_distance helper function.
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
    Y = rng.random_sample((2, 4)).astype(global_dtype, copy=False)

    # Test with sparse X and Y,
    # currently only supported for Euclidean, L1 and cosine.
    X_sparse = csr_container(X)
    Y_sparse = csr_container(Y)

    S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean")
    S2 = euclidean_distances(X_sparse, Y_sparse)
    assert_allclose(S, S2)
    assert S.dtype == S2.dtype == global_dtype

    S = pairwise_distances(X_sparse, Y_sparse, metric="cosine")
    S2 = cosine_distances(X_sparse, Y_sparse)
    assert_allclose(S, S2)
    assert S.dtype == S2.dtype == global_dtype

    S = pairwise_distances(X_sparse, csc_container(Y), metric="manhattan")
    S2 = manhattan_distances(bsr_container(X), coo_container(Y))
    assert_allclose(S, S2)
    if global_dtype == np.float64:
        assert S.dtype == S2.dtype == global_dtype
    else:
        # TODO Fix manhattan_distances to preserve dtype.
        # currently pairwise_distances uses manhattan_distances but converts the result
        # back to the input dtype
        with pytest.raises(AssertionError):
            assert S.dtype == S2.dtype == global_dtype

    S2 = manhattan_distances(X, Y)
    assert_allclose(S, S2)
    if global_dtype == np.float64:
        assert S.dtype == S2.dtype == global_dtype
    else:
        # TODO Fix manhattan_distances to preserve dtype.
        # currently pairwise_distances uses manhattan_distances but converts the result
        # back to the input dtype
        with pytest.raises(AssertionError):
            assert S.dtype == S2.dtype == global_dtype

    # Test with scipy.spatial.distance metric, with a kwd
    kwds = {"p": 2.0}
    S = pairwise_distances(X, Y, metric="minkowski", **kwds)
    S2 = pairwise_distances(X, Y, metric=minkowski, **kwds)
    assert_allclose(S, S2)

    # same with Y = None
    kwds = {"p": 2.0}
    S = pairwise_distances(X, metric="minkowski", **kwds)
    S2 = pairwise_distances(X, metric=minkowski, **kwds)
    assert_allclose(S, S2)

    # Test that scipy distance metrics throw an error if sparse matrix given
    with pytest.raises(TypeError):
        pairwise_distances(X_sparse, metric="minkowski")
    with pytest.raises(TypeError):
        pairwise_distances(X, Y_sparse, metric="minkowski")


# Some scipy metrics are deprecated (depending on the scipy version) but we
# still want to test them.
@ignore_warnings(category=DeprecationWarning)
@pytest.mark.parametrize("metric", PAIRWISE_BOOLEAN_FUNCTIONS)
def test_pairwise_boolean_distance(metric):
    # test that we convert to boolean arrays for boolean distances
    rng = np.random.RandomState(0)
    X = rng.randn(5, 4)
    Y = X.copy()
    Y[0, 0] = 1 - Y[0, 0]

    # ignore conversion to boolean in pairwise_distances
    with ignore_warnings(category=DataConversionWarning):
        for Z in [Y, None]:
            res = pairwise_distances(X, Z, metric=metric)
            np.nan_to_num(res, nan=0, posinf=0, neginf=0, copy=False)
            assert np.sum(res != 0) == 0

    # non-boolean arrays are converted to boolean for boolean
    # distance metrics with a data conversion warning
    msg = "Data was converted to boolean for metric %s" % metric
    with pytest.warns(DataConversionWarning, match=msg):
        pairwise_distances(X, metric=metric)

    # Check that the warning is raised if X is boolean by Y is not boolean:
    with pytest.warns(DataConversionWarning, match=msg):
        pairwise_distances(X.astype(bool), Y=Y, metric=metric)

    # Check that no warning is raised if X is already boolean and Y is None:
    with warnings.catch_warnings():
        warnings.simplefilter("error", DataConversionWarning)
        pairwise_distances(X.astype(bool), metric=metric)


def test_no_data_conversion_warning():
    # No warnings issued if metric is not a boolean distance function
    rng = np.random.RandomState(0)
    X = rng.randn(5, 4)
    with warnings.catch_warnings():
        warnings.simplefilter("error", DataConversionWarning)
        pairwise_distances(X, metric="minkowski")


@pytest.mark.parametrize("func", [pairwise_distances, pairwise_kernels])
def test_pairwise_precomputed(func):
    # Test correct shape
    with pytest.raises(ValueError, match=".* shape .*"):
        func(np.zeros((5, 3)), metric="precomputed")
    # with two args
    with pytest.raises(ValueError, match=".* shape .*"):
        func(np.zeros((5, 3)), np.zeros((4, 4)), metric="precomputed")
    # even if shape[1] agrees (although thus second arg is spurious)
    with pytest.raises(ValueError, match=".* shape .*"):
        func(np.zeros((5, 3)), np.zeros((4, 3)), metric="precomputed")

    # Test not copied (if appropriate dtype)
    S = np.zeros((5, 5))
    S2 = func(S, metric="precomputed")
    assert S is S2
    # with two args
    S = np.zeros((5, 3))
    S2 = func(S, np.zeros((3, 3)), metric="precomputed")
    assert S is S2

    # Test always returns float dtype
    S = func(np.array([[1]], dtype="int"), metric="precomputed")
    assert "f" == S.dtype.kind

    # Test converts list to array-like
    S = func([[1.0]], metric="precomputed")
    assert isinstance(S, np.ndarray)


def test_pairwise_precomputed_non_negative():
    # Test non-negative values
    with pytest.raises(ValueError, match=".* non-negative values.*"):
        pairwise_distances(np.full((5, 5), -1), metric="precomputed")


_minkowski_kwds = {"w": np.arange(1, 5).astype("double", copy=False), "p": 1}


def callable_rbf_kernel(x, y, **kwds):
    # Callable version of pairwise.rbf_kernel.
    K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds)
    # unpack the output since this is a scalar packed in a 0-dim array
    return K.item()


@pytest.mark.parametrize(
    "func, metric, kwds",
    [
        (pairwise_distances, "euclidean", {}),
        (
            pairwise_distances,
            minkowski,
            _minkowski_kwds,
        ),
        (
            pairwise_distances,
            "minkowski",
            _minkowski_kwds,
        ),
        (pairwise_kernels, "polynomial", {"degree": 1}),
        (pairwise_kernels, callable_rbf_kernel, {"gamma": 0.1}),
    ],
)
@pytest.mark.parametrize("dtype", [np.float64, np.float32, int])
def test_pairwise_parallel(func, metric, kwds, dtype):
    rng = np.random.RandomState(0)
    X = np.array(5 * rng.random_sample((5, 4)), dtype=dtype)
    Y = np.array(5 * rng.random_sample((3, 4)), dtype=dtype)

    S = func(X, metric=metric, n_jobs=1, **kwds)
    S2 = func(X, metric=metric, n_jobs=2, **kwds)
    assert_allclose(S, S2)

    S = func(X, Y, metric=metric, n_jobs=1, **kwds)
    S2 = func(X, Y, metric=metric, n_jobs=2, **kwds)
    assert_allclose(S, S2)


def test_pairwise_callable_nonstrict_metric():
    # paired_distances should allow callable metric where metric(x, x) != 0
    # Knowing that the callable is a strict metric would allow the diagonal to
    # be left uncalculated and set to 0.
    assert pairwise_distances([[1.0]], metric=lambda x, y: 5)[0, 0] == 5


# Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS.
@pytest.mark.parametrize(
    "metric",
    ["rbf", "laplacian", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"],
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pairwise_kernels(metric, csr_container):
    # Test the pairwise_kernels helper function.

    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))
    function = PAIRWISE_KERNEL_FUNCTIONS[metric]
    # Test with Y=None
    K1 = pairwise_kernels(X, metric=metric)
    K2 = function(X)
    assert_allclose(K1, K2)
    # Test with Y=Y
    K1 = pairwise_kernels(X, Y=Y, metric=metric)
    K2 = function(X, Y=Y)
    assert_allclose(K1, K2)
    # Test with tuples as X and Y
    X_tuples = tuple([tuple([v for v in row]) for row in X])
    Y_tuples = tuple([tuple([v for v in row]) for row in Y])
    K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric)
    assert_allclose(K1, K2)

    # Test with sparse X and Y
    X_sparse = csr_container(X)
    Y_sparse = csr_container(Y)
    if metric in ["chi2", "additive_chi2"]:
        # these don't support sparse matrices yet
        return
    K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric)
    assert_allclose(K1, K2)


def test_pairwise_kernels_callable():
    # Test the pairwise_kernels helper function
    # with a callable function, with given keywords.
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))

    metric = callable_rbf_kernel
    kwds = {"gamma": 0.1}
    K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=Y, **kwds)
    assert_allclose(K1, K2)

    # callable function, X=Y
    K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=X, **kwds)
    assert_allclose(K1, K2)


def test_pairwise_kernels_filter_param():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))
    K = rbf_kernel(X, Y, gamma=0.1)
    params = {"gamma": 0.1, "blabla": ":)"}
    K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params)
    assert_allclose(K, K2)

    with pytest.raises(TypeError):
        pairwise_kernels(X, Y, metric="rbf", **params)


@pytest.mark.parametrize("metric, func", PAIRED_DISTANCES.items())
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_paired_distances(metric, func, csr_container):
    # Test the pairwise_distance helper function.
    rng = np.random.RandomState(0)
    # Euclidean distance should be equivalent to calling the function.
    X = rng.random_sample((5, 4))
    # Euclidean distance, with Y != X.
    Y = rng.random_sample((5, 4))

    S = paired_distances(X, Y, metric=metric)
    S2 = func(X, Y)
    assert_allclose(S, S2)
    S3 = func(csr_container(X), csr_container(Y))
    assert_allclose(S, S3)
    if metric in PAIRWISE_DISTANCE_FUNCTIONS:
        # Check the pairwise_distances implementation
        # gives the same value
        distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y)
        distances = np.diag(distances)
        assert_allclose(distances, S)


def test_paired_distances_callable(global_dtype):
    # Test the paired_distance helper function
    # with the callable implementation
    rng = np.random.RandomState(0)
    # Euclidean distance should be equivalent to calling the function.
    X = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
    # Euclidean distance, with Y != X.
    Y = rng.random_sample((5, 4)).astype(global_dtype, copy=False)

    S = paired_distances(X, Y, metric="manhattan")
    S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0))
    assert_allclose(S, S2)

    # Test that a value error is raised when the lengths of X and Y should not
    # differ
    Y = rng.random_sample((3, 4))
    with pytest.raises(ValueError):
        paired_distances(X, Y)


@pytest.mark.parametrize("dok_container", DOK_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pairwise_distances_argmin_min(dok_container, csr_container, global_dtype):
    # Check pairwise minimum distances computation for any metric
    X = np.asarray([[0], [1]], dtype=global_dtype)
    Y = np.asarray([[-2], [3]], dtype=global_dtype)

    Xsp = dok_container(X)
    Ysp = csr_container(Y, dtype=global_dtype)

    expected_idx = [0, 1]
    expected_vals = [2, 2]
    expected_vals_sq = [4, 4]

    # euclidean metric
    idx, vals = pairwise_distances_argmin_min(X, Y, metric="euclidean")
    idx2 = pairwise_distances_argmin(X, Y, metric="euclidean")
    assert_allclose(idx, expected_idx)
    assert_allclose(idx2, expected_idx)
    assert_allclose(vals, expected_vals)
    # sparse matrix case
    idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean")
    idxsp2 = pairwise_distances_argmin(Xsp, Ysp, metric="euclidean")
    assert_allclose(idxsp, expected_idx)
    assert_allclose(idxsp2, expected_idx)
    assert_allclose(valssp, expected_vals)
    # We don't want np.matrix here
    assert type(idxsp) == np.ndarray
    assert type(valssp) == np.ndarray

    # Squared Euclidean metric
    idx, vals = pairwise_distances_argmin_min(X, Y, metric="sqeuclidean")
    idx2, vals2 = pairwise_distances_argmin_min(
        X, Y, metric="euclidean", metric_kwargs={"squared": True}
    )
    idx3 = pairwise_distances_argmin(X, Y, metric="sqeuclidean")
    idx4 = pairwise_distances_argmin(
        X, Y, metric="euclidean", metric_kwargs={"squared": True}
    )

    assert_allclose(vals, expected_vals_sq)
    assert_allclose(vals2, expected_vals_sq)

    assert_allclose(idx, expected_idx)
    assert_allclose(idx2, expected_idx)
    assert_allclose(idx3, expected_idx)
    assert_allclose(idx4, expected_idx)

    # Non-euclidean scikit-learn metric
    idx, vals = pairwise_distances_argmin_min(X, Y, metric="manhattan")
    idx2 = pairwise_distances_argmin(X, Y, metric="manhattan")
    assert_allclose(idx, expected_idx)
    assert_allclose(idx2, expected_idx)
    assert_allclose(vals, expected_vals)
    # sparse matrix case
    idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan")
    idxsp2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan")
    assert_allclose(idxsp, expected_idx)
    assert_allclose(idxsp2, expected_idx)
    assert_allclose(valssp, expected_vals)

    # Non-euclidean Scipy distance (callable)
    idx, vals = pairwise_distances_argmin_min(
        X, Y, metric=minkowski, metric_kwargs={"p": 2}
    )
    assert_allclose(idx, expected_idx)
    assert_allclose(vals, expected_vals)

    # Non-euclidean Scipy distance (string)
    idx, vals = pairwise_distances_argmin_min(
        X, Y, metric="minkowski", metric_kwargs={"p": 2}
    )
    assert_allclose(idx, expected_idx)
    assert_allclose(vals, expected_vals)

    # Compare with naive implementation
    rng = np.random.RandomState(0)
    X = rng.randn(97, 149)
    Y = rng.randn(111, 149)

    dist = pairwise_distances(X, Y, metric="manhattan")
    dist_orig_ind = dist.argmin(axis=0)
    dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))]

    dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min(
        X, Y, axis=0, metric="manhattan"
    )
    assert_allclose(dist_orig_ind, dist_chunked_ind, rtol=1e-7)
    assert_allclose(dist_orig_val, dist_chunked_val, rtol=1e-7)

    # Changing the axis and permuting datasets must give the same results
    argmin_0, dist_0 = pairwise_distances_argmin_min(X, Y, axis=0)
    argmin_1, dist_1 = pairwise_distances_argmin_min(Y, X, axis=1)

    assert_allclose(dist_0, dist_1)
    assert_array_equal(argmin_0, argmin_1)

    argmin_0, dist_0 = pairwise_distances_argmin_min(X, X, axis=0)
    argmin_1, dist_1 = pairwise_distances_argmin_min(X, X, axis=1)

    assert_allclose(dist_0, dist_1)
    assert_array_equal(argmin_0, argmin_1)

    # Changing the axis and permuting datasets must give the same results
    argmin_0 = pairwise_distances_argmin(X, Y, axis=0)
    argmin_1 = pairwise_distances_argmin(Y, X, axis=1)

    assert_array_equal(argmin_0, argmin_1)

    argmin_0 = pairwise_distances_argmin(X, X, axis=0)
    argmin_1 = pairwise_distances_argmin(X, X, axis=1)

    assert_array_equal(argmin_0, argmin_1)

    # F-contiguous arrays must be supported and must return identical results.
    argmin_C_contiguous = pairwise_distances_argmin(X, Y)
    argmin_F_contiguous = pairwise_distances_argmin(
        np.asfortranarray(X), np.asfortranarray(Y)
    )

    assert_array_equal(argmin_C_contiguous, argmin_F_contiguous)


def _reduce_func(dist, start):
    return dist[:, :100]


def test_pairwise_distances_chunked_reduce(global_dtype):
    rng = np.random.RandomState(0)
    X = rng.random_sample((400, 4)).astype(global_dtype, copy=False)
    # Reduced Euclidean distance
    S = pairwise_distances(X)[:, :100]
    S_chunks = pairwise_distances_chunked(
        X, None, reduce_func=_reduce_func, working_memory=2**-16
    )
    assert isinstance(S_chunks, GeneratorType)
    S_chunks = list(S_chunks)
    assert len(S_chunks) > 1
    assert S_chunks[0].dtype == X.dtype

    # atol is for diagonal where S is explicitly zeroed on the diagonal
    assert_allclose(np.vstack(S_chunks), S, atol=1e-7)


def test_pairwise_distances_chunked_reduce_none(global_dtype):
    # check that the reduce func is allowed to return None
    rng = np.random.RandomState(0)
    X = rng.random_sample((10, 4)).astype(global_dtype, copy=False)
    S_chunks = pairwise_distances_chunked(
        X, None, reduce_func=lambda dist, start: None, working_memory=2**-16
    )
    assert isinstance(S_chunks, GeneratorType)
    S_chunks = list(S_chunks)
    assert len(S_chunks) > 1
    assert all(chunk is None for chunk in S_chunks)


@pytest.mark.parametrize(
    "good_reduce",
    [
        lambda D, start: list(D),
        lambda D, start: np.array(D),
        lambda D, start: (list(D), list(D)),
    ]
    + [
        lambda D, start, scipy_csr_type=scipy_csr_type: scipy_csr_type(D)
        for scipy_csr_type in CSR_CONTAINERS
    ]
    + [
        lambda D, start, scipy_dok_type=scipy_dok_type: (
            scipy_dok_type(D),
            np.array(D),
            list(D),
        )
        for scipy_dok_type in DOK_CONTAINERS
    ],
)
def test_pairwise_distances_chunked_reduce_valid(good_reduce):
    X = np.arange(10).reshape(-1, 1)
    S_chunks = pairwise_distances_chunked(
        X, None, reduce_func=good_reduce, working_memory=64
    )
    next(S_chunks)


@pytest.mark.parametrize(
    ("bad_reduce", "err_type", "message"),
    [
        (
            lambda D, s: np.concatenate([D, D[-1:]]),
            ValueError,
            r"length 11\..* input: 10\.",
        ),
        (
            lambda D, s: (D, np.concatenate([D, D[-1:]])),
            ValueError,
            r"length \(10, 11\)\..* input: 10\.",
        ),
        (lambda D, s: (D[:9], D), ValueError, r"length \(9, 10\)\..* input: 10\."),
        (
            lambda D, s: 7,
            TypeError,
            r"returned 7\. Expected sequence\(s\) of length 10\.",
        ),
        (
            lambda D, s: (7, 8),
            TypeError,
            r"returned \(7, 8\)\. Expected sequence\(s\) of length 10\.",
        ),
        (
            lambda D, s: (np.arange(10), 9),
            TypeError,
            r", 9\)\. Expected sequence\(s\) of length 10\.",
        ),
    ],
)
def test_pairwise_distances_chunked_reduce_invalid(
    global_dtype, bad_reduce, err_type, message
):
    X = np.arange(10).reshape(-1, 1).astype(global_dtype, copy=False)
    S_chunks = pairwise_distances_chunked(
        X, None, reduce_func=bad_reduce, working_memory=64
    )
    with pytest.raises(err_type, match=message):
        next(S_chunks)


def check_pairwise_distances_chunked(X, Y, working_memory, metric="euclidean"):
    gen = pairwise_distances_chunked(X, Y, working_memory=working_memory, metric=metric)
    assert isinstance(gen, GeneratorType)
    blockwise_distances = list(gen)
    Y = X if Y is None else Y
    min_block_mib = len(Y) * 8 * 2**-20

    for block in blockwise_distances:
        memory_used = block.nbytes
        assert memory_used <= max(working_memory, min_block_mib) * 2**20

    blockwise_distances = np.vstack(blockwise_distances)
    S = pairwise_distances(X, Y, metric=metric)
    assert_allclose(blockwise_distances, S, atol=1e-7)


@pytest.mark.parametrize("metric", ("euclidean", "l2", "sqeuclidean"))
def test_pairwise_distances_chunked_diagonal(metric, global_dtype):
    rng = np.random.RandomState(0)
    X = rng.normal(size=(1000, 10), scale=1e10).astype(global_dtype, copy=False)
    chunks = list(pairwise_distances_chunked(X, working_memory=1, metric=metric))
    assert len(chunks) > 1
    assert_allclose(np.diag(np.vstack(chunks)), 0, rtol=1e-10)


@pytest.mark.parametrize("metric", ("euclidean", "l2", "sqeuclidean"))
def test_parallel_pairwise_distances_diagonal(metric, global_dtype):
    rng = np.random.RandomState(0)
    X = rng.normal(size=(1000, 10), scale=1e10).astype(global_dtype, copy=False)
    distances = pairwise_distances(X, metric=metric, n_jobs=2)
    assert_allclose(np.diag(distances), 0, atol=1e-10)


@pytest.mark.filterwarnings("ignore:Could not adhere to working_memory config")
def test_pairwise_distances_chunked(global_dtype):
    # Test the pairwise_distance helper function.
    rng = np.random.RandomState(0)
    # Euclidean distance should be equivalent to calling the function.
    X = rng.random_sample((200, 4)).astype(global_dtype, copy=False)
    check_pairwise_distances_chunked(X, None, working_memory=1, metric="euclidean")
    # Test small amounts of memory
    for power in range(-16, 0):
        check_pairwise_distances_chunked(
            X, None, working_memory=2**power, metric="euclidean"
        )
    # X as list
    check_pairwise_distances_chunked(
        X.tolist(), None, working_memory=1, metric="euclidean"
    )
    # Euclidean distance, with Y != X.
    Y = rng.random_sample((100, 4)).astype(global_dtype, copy=False)
    check_pairwise_distances_chunked(X, Y, working_memory=1, metric="euclidean")
    check_pairwise_distances_chunked(
        X.tolist(), Y.tolist(), working_memory=1, metric="euclidean"
    )
    # absurdly large working_memory
    check_pairwise_distances_chunked(X, Y, working_memory=10000, metric="euclidean")
    # "cityblock" uses scikit-learn metric, cityblock (function) is
    # scipy.spatial.
    check_pairwise_distances_chunked(X, Y, working_memory=1, metric="cityblock")

    # Test precomputed returns all at once
    D = pairwise_distances(X)
    gen = pairwise_distances_chunked(D, working_memory=2**-16, metric="precomputed")
    assert isinstance(gen, GeneratorType)
    assert next(gen) is D
    with pytest.raises(StopIteration):
        next(gen)


@pytest.mark.parametrize(
    "x_array_constr",
    [np.array] + CSR_CONTAINERS,
    ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
@pytest.mark.parametrize(
    "y_array_constr",
    [np.array] + CSR_CONTAINERS,
    ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_known_result(x_array_constr, y_array_constr):
    # Check the pairwise Euclidean distances computation on known result
    X = x_array_constr([[0]])
    Y = y_array_constr([[1], [2]])
    D = euclidean_distances(X, Y)
    assert_allclose(D, [[1.0, 2.0]])


@pytest.mark.parametrize(
    "y_array_constr",
    [np.array] + CSR_CONTAINERS,
    ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_with_norms(global_dtype, y_array_constr):
    # check that we still get the right answers with {X,Y}_norm_squared
    # and that we get a wrong answer with wrong {X,Y}_norm_squared
    rng = np.random.RandomState(0)
    X = rng.random_sample((10, 10)).astype(global_dtype, copy=False)
    Y = rng.random_sample((20, 10)).astype(global_dtype, copy=False)

    # norms will only be used if their dtype is float64
    X_norm_sq = (X.astype(np.float64) ** 2).sum(axis=1).reshape(1, -1)
    Y_norm_sq = (Y.astype(np.float64) ** 2).sum(axis=1).reshape(1, -1)

    Y = y_array_constr(Y)

    D1 = euclidean_distances(X, Y)
    D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq)
    D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq)
    D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq)
    assert_allclose(D2, D1)
    assert_allclose(D3, D1)
    assert_allclose(D4, D1)

    # check we get the wrong answer with wrong {X,Y}_norm_squared
    wrong_D = euclidean_distances(
        X,
        Y,
        X_norm_squared=np.zeros_like(X_norm_sq),
        Y_norm_squared=np.zeros_like(Y_norm_sq),
    )
    with pytest.raises(AssertionError):
        assert_allclose(wrong_D, D1)


@pytest.mark.parametrize("symmetric", [True, False])
def test_euclidean_distances_float32_norms(global_random_seed, symmetric):
    # Non-regression test for #27621
    rng = np.random.RandomState(global_random_seed)
    X = rng.random_sample((10, 10))
    Y = X if symmetric else rng.random_sample((20, 10))
    X_norm_sq = (X.astype(np.float32) ** 2).sum(axis=1).reshape(1, -1)
    Y_norm_sq = (Y.astype(np.float32) ** 2).sum(axis=1).reshape(1, -1)
    D1 = euclidean_distances(X, Y)
    D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq)
    D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq)
    D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq)
    assert_allclose(D2, D1)
    assert_allclose(D3, D1)
    assert_allclose(D4, D1)


def test_euclidean_distances_norm_shapes():
    # Check all accepted shapes for the norms or appropriate error messages.
    rng = np.random.RandomState(0)
    X = rng.random_sample((10, 10))
    Y = rng.random_sample((20, 10))

    X_norm_squared = (X**2).sum(axis=1)
    Y_norm_squared = (Y**2).sum(axis=1)

    D1 = euclidean_distances(
        X, Y, X_norm_squared=X_norm_squared, Y_norm_squared=Y_norm_squared
    )
    D2 = euclidean_distances(
        X,
        Y,
        X_norm_squared=X_norm_squared.reshape(-1, 1),
        Y_norm_squared=Y_norm_squared.reshape(-1, 1),
    )
    D3 = euclidean_distances(
        X,
        Y,
        X_norm_squared=X_norm_squared.reshape(1, -1),
        Y_norm_squared=Y_norm_squared.reshape(1, -1),
    )

    assert_allclose(D2, D1)
    assert_allclose(D3, D1)

    with pytest.raises(ValueError, match="Incompatible dimensions for X"):
        euclidean_distances(X, Y, X_norm_squared=X_norm_squared[:5])
    with pytest.raises(ValueError, match="Incompatible dimensions for Y"):
        euclidean_distances(X, Y, Y_norm_squared=Y_norm_squared[:5])


@pytest.mark.parametrize(
    "x_array_constr",
    [np.array] + CSR_CONTAINERS,
    ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
@pytest.mark.parametrize(
    "y_array_constr",
    [np.array] + CSR_CONTAINERS,
    ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances(global_dtype, x_array_constr, y_array_constr):
    # check that euclidean distances gives same result as scipy cdist
    # when X and Y != X are provided
    rng = np.random.RandomState(0)
    X = rng.random_sample((100, 10)).astype(global_dtype, copy=False)
    X[X < 0.8] = 0
    Y = rng.random_sample((10, 10)).astype(global_dtype, copy=False)
    Y[Y < 0.8] = 0

    expected = cdist(X, Y)

    X = x_array_constr(X)
    Y = y_array_constr(Y)
    distances = euclidean_distances(X, Y)

    # the default rtol=1e-7 is too close to the float32 precision
    # and fails due to rounding errors.
    assert_allclose(distances, expected, rtol=1e-6)
    assert distances.dtype == global_dtype


@pytest.mark.parametrize(
    "x_array_constr",
    [np.array] + CSR_CONTAINERS,
    ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_sym(global_dtype, x_array_constr):
    # check that euclidean distances gives same result as scipy pdist
    # when only X is provided
    rng = np.random.RandomState(0)
    X = rng.random_sample((100, 10)).astype(global_dtype, copy=False)
    X[X < 0.8] = 0

    expected = squareform(pdist(X))

    X = x_array_constr(X)
    distances = euclidean_distances(X)

    # the default rtol=1e-7 is too close to the float32 precision
    # and fails due to rounding errors.
    assert_allclose(distances, expected, rtol=1e-6)
    assert distances.dtype == global_dtype


@pytest.mark.parametrize("batch_size", [None, 5, 7, 101])
@pytest.mark.parametrize(
    "x_array_constr",
    [np.array] + CSR_CONTAINERS,
    ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
@pytest.mark.parametrize(
    "y_array_constr",
    [np.array] + CSR_CONTAINERS,
    ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_upcast(batch_size, x_array_constr, y_array_constr):
    # check batches handling when Y != X (#13910)
    rng = np.random.RandomState(0)
    X = rng.random_sample((100, 10)).astype(np.float32)
    X[X < 0.8] = 0
    Y = rng.random_sample((10, 10)).astype(np.float32)
    Y[Y < 0.8] = 0

    expected = cdist(X, Y)

    X = x_array_constr(X)
    Y = y_array_constr(Y)
    distances = _euclidean_distances_upcast(X, Y=Y, batch_size=batch_size)
    distances = np.sqrt(np.maximum(distances, 0))

    # the default rtol=1e-7 is too close to the float32 precision
    # and fails due to rounding errors.
    assert_allclose(distances, expected, rtol=1e-6)


@pytest.mark.parametrize("batch_size", [None, 5, 7, 101])
@pytest.mark.parametrize(
    "x_array_constr",
    [np.array] + CSR_CONTAINERS,
    ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_upcast_sym(batch_size, x_array_constr):
    # check batches handling when X is Y (#13910)
    rng = np.random.RandomState(0)
    X = rng.random_sample((100, 10)).astype(np.float32)
    X[X < 0.8] = 0

    expected = squareform(pdist(X))

    X = x_array_constr(X)
    distances = _euclidean_distances_upcast(X, Y=X, batch_size=batch_size)
    distances = np.sqrt(np.maximum(distances, 0))

    # the default rtol=1e-7 is too close to the float32 precision
    # and fails due to rounding errors.
    assert_allclose(distances, expected, rtol=1e-6)


@pytest.mark.parametrize(
    "dtype, eps, rtol",
    [
        (np.float32, 1e-4, 1e-5),
        pytest.param(
            np.float64,
            1e-8,
            0.99,
            marks=pytest.mark.xfail(reason="failing due to lack of precision"),
        ),
    ],
)
@pytest.mark.parametrize("dim", [1, 1000000])
def test_euclidean_distances_extreme_values(dtype, eps, rtol, dim):
    # check that euclidean distances is correct with float32 input thanks to
    # upcasting. On float64 there are still precision issues.
    X = np.array([[1.0] * dim], dtype=dtype)
    Y = np.array([[1.0 + eps] * dim], dtype=dtype)

    distances = euclidean_distances(X, Y)
    expected = cdist(X, Y)

    assert_allclose(distances, expected, rtol=1e-5)


@pytest.mark.parametrize("squared", [True, False])
def test_nan_euclidean_distances_equal_to_euclidean_distance(squared):
    # with no nan values
    rng = np.random.RandomState(1337)
    X = rng.randn(3, 4)
    Y = rng.randn(4, 4)

    normal_distance = euclidean_distances(X, Y=Y, squared=squared)
    nan_distance = nan_euclidean_distances(X, Y=Y, squared=squared)
    assert_allclose(normal_distance, nan_distance)


@pytest.mark.parametrize("X", [np.array([[np.inf, 0]]), np.array([[0, -np.inf]])])
@pytest.mark.parametrize("Y", [np.array([[np.inf, 0]]), np.array([[0, -np.inf]]), None])
def test_nan_euclidean_distances_infinite_values(X, Y):
    with pytest.raises(ValueError) as excinfo:
        nan_euclidean_distances(X, Y=Y)

    exp_msg = "Input contains infinity or a value too large for dtype('float64')."
    assert exp_msg == str(excinfo.value)


@pytest.mark.parametrize(
    "X, X_diag, missing_value",
    [
        (np.array([[0, 1], [1, 0]]), np.sqrt(2), np.nan),
        (np.array([[0, 1], [1, np.nan]]), np.sqrt(2), np.nan),
        (np.array([[np.nan, 1], [1, np.nan]]), np.nan, np.nan),
        (np.array([[np.nan, 1], [np.nan, 0]]), np.sqrt(2), np.nan),
        (np.array([[0, np.nan], [1, np.nan]]), np.sqrt(2), np.nan),
        (np.array([[0, 1], [1, 0]]), np.sqrt(2), -1),
        (np.array([[0, 1], [1, -1]]), np.sqrt(2), -1),
        (np.array([[-1, 1], [1, -1]]), np.nan, -1),
        (np.array([[-1, 1], [-1, 0]]), np.sqrt(2), -1),
        (np.array([[0, -1], [1, -1]]), np.sqrt(2), -1),
    ],
)
def test_nan_euclidean_distances_2x2(X, X_diag, missing_value):
    exp_dist = np.array([[0.0, X_diag], [X_diag, 0]])

    dist = nan_euclidean_distances(X, missing_values=missing_value)
    assert_allclose(exp_dist, dist)

    dist_sq = nan_euclidean_distances(X, squared=True, missing_values=missing_value)
    assert_allclose(exp_dist**2, dist_sq)

    dist_two = nan_euclidean_distances(X, X, missing_values=missing_value)
    assert_allclose(exp_dist, dist_two)

    dist_two_copy = nan_euclidean_distances(X, X.copy(), missing_values=missing_value)
    assert_allclose(exp_dist, dist_two_copy)


@pytest.mark.parametrize("missing_value", [np.nan, -1])
def test_nan_euclidean_distances_complete_nan(missing_value):
    X = np.array([[missing_value, missing_value], [0, 1]])

    exp_dist = np.array([[np.nan, np.nan], [np.nan, 0]])

    dist = nan_euclidean_distances(X, missing_values=missing_value)
    assert_allclose(exp_dist, dist)

    dist = nan_euclidean_distances(X, X.copy(), missing_values=missing_value)
    assert_allclose(exp_dist, dist)


@pytest.mark.parametrize("missing_value", [np.nan, -1])
def test_nan_euclidean_distances_not_trival(missing_value):
    X = np.array(
        [
            [1.0, missing_value, 3.0, 4.0, 2.0],
            [missing_value, 4.0, 6.0, 1.0, missing_value],
            [3.0, missing_value, missing_value, missing_value, 1.0],
        ]
    )

    Y = np.array(
        [
            [missing_value, 7.0, 7.0, missing_value, 2.0],
            [missing_value, missing_value, 5.0, 4.0, 7.0],
            [missing_value, missing_value, missing_value, 4.0, 5.0],
        ]
    )

    # Check for symmetry
    D1 = nan_euclidean_distances(X, Y, missing_values=missing_value)
    D2 = nan_euclidean_distances(Y, X, missing_values=missing_value)

    assert_almost_equal(D1, D2.T)

    # Check with explicit formula and squared=True
    assert_allclose(
        nan_euclidean_distances(
            X[:1], Y[:1], squared=True, missing_values=missing_value
        ),
        [[5.0 / 2.0 * ((7 - 3) ** 2 + (2 - 2) ** 2)]],
    )

    # Check with explicit formula and squared=False
    assert_allclose(
        nan_euclidean_distances(
            X[1:2], Y[1:2], squared=False, missing_values=missing_value
        ),
        [[np.sqrt(5.0 / 2.0 * ((6 - 5) ** 2 + (1 - 4) ** 2))]],
    )

    # Check when Y = X is explicitly passed
    D3 = nan_euclidean_distances(X, missing_values=missing_value)
    D4 = nan_euclidean_distances(X, X, missing_values=missing_value)
    D5 = nan_euclidean_distances(X, X.copy(), missing_values=missing_value)
    assert_allclose(D3, D4)
    assert_allclose(D4, D5)

    # Check copy = True against copy = False
    D6 = nan_euclidean_distances(X, Y, copy=True)
    D7 = nan_euclidean_distances(X, Y, copy=False)
    assert_allclose(D6, D7)


@pytest.mark.parametrize("missing_value", [np.nan, -1])
def test_nan_euclidean_distances_one_feature_match_positive(missing_value):
    # First feature is the only feature that is non-nan and in both
    # samples. The result of `nan_euclidean_distances` with squared=True
    # should be non-negative. The non-squared version should all be close to 0.
    X = np.array(
        [
            [-122.27, 648.0, missing_value, 37.85],
            [-122.27, missing_value, 2.34701493, missing_value],
        ]
    )

    dist_squared = nan_euclidean_distances(
        X, missing_values=missing_value, squared=True
    )
    assert np.all(dist_squared >= 0)

    dist = nan_euclidean_distances(X, missing_values=missing_value, squared=False)
    assert_allclose(dist, 0.0)


def test_cosine_distances():
    # Check the pairwise Cosine distances computation
    rng = np.random.RandomState(1337)
    x = np.abs(rng.rand(910))
    XA = np.vstack([x, x])
    D = cosine_distances(XA)
    assert_allclose(D, [[0.0, 0.0], [0.0, 0.0]], atol=1e-10)
    # check that all elements are in [0, 2]
    assert np.all(D >= 0.0)
    assert np.all(D <= 2.0)
    # check that diagonal elements are equal to 0
    assert_allclose(D[np.diag_indices_from(D)], [0.0, 0.0])

    XB = np.vstack([x, -x])
    D2 = cosine_distances(XB)
    # check that all elements are in [0, 2]
    assert np.all(D2 >= 0.0)
    assert np.all(D2 <= 2.0)
    # check that diagonal elements are equal to 0 and non diagonal to 2
    assert_allclose(D2, [[0.0, 2.0], [2.0, 0.0]])

    # check large random matrix
    X = np.abs(rng.rand(1000, 5000))
    D = cosine_distances(X)
    # check that diagonal elements are equal to 0
    assert_allclose(D[np.diag_indices_from(D)], [0.0] * D.shape[0])
    assert np.all(D >= 0.0)
    assert np.all(D <= 2.0)


def test_haversine_distances():
    # Check haversine distance with distances computation
    def slow_haversine_distances(x, y):
        diff_lat = y[0] - x[0]
        diff_lon = y[1] - x[1]
        a = np.sin(diff_lat / 2) ** 2 + (
            np.cos(x[0]) * np.cos(y[0]) * np.sin(diff_lon / 2) ** 2
        )
        c = 2 * np.arcsin(np.sqrt(a))
        return c

    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 2))
    Y = rng.random_sample((10, 2))
    D1 = np.array([[slow_haversine_distances(x, y) for y in Y] for x in X])
    D2 = haversine_distances(X, Y)
    assert_allclose(D1, D2)
    # Test haversine distance does not accept X where n_feature != 2
    X = rng.random_sample((10, 3))
    err_msg = "Haversine distance only valid in 2 dimensions"
    with pytest.raises(ValueError, match=err_msg):
        haversine_distances(X)


# Paired distances


def test_paired_euclidean_distances():
    # Check the paired Euclidean distances computation
    X = [[0], [0]]
    Y = [[1], [2]]
    D = paired_euclidean_distances(X, Y)
    assert_allclose(D, [1.0, 2.0])


def test_paired_manhattan_distances():
    # Check the paired manhattan distances computation
    X = [[0], [0]]
    Y = [[1], [2]]
    D = paired_manhattan_distances(X, Y)
    assert_allclose(D, [1.0, 2.0])


def test_paired_cosine_distances():
    # Check the paired manhattan distances computation
    X = [[0], [0]]
    Y = [[1], [2]]
    D = paired_cosine_distances(X, Y)
    assert_allclose(D, [0.5, 0.5])


def test_chi_square_kernel():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((10, 4))
    K_add = additive_chi2_kernel(X, Y)
    gamma = 0.1
    K = chi2_kernel(X, Y, gamma=gamma)
    assert K.dtype == float
    for i, x in enumerate(X):
        for j, y in enumerate(Y):
            chi2 = -np.sum((x - y) ** 2 / (x + y))
            chi2_exp = np.exp(gamma * chi2)
            assert_almost_equal(K_add[i, j], chi2)
            assert_almost_equal(K[i, j], chi2_exp)

    # check diagonal is ones for data with itself
    K = chi2_kernel(Y)
    assert_array_equal(np.diag(K), 1)
    # check off-diagonal is < 1 but > 0:
    assert np.all(K > 0)
    assert np.all(K - np.diag(np.diag(K)) < 1)
    # check that float32 is preserved
    X = rng.random_sample((5, 4)).astype(np.float32)
    Y = rng.random_sample((10, 4)).astype(np.float32)
    K = chi2_kernel(X, Y)
    assert K.dtype == np.float32

    # check integer type gets converted,
    # check that zeros are handled
    X = rng.random_sample((10, 4)).astype(np.int32)
    K = chi2_kernel(X, X)
    assert np.isfinite(K).all()
    assert K.dtype == float

    # check that kernel of similar things is greater than dissimilar ones
    X = [[0.3, 0.7], [1.0, 0]]
    Y = [[0, 1], [0.9, 0.1]]
    K = chi2_kernel(X, Y)
    assert K[0, 0] > K[0, 1]
    assert K[1, 1] > K[1, 0]

    # test negative input
    with pytest.raises(ValueError):
        chi2_kernel([[0, -1]])
    with pytest.raises(ValueError):
        chi2_kernel([[0, -1]], [[-1, -1]])
    with pytest.raises(ValueError):
        chi2_kernel([[0, 1]], [[-1, -1]])

    # different n_features in X and Y
    with pytest.raises(ValueError):
        chi2_kernel([[0, 1]], [[0.2, 0.2, 0.6]])


@pytest.mark.parametrize(
    "kernel",
    (
        linear_kernel,
        polynomial_kernel,
        rbf_kernel,
        laplacian_kernel,
        sigmoid_kernel,
        cosine_similarity,
    ),
)
def test_kernel_symmetry(kernel):
    # Valid kernels should be symmetric
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    K = kernel(X, X)
    assert_allclose(K, K.T, 15)


@pytest.mark.parametrize(
    "kernel",
    (
        linear_kernel,
        polynomial_kernel,
        rbf_kernel,
        laplacian_kernel,
        sigmoid_kernel,
        cosine_similarity,
    ),
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_kernel_sparse(kernel, csr_container):
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    X_sparse = csr_container(X)
    K = kernel(X, X)
    K2 = kernel(X_sparse, X_sparse)
    assert_allclose(K, K2)


def test_linear_kernel():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    K = linear_kernel(X, X)
    # the diagonal elements of a linear kernel are their squared norm
    assert_allclose(K.flat[::6], [linalg.norm(x) ** 2 for x in X])


def test_rbf_kernel():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    K = rbf_kernel(X, X)
    # the diagonal elements of a rbf kernel are 1
    assert_allclose(K.flat[::6], np.ones(5))


def test_laplacian_kernel():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    K = laplacian_kernel(X, X)
    # the diagonal elements of a laplacian kernel are 1
    assert_allclose(np.diag(K), np.ones(5))

    # off-diagonal elements are < 1 but > 0:
    assert np.all(K > 0)
    assert np.all(K - np.diag(np.diag(K)) < 1)


@pytest.mark.parametrize(
    "metric, pairwise_func",
    [("linear", linear_kernel), ("cosine", cosine_similarity)],
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pairwise_similarity_sparse_output(metric, pairwise_func, csr_container):
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((3, 4))
    Xcsr = csr_container(X)
    Ycsr = csr_container(Y)

    # should be sparse
    K1 = pairwise_func(Xcsr, Ycsr, dense_output=False)
    assert issparse(K1)

    # should be dense, and equal to K1
    K2 = pairwise_func(X, Y, dense_output=True)
    assert not issparse(K2)
    assert_allclose(K1.toarray(), K2)

    # show the kernel output equal to the sparse.toarray()
    K3 = pairwise_kernels(X, Y=Y, metric=metric)
    assert_allclose(K1.toarray(), K3)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_cosine_similarity(csr_container):
    # Test the cosine_similarity.

    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((3, 4))
    Xcsr = csr_container(X)
    Ycsr = csr_container(Y)

    for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)):
        # Test that the cosine is kernel is equal to a linear kernel when data
        # has been previously normalized by L2-norm.
        K1 = pairwise_kernels(X_, Y=Y_, metric="cosine")
        X_ = normalize(X_)
        if Y_ is not None:
            Y_ = normalize(Y_)
        K2 = pairwise_kernels(X_, Y=Y_, metric="linear")
        assert_allclose(K1, K2)


def test_check_dense_matrices():
    # Ensure that pairwise array check works for dense matrices.
    # Check that if XB is None, XB is returned as reference to XA
    XA = np.resize(np.arange(40), (5, 8))
    XA_checked, XB_checked = check_pairwise_arrays(XA, None)
    assert XA_checked is XB_checked
    assert_array_equal(XA, XA_checked)


def test_check_XB_returned():
    # Ensure that if XA and XB are given correctly, they return as equal.
    # Check that if XB is not None, it is returned equal.
    # Note that the second dimension of XB is the same as XA.
    XA = np.resize(np.arange(40), (5, 8))
    XB = np.resize(np.arange(32), (4, 8))
    XA_checked, XB_checked = check_pairwise_arrays(XA, XB)
    assert_array_equal(XA, XA_checked)
    assert_array_equal(XB, XB_checked)

    XB = np.resize(np.arange(40), (5, 8))
    XA_checked, XB_checked = check_paired_arrays(XA, XB)
    assert_array_equal(XA, XA_checked)
    assert_array_equal(XB, XB_checked)


def test_check_different_dimensions():
    # Ensure an error is raised if the dimensions are different.
    XA = np.resize(np.arange(45), (5, 9))
    XB = np.resize(np.arange(32), (4, 8))
    with pytest.raises(ValueError):
        check_pairwise_arrays(XA, XB)

    XB = np.resize(np.arange(4 * 9), (4, 9))
    with pytest.raises(ValueError):
        check_paired_arrays(XA, XB)


def test_check_invalid_dimensions():
    # Ensure an error is raised on 1D input arrays.
    # The modified tests are not 1D. In the old test, the array was internally
    # converted to 2D anyways
    XA = np.arange(45).reshape(9, 5)
    XB = np.arange(32).reshape(4, 8)
    with pytest.raises(ValueError):
        check_pairwise_arrays(XA, XB)
    XA = np.arange(45).reshape(9, 5)
    XB = np.arange(32).reshape(4, 8)
    with pytest.raises(ValueError):
        check_pairwise_arrays(XA, XB)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_check_sparse_arrays(csr_container):
    # Ensures that checks return valid sparse matrices.
    rng = np.random.RandomState(0)
    XA = rng.random_sample((5, 4))
    XA_sparse = csr_container(XA)
    XB = rng.random_sample((5, 4))
    XB_sparse = csr_container(XB)
    XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse)
    # compare their difference because testing csr matrices for
    # equality with '==' does not work as expected.
    assert issparse(XA_checked)
    assert abs(XA_sparse - XA_checked).sum() == 0
    assert issparse(XB_checked)
    assert abs(XB_sparse - XB_checked).sum() == 0

    XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse)
    assert issparse(XA_checked)
    assert abs(XA_sparse - XA_checked).sum() == 0
    assert issparse(XA_2_checked)
    assert abs(XA_2_checked - XA_checked).sum() == 0


def tuplify(X):
    # Turns a numpy matrix (any n-dimensional array) into tuples.
    s = X.shape
    if len(s) > 1:
        # Tuplify each sub-array in the input.
        return tuple(tuplify(row) for row in X)
    else:
        # Single dimension input, just return tuple of contents.
        return tuple(r for r in X)


def test_check_tuple_input():
    # Ensures that checks return valid tuples.
    rng = np.random.RandomState(0)
    XA = rng.random_sample((5, 4))
    XA_tuples = tuplify(XA)
    XB = rng.random_sample((5, 4))
    XB_tuples = tuplify(XB)
    XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples)
    assert_array_equal(XA_tuples, XA_checked)
    assert_array_equal(XB_tuples, XB_checked)


def test_check_preserve_type():
    # Ensures that type float32 is preserved.
    XA = np.resize(np.arange(40), (5, 8)).astype(np.float32)
    XB = np.resize(np.arange(40), (5, 8)).astype(np.float32)

    XA_checked, XB_checked = check_pairwise_arrays(XA, None)
    assert XA_checked.dtype == np.float32

    # both float32
    XA_checked, XB_checked = check_pairwise_arrays(XA, XB)
    assert XA_checked.dtype == np.float32
    assert XB_checked.dtype == np.float32

    # mismatched A
    XA_checked, XB_checked = check_pairwise_arrays(XA.astype(float), XB)
    assert XA_checked.dtype == float
    assert XB_checked.dtype == float

    # mismatched B
    XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(float))
    assert XA_checked.dtype == float
    assert XB_checked.dtype == float


@pytest.mark.parametrize("n_jobs", [1, 2])
@pytest.mark.parametrize("metric", ["seuclidean", "mahalanobis"])
@pytest.mark.parametrize(
    "dist_function", [pairwise_distances, pairwise_distances_chunked]
)
def test_pairwise_distances_data_derived_params(n_jobs, metric, dist_function):
    # check that pairwise_distances give the same result in sequential and
    # parallel, when metric has data-derived parameters.
    with config_context(working_memory=0.1):  # to have more than 1 chunk
        rng = np.random.RandomState(0)
        X = rng.random_sample((100, 10))

        expected_dist = squareform(pdist(X, metric=metric))
        dist = np.vstack(tuple(dist_function(X, metric=metric, n_jobs=n_jobs)))

        assert_allclose(dist, expected_dist)


@pytest.mark.parametrize("metric", ["seuclidean", "mahalanobis"])
def test_pairwise_distances_data_derived_params_error(metric):
    # check that pairwise_distances raises an error when Y is passed but
    # metric has data-derived params that are not provided by the user.
    rng = np.random.RandomState(0)
    X = rng.random_sample((100, 10))
    Y = rng.random_sample((100, 10))

    with pytest.raises(
        ValueError,
        match=rf"The '(V|VI)' parameter is required for the " rf"{metric} metric",
    ):
        pairwise_distances(X, Y, metric=metric)


@pytest.mark.parametrize(
    "metric",
    [
        "braycurtis",
        "canberra",
        "chebyshev",
        "correlation",
        "hamming",
        "mahalanobis",
        "minkowski",
        "seuclidean",
        "sqeuclidean",
        "cityblock",
        "cosine",
        "euclidean",
    ],
)
@pytest.mark.parametrize("y_is_x", [True, False], ids=["Y is X", "Y is not X"])
def test_numeric_pairwise_distances_datatypes(metric, global_dtype, y_is_x):
    # Check that pairwise distances gives the same result as pdist and cdist
    # regardless of input datatype when using any scipy metric for comparing
    # numeric vectors
    #
    # This test is necessary because pairwise_distances used to throw an
    # error when using metric='seuclidean' and the input data was not
    # of type np.float64 (#15730)

    rng = np.random.RandomState(0)

    X = rng.random_sample((5, 4)).astype(global_dtype, copy=False)

    params = {}
    if y_is_x:
        Y = X
        expected_dist = squareform(pdist(X, metric=metric))
    else:
        Y = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
        expected_dist = cdist(X, Y, metric=metric)
        # precompute parameters for seuclidean & mahalanobis when x is not y
        if metric == "seuclidean":
            params = {"V": np.var(np.vstack([X, Y]), axis=0, ddof=1, dtype=np.float64)}
        elif metric == "mahalanobis":
            params = {"VI": np.linalg.inv(np.cov(np.vstack([X, Y]).T)).T}

    dist = pairwise_distances(X, Y, metric=metric, **params)

    assert_allclose(dist, expected_dist)


@pytest.mark.parametrize(
    "pairwise_distances_func",
    [pairwise_distances, pairwise_distances_argmin, pairwise_distances_argmin_min],
)
def test_nan_euclidean_support(pairwise_distances_func):
    """Check that `nan_euclidean` is lenient with `nan` values."""

    X = [[0, 1], [1, np.nan], [2, 3], [3, 5]]
    output = pairwise_distances_func(X, X, metric="nan_euclidean")

    assert not np.isnan(output).any()


def test_nan_euclidean_constant_input_argmin():
    """Check that the behavior of constant input is the same in the case of
    full of nan vector and full of zero vector.
    """

    X_nan = [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]]
    argmin_nan = pairwise_distances_argmin(X_nan, X_nan, metric="nan_euclidean")

    X_const = [[0, 0], [0, 0], [0, 0]]
    argmin_const = pairwise_distances_argmin(X_const, X_const, metric="nan_euclidean")

    assert_allclose(argmin_nan, argmin_const)


@pytest.mark.parametrize(
    "X,Y,expected_distance",
    [
        (
            ["a", "ab", "abc"],
            None,
            [[0.0, 1.0, 2.0], [1.0, 0.0, 1.0], [2.0, 1.0, 0.0]],
        ),
        (
            ["a", "ab", "abc"],
            ["a", "ab"],
            [[0.0, 1.0], [1.0, 0.0], [2.0, 1.0]],
        ),
    ],
)
def test_pairwise_dist_custom_metric_for_string(X, Y, expected_distance):
    """Check pairwise_distances with lists of strings as input."""

    def dummy_string_similarity(x, y):
        return np.abs(len(x) - len(y))

    actual_distance = pairwise_distances(X=X, Y=Y, metric=dummy_string_similarity)
    assert_allclose(actual_distance, expected_distance)


def test_pairwise_dist_custom_metric_for_bool():
    """Check that pairwise_distances does not convert boolean input to float
    when using a custom metric.
    """

    def dummy_bool_dist(v1, v2):
        # dummy distance func using `&` and thus relying on the input data being boolean
        return 1 - (v1 & v2).sum() / (v1 | v2).sum()

    X = np.array([[1, 0, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]], dtype=bool)

    expected_distance = np.array(
        [
            [0.0, 0.5, 0.75],
            [0.5, 0.0, 0.5],
            [0.75, 0.5, 0.0],
        ]
    )

    actual_distance = pairwise_distances(X=X, metric=dummy_bool_dist)
    assert_allclose(actual_distance, expected_distance)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_sparse_manhattan_readonly_dataset(csr_container):
    # Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/7981
    matrices1 = [csr_container(np.ones((5, 5)))]
    matrices2 = [csr_container(np.ones((5, 5)))]
    # Joblib memory maps datasets which makes them read-only.
    # The following call was reporting as failing in #7981, but this must pass.
    Parallel(n_jobs=2, max_nbytes=0)(
        delayed(manhattan_distances)(m1, m2) for m1, m2 in zip(matrices1, matrices2)
    )


# TODO(1.8): remove
def test_force_all_finite_rename_warning():
    X = np.random.uniform(size=(10, 10))
    Y = np.random.uniform(size=(10, 10))

    msg = "'force_all_finite' was renamed to 'ensure_all_finite'"

    with pytest.warns(FutureWarning, match=msg):
        check_pairwise_arrays(X, Y, force_all_finite=True)

    with pytest.warns(FutureWarning, match=msg):
        pairwise_distances(X, Y, force_all_finite=True)