File size: 12,074 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import math
from itertools import product

import numpy as np
import pytest
from scipy.sparse import rand as sparse_rand

from sklearn import clone, datasets, manifold, neighbors, pipeline, preprocessing
from sklearn.datasets import make_blobs
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.utils._testing import (
    assert_allclose,
    assert_allclose_dense_sparse,
    assert_array_equal,
)
from sklearn.utils.fixes import CSR_CONTAINERS

eigen_solvers = ["auto", "dense", "arpack"]
path_methods = ["auto", "FW", "D"]


def create_sample_data(dtype, n_pts=25, add_noise=False):
    # grid of equidistant points in 2D, n_components = n_dim
    n_per_side = int(math.sqrt(n_pts))
    X = np.array(list(product(range(n_per_side), repeat=2))).astype(dtype, copy=False)
    if add_noise:
        # add noise in a third dimension
        rng = np.random.RandomState(0)
        noise = 0.1 * rng.randn(n_pts, 1).astype(dtype, copy=False)
        X = np.concatenate((X, noise), 1)
    return X


@pytest.mark.parametrize("n_neighbors, radius", [(24, None), (None, np.inf)])
@pytest.mark.parametrize("eigen_solver", eigen_solvers)
@pytest.mark.parametrize("path_method", path_methods)
def test_isomap_simple_grid(
    global_dtype, n_neighbors, radius, eigen_solver, path_method
):
    # Isomap should preserve distances when all neighbors are used
    n_pts = 25
    X = create_sample_data(global_dtype, n_pts=n_pts, add_noise=False)

    # distances from each point to all others
    if n_neighbors is not None:
        G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance")
    else:
        G = neighbors.radius_neighbors_graph(X, radius, mode="distance")

    clf = manifold.Isomap(
        n_neighbors=n_neighbors,
        radius=radius,
        n_components=2,
        eigen_solver=eigen_solver,
        path_method=path_method,
    )
    clf.fit(X)

    if n_neighbors is not None:
        G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode="distance")
    else:
        G_iso = neighbors.radius_neighbors_graph(
            clf.embedding_, radius, mode="distance"
        )
    atol = 1e-5 if global_dtype == np.float32 else 0
    assert_allclose_dense_sparse(G, G_iso, atol=atol)


@pytest.mark.parametrize("n_neighbors, radius", [(24, None), (None, np.inf)])
@pytest.mark.parametrize("eigen_solver", eigen_solvers)
@pytest.mark.parametrize("path_method", path_methods)
def test_isomap_reconstruction_error(
    global_dtype, n_neighbors, radius, eigen_solver, path_method
):
    if global_dtype is np.float32:
        pytest.skip(
            "Skipping test due to numerical instabilities on float32 data"
            "from KernelCenterer used in the reconstruction_error method"
        )

    # Same setup as in test_isomap_simple_grid, with an added dimension
    n_pts = 25
    X = create_sample_data(global_dtype, n_pts=n_pts, add_noise=True)

    # compute input kernel
    if n_neighbors is not None:
        G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance").toarray()
    else:
        G = neighbors.radius_neighbors_graph(X, radius, mode="distance").toarray()
    centerer = preprocessing.KernelCenterer()
    K = centerer.fit_transform(-0.5 * G**2)

    clf = manifold.Isomap(
        n_neighbors=n_neighbors,
        radius=radius,
        n_components=2,
        eigen_solver=eigen_solver,
        path_method=path_method,
    )
    clf.fit(X)

    # compute output kernel
    if n_neighbors is not None:
        G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode="distance")
    else:
        G_iso = neighbors.radius_neighbors_graph(
            clf.embedding_, radius, mode="distance"
        )
    G_iso = G_iso.toarray()
    K_iso = centerer.fit_transform(-0.5 * G_iso**2)

    # make sure error agrees
    reconstruction_error = np.linalg.norm(K - K_iso) / n_pts
    atol = 1e-5 if global_dtype == np.float32 else 0
    assert_allclose(reconstruction_error, clf.reconstruction_error(), atol=atol)


@pytest.mark.parametrize("n_neighbors, radius", [(2, None), (None, 0.5)])
def test_transform(global_dtype, n_neighbors, radius):
    n_samples = 200
    n_components = 10
    noise_scale = 0.01

    # Create S-curve dataset
    X, y = datasets.make_s_curve(n_samples, random_state=0)

    X = X.astype(global_dtype, copy=False)

    # Compute isomap embedding
    iso = manifold.Isomap(
        n_components=n_components, n_neighbors=n_neighbors, radius=radius
    )
    X_iso = iso.fit_transform(X)

    # Re-embed a noisy version of the points
    rng = np.random.RandomState(0)
    noise = noise_scale * rng.randn(*X.shape)
    X_iso2 = iso.transform(X + noise)

    # Make sure the rms error on re-embedding is comparable to noise_scale
    assert np.sqrt(np.mean((X_iso - X_iso2) ** 2)) < 2 * noise_scale


@pytest.mark.parametrize("n_neighbors, radius", [(2, None), (None, 10.0)])
def test_pipeline(n_neighbors, radius, global_dtype):
    # check that Isomap works fine as a transformer in a Pipeline
    # only checks that no error is raised.
    # TODO check that it actually does something useful
    X, y = datasets.make_blobs(random_state=0)
    X = X.astype(global_dtype, copy=False)
    clf = pipeline.Pipeline(
        [
            ("isomap", manifold.Isomap(n_neighbors=n_neighbors, radius=radius)),
            ("clf", neighbors.KNeighborsClassifier()),
        ]
    )
    clf.fit(X, y)
    assert 0.9 < clf.score(X, y)


def test_pipeline_with_nearest_neighbors_transformer(global_dtype):
    # Test chaining NearestNeighborsTransformer and Isomap with
    # neighbors_algorithm='precomputed'
    algorithm = "auto"
    n_neighbors = 10

    X, _ = datasets.make_blobs(random_state=0)
    X2, _ = datasets.make_blobs(random_state=1)

    X = X.astype(global_dtype, copy=False)
    X2 = X2.astype(global_dtype, copy=False)

    # compare the chained version and the compact version
    est_chain = pipeline.make_pipeline(
        neighbors.KNeighborsTransformer(
            n_neighbors=n_neighbors, algorithm=algorithm, mode="distance"
        ),
        manifold.Isomap(n_neighbors=n_neighbors, metric="precomputed"),
    )
    est_compact = manifold.Isomap(
        n_neighbors=n_neighbors, neighbors_algorithm=algorithm
    )

    Xt_chain = est_chain.fit_transform(X)
    Xt_compact = est_compact.fit_transform(X)
    assert_allclose(Xt_chain, Xt_compact)

    Xt_chain = est_chain.transform(X2)
    Xt_compact = est_compact.transform(X2)
    assert_allclose(Xt_chain, Xt_compact)


@pytest.mark.parametrize(
    "metric, p, is_euclidean",
    [
        ("euclidean", 2, True),
        ("manhattan", 1, False),
        ("minkowski", 1, False),
        ("minkowski", 2, True),
        (lambda x1, x2: np.sqrt(np.sum(x1**2 + x2**2)), 2, False),
    ],
)
def test_different_metric(global_dtype, metric, p, is_euclidean):
    # Isomap must work on various metric parameters work correctly
    # and must default to euclidean.
    X, _ = datasets.make_blobs(random_state=0)
    X = X.astype(global_dtype, copy=False)

    reference = manifold.Isomap().fit_transform(X)
    embedding = manifold.Isomap(metric=metric, p=p).fit_transform(X)

    if is_euclidean:
        assert_allclose(embedding, reference)
    else:
        with pytest.raises(AssertionError, match="Not equal to tolerance"):
            assert_allclose(embedding, reference)


def test_isomap_clone_bug():
    # regression test for bug reported in #6062
    model = manifold.Isomap()
    for n_neighbors in [10, 15, 20]:
        model.set_params(n_neighbors=n_neighbors)
        model.fit(np.random.rand(50, 2))
        assert model.nbrs_.n_neighbors == n_neighbors


@pytest.mark.parametrize("eigen_solver", eigen_solvers)
@pytest.mark.parametrize("path_method", path_methods)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_sparse_input(
    global_dtype, eigen_solver, path_method, global_random_seed, csr_container
):
    # TODO: compare results on dense and sparse data as proposed in:
    # https://github.com/scikit-learn/scikit-learn/pull/23585#discussion_r968388186
    X = csr_container(
        sparse_rand(
            100,
            3,
            density=0.1,
            format="csr",
            dtype=global_dtype,
            random_state=global_random_seed,
        )
    )

    iso_dense = manifold.Isomap(
        n_components=2,
        eigen_solver=eigen_solver,
        path_method=path_method,
        n_neighbors=8,
    )
    iso_sparse = clone(iso_dense)

    X_trans_dense = iso_dense.fit_transform(X.toarray())
    X_trans_sparse = iso_sparse.fit_transform(X)

    assert_allclose(X_trans_sparse, X_trans_dense, rtol=1e-4, atol=1e-4)


def test_isomap_fit_precomputed_radius_graph(global_dtype):
    # Isomap.fit_transform must yield similar result when using
    # a precomputed distance matrix.

    X, y = datasets.make_s_curve(200, random_state=0)
    X = X.astype(global_dtype, copy=False)
    radius = 10

    g = neighbors.radius_neighbors_graph(X, radius=radius, mode="distance")
    isomap = manifold.Isomap(n_neighbors=None, radius=radius, metric="precomputed")
    isomap.fit(g)
    precomputed_result = isomap.embedding_

    isomap = manifold.Isomap(n_neighbors=None, radius=radius, metric="minkowski")
    result = isomap.fit_transform(X)
    atol = 1e-5 if global_dtype == np.float32 else 0
    assert_allclose(precomputed_result, result, atol=atol)


def test_isomap_fitted_attributes_dtype(global_dtype):
    """Check that the fitted attributes are stored accordingly to the
    data type of X."""
    iso = manifold.Isomap(n_neighbors=2)

    X = np.array([[1, 2], [3, 4], [5, 6]], dtype=global_dtype)

    iso.fit(X)

    assert iso.dist_matrix_.dtype == global_dtype
    assert iso.embedding_.dtype == global_dtype


def test_isomap_dtype_equivalence():
    """Check the equivalence of the results with 32 and 64 bits input."""
    iso_32 = manifold.Isomap(n_neighbors=2)
    X_32 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float32)
    iso_32.fit(X_32)

    iso_64 = manifold.Isomap(n_neighbors=2)
    X_64 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float64)
    iso_64.fit(X_64)

    assert_allclose(iso_32.dist_matrix_, iso_64.dist_matrix_)


def test_isomap_raise_error_when_neighbor_and_radius_both_set():
    # Isomap.fit_transform must raise a ValueError if
    # radius and n_neighbors are provided.

    X, _ = datasets.load_digits(return_X_y=True)
    isomap = manifold.Isomap(n_neighbors=3, radius=5.5)
    msg = "Both n_neighbors and radius are provided"
    with pytest.raises(ValueError, match=msg):
        isomap.fit_transform(X)


def test_multiple_connected_components():
    # Test that a warning is raised when the graph has multiple components
    X = np.array([0, 1, 2, 5, 6, 7])[:, None]
    with pytest.warns(UserWarning, match="number of connected components"):
        manifold.Isomap(n_neighbors=2).fit(X)


def test_multiple_connected_components_metric_precomputed(global_dtype):
    # Test that an error is raised when the graph has multiple components
    # and when X is a precomputed neighbors graph.
    X = np.array([0, 1, 2, 5, 6, 7])[:, None].astype(global_dtype, copy=False)

    # works with a precomputed distance matrix (dense)
    X_distances = pairwise_distances(X)
    with pytest.warns(UserWarning, match="number of connected components"):
        manifold.Isomap(n_neighbors=1, metric="precomputed").fit(X_distances)

    # does not work with a precomputed neighbors graph (sparse)
    X_graph = neighbors.kneighbors_graph(X, n_neighbors=2, mode="distance")
    with pytest.raises(RuntimeError, match="number of connected components"):
        manifold.Isomap(n_neighbors=1, metric="precomputed").fit(X_graph)


def test_get_feature_names_out():
    """Check get_feature_names_out for Isomap."""
    X, y = make_blobs(random_state=0, n_features=4)
    n_components = 2

    iso = manifold.Isomap(n_components=n_components)
    iso.fit_transform(X)
    names = iso.get_feature_names_out()
    assert_array_equal([f"isomap{i}" for i in range(n_components)], names)