File size: 40,193 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 |
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
from collections import namedtuple
from numbers import Integral, Real
from time import time
import numpy as np
from scipy import stats
from ..base import _fit_context, clone
from ..exceptions import ConvergenceWarning
from ..preprocessing import normalize
from ..utils import _safe_indexing, check_array, check_random_state
from ..utils._indexing import _safe_assign
from ..utils._mask import _get_mask
from ..utils._missing import is_scalar_nan
from ..utils._param_validation import HasMethods, Interval, StrOptions
from ..utils.metadata_routing import (
MetadataRouter,
MethodMapping,
_raise_for_params,
process_routing,
)
from ..utils.validation import (
FLOAT_DTYPES,
_check_feature_names_in,
_num_samples,
check_is_fitted,
validate_data,
)
from ._base import SimpleImputer, _BaseImputer, _check_inputs_dtype
_ImputerTriplet = namedtuple(
"_ImputerTriplet", ["feat_idx", "neighbor_feat_idx", "estimator"]
)
def _assign_where(X1, X2, cond):
"""Assign X2 to X1 where cond is True.
Parameters
----------
X1 : ndarray or dataframe of shape (n_samples, n_features)
Data.
X2 : ndarray of shape (n_samples, n_features)
Data to be assigned.
cond : ndarray of shape (n_samples, n_features)
Boolean mask to assign data.
"""
if hasattr(X1, "mask"): # pandas dataframes
X1.mask(cond=cond, other=X2, inplace=True)
else: # ndarrays
X1[cond] = X2[cond]
class IterativeImputer(_BaseImputer):
"""Multivariate imputer that estimates each feature from all the others.
A strategy for imputing missing values by modeling each feature with
missing values as a function of other features in a round-robin fashion.
Read more in the :ref:`User Guide <iterative_imputer>`.
.. versionadded:: 0.21
.. note::
This estimator is still **experimental** for now: the predictions
and the API might change without any deprecation cycle. To use it,
you need to explicitly import `enable_iterative_imputer`::
>>> # explicitly require this experimental feature
>>> from sklearn.experimental import enable_iterative_imputer # noqa
>>> # now you can import normally from sklearn.impute
>>> from sklearn.impute import IterativeImputer
Parameters
----------
estimator : estimator object, default=BayesianRidge()
The estimator to use at each step of the round-robin imputation.
If `sample_posterior=True`, the estimator must support
`return_std` in its `predict` method.
missing_values : int or np.nan, default=np.nan
The placeholder for the missing values. All occurrences of
`missing_values` will be imputed. For pandas' dataframes with
nullable integer dtypes with missing values, `missing_values`
should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`.
sample_posterior : bool, default=False
Whether to sample from the (Gaussian) predictive posterior of the
fitted estimator for each imputation. Estimator must support
`return_std` in its `predict` method if set to `True`. Set to
`True` if using `IterativeImputer` for multiple imputations.
max_iter : int, default=10
Maximum number of imputation rounds to perform before returning the
imputations computed during the final round. A round is a single
imputation of each feature with missing values. The stopping criterion
is met once `max(abs(X_t - X_{t-1}))/max(abs(X[known_vals])) < tol`,
where `X_t` is `X` at iteration `t`. Note that early stopping is only
applied if `sample_posterior=False`.
tol : float, default=1e-3
Tolerance of the stopping condition.
n_nearest_features : int, default=None
Number of other features to use to estimate the missing values of
each feature column. Nearness between features is measured using
the absolute correlation coefficient between each feature pair (after
initial imputation). To ensure coverage of features throughout the
imputation process, the neighbor features are not necessarily nearest,
but are drawn with probability proportional to correlation for each
imputed target feature. Can provide significant speed-up when the
number of features is huge. If `None`, all features will be used.
initial_strategy : {'mean', 'median', 'most_frequent', 'constant'}, \
default='mean'
Which strategy to use to initialize the missing values. Same as the
`strategy` parameter in :class:`~sklearn.impute.SimpleImputer`.
fill_value : str or numerical value, default=None
When `strategy="constant"`, `fill_value` is used to replace all
occurrences of missing_values. For string or object data types,
`fill_value` must be a string.
If `None`, `fill_value` will be 0 when imputing numerical
data and "missing_value" for strings or object data types.
.. versionadded:: 1.3
imputation_order : {'ascending', 'descending', 'roman', 'arabic', \
'random'}, default='ascending'
The order in which the features will be imputed. Possible values:
- `'ascending'`: From features with fewest missing values to most.
- `'descending'`: From features with most missing values to fewest.
- `'roman'`: Left to right.
- `'arabic'`: Right to left.
- `'random'`: A random order for each round.
skip_complete : bool, default=False
If `True` then features with missing values during :meth:`transform`
which did not have any missing values during :meth:`fit` will be
imputed with the initial imputation method only. Set to `True` if you
have many features with no missing values at both :meth:`fit` and
:meth:`transform` time to save compute.
min_value : float or array-like of shape (n_features,), default=-np.inf
Minimum possible imputed value. Broadcast to shape `(n_features,)` if
scalar. If array-like, expects shape `(n_features,)`, one min value for
each feature. The default is `-np.inf`.
.. versionchanged:: 0.23
Added support for array-like.
max_value : float or array-like of shape (n_features,), default=np.inf
Maximum possible imputed value. Broadcast to shape `(n_features,)` if
scalar. If array-like, expects shape `(n_features,)`, one max value for
each feature. The default is `np.inf`.
.. versionchanged:: 0.23
Added support for array-like.
verbose : int, default=0
Verbosity flag, controls the debug messages that are issued
as functions are evaluated. The higher, the more verbose. Can be 0, 1,
or 2.
random_state : int, RandomState instance or None, default=None
The seed of the pseudo random number generator to use. Randomizes
selection of estimator features if `n_nearest_features` is not `None`,
the `imputation_order` if `random`, and the sampling from posterior if
`sample_posterior=True`. Use an integer for determinism.
See :term:`the Glossary <random_state>`.
add_indicator : bool, default=False
If `True`, a :class:`MissingIndicator` transform will stack onto output
of the imputer's transform. This allows a predictive estimator
to account for missingness despite imputation. If a feature has no
missing values at fit/train time, the feature won't appear on
the missing indicator even if there are missing values at
transform/test time.
keep_empty_features : bool, default=False
If True, features that consist exclusively of missing values when
`fit` is called are returned in results when `transform` is called.
The imputed value is always `0` except when
`initial_strategy="constant"` in which case `fill_value` will be
used instead.
.. versionadded:: 1.2
Attributes
----------
initial_imputer_ : object of type :class:`~sklearn.impute.SimpleImputer`
Imputer used to initialize the missing values.
imputation_sequence_ : list of tuples
Each tuple has `(feat_idx, neighbor_feat_idx, estimator)`, where
`feat_idx` is the current feature to be imputed,
`neighbor_feat_idx` is the array of other features used to impute the
current feature, and `estimator` is the trained estimator used for
the imputation. Length is `self.n_features_with_missing_ *
self.n_iter_`.
n_iter_ : int
Number of iteration rounds that occurred. Will be less than
`self.max_iter` if early stopping criterion was reached.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
n_features_with_missing_ : int
Number of features with missing values.
indicator_ : :class:`~sklearn.impute.MissingIndicator`
Indicator used to add binary indicators for missing values.
`None` if `add_indicator=False`.
random_state_ : RandomState instance
RandomState instance that is generated either from a seed, the random
number generator or by `np.random`.
See Also
--------
SimpleImputer : Univariate imputer for completing missing values
with simple strategies.
KNNImputer : Multivariate imputer that estimates missing features using
nearest samples.
Notes
-----
To support imputation in inductive mode we store each feature's estimator
during the :meth:`fit` phase, and predict without refitting (in order)
during the :meth:`transform` phase.
Features which contain all missing values at :meth:`fit` are discarded upon
:meth:`transform`.
Using defaults, the imputer scales in :math:`\\mathcal{O}(knp^3\\min(n,p))`
where :math:`k` = `max_iter`, :math:`n` the number of samples and
:math:`p` the number of features. It thus becomes prohibitively costly when
the number of features increases. Setting
`n_nearest_features << n_features`, `skip_complete=True` or increasing `tol`
can help to reduce its computational cost.
Depending on the nature of missing values, simple imputers can be
preferable in a prediction context.
References
----------
.. [1] `Stef van Buuren, Karin Groothuis-Oudshoorn (2011). "mice:
Multivariate Imputation by Chained Equations in R". Journal of
Statistical Software 45: 1-67.
<https://www.jstatsoft.org/article/view/v045i03>`_
.. [2] `S. F. Buck, (1960). "A Method of Estimation of Missing Values in
Multivariate Data Suitable for use with an Electronic Computer".
Journal of the Royal Statistical Society 22(2): 302-306.
<https://www.jstor.org/stable/2984099>`_
Examples
--------
>>> import numpy as np
>>> from sklearn.experimental import enable_iterative_imputer
>>> from sklearn.impute import IterativeImputer
>>> imp_mean = IterativeImputer(random_state=0)
>>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])
IterativeImputer(random_state=0)
>>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]
>>> imp_mean.transform(X)
array([[ 6.9584..., 2. , 3. ],
[ 4. , 2.6000..., 6. ],
[10. , 4.9999..., 9. ]])
For a more detailed example see
:ref:`sphx_glr_auto_examples_impute_plot_missing_values.py` or
:ref:`sphx_glr_auto_examples_impute_plot_iterative_imputer_variants_comparison.py`.
"""
_parameter_constraints: dict = {
**_BaseImputer._parameter_constraints,
"estimator": [None, HasMethods(["fit", "predict"])],
"sample_posterior": ["boolean"],
"max_iter": [Interval(Integral, 0, None, closed="left")],
"tol": [Interval(Real, 0, None, closed="left")],
"n_nearest_features": [None, Interval(Integral, 1, None, closed="left")],
"initial_strategy": [
StrOptions({"mean", "median", "most_frequent", "constant"})
],
"fill_value": "no_validation", # any object is valid
"imputation_order": [
StrOptions({"ascending", "descending", "roman", "arabic", "random"})
],
"skip_complete": ["boolean"],
"min_value": [None, Interval(Real, None, None, closed="both"), "array-like"],
"max_value": [None, Interval(Real, None, None, closed="both"), "array-like"],
"verbose": ["verbose"],
"random_state": ["random_state"],
}
def __init__(
self,
estimator=None,
*,
missing_values=np.nan,
sample_posterior=False,
max_iter=10,
tol=1e-3,
n_nearest_features=None,
initial_strategy="mean",
fill_value=None,
imputation_order="ascending",
skip_complete=False,
min_value=-np.inf,
max_value=np.inf,
verbose=0,
random_state=None,
add_indicator=False,
keep_empty_features=False,
):
super().__init__(
missing_values=missing_values,
add_indicator=add_indicator,
keep_empty_features=keep_empty_features,
)
self.estimator = estimator
self.sample_posterior = sample_posterior
self.max_iter = max_iter
self.tol = tol
self.n_nearest_features = n_nearest_features
self.initial_strategy = initial_strategy
self.fill_value = fill_value
self.imputation_order = imputation_order
self.skip_complete = skip_complete
self.min_value = min_value
self.max_value = max_value
self.verbose = verbose
self.random_state = random_state
def _impute_one_feature(
self,
X_filled,
mask_missing_values,
feat_idx,
neighbor_feat_idx,
estimator=None,
fit_mode=True,
params=None,
):
"""Impute a single feature from the others provided.
This function predicts the missing values of one of the features using
the current estimates of all the other features. The `estimator` must
support `return_std=True` in its `predict` method for this function
to work.
Parameters
----------
X_filled : ndarray
Input data with the most recent imputations.
mask_missing_values : ndarray
Input data's missing indicator matrix.
feat_idx : int
Index of the feature currently being imputed.
neighbor_feat_idx : ndarray
Indices of the features to be used in imputing `feat_idx`.
estimator : object
The estimator to use at this step of the round-robin imputation.
If `sample_posterior=True`, the estimator must support
`return_std` in its `predict` method.
If None, it will be cloned from self._estimator.
fit_mode : boolean, default=True
Whether to fit and predict with the estimator or just predict.
params : dict
Additional params routed to the individual estimator.
Returns
-------
X_filled : ndarray
Input data with `X_filled[missing_row_mask, feat_idx]` updated.
estimator : estimator with sklearn API
The fitted estimator used to impute
`X_filled[missing_row_mask, feat_idx]`.
"""
if estimator is None and fit_mode is False:
raise ValueError(
"If fit_mode is False, then an already-fitted "
"estimator should be passed in."
)
if estimator is None:
estimator = clone(self._estimator)
missing_row_mask = mask_missing_values[:, feat_idx]
if fit_mode:
X_train = _safe_indexing(
_safe_indexing(X_filled, neighbor_feat_idx, axis=1),
~missing_row_mask,
axis=0,
)
y_train = _safe_indexing(
_safe_indexing(X_filled, feat_idx, axis=1),
~missing_row_mask,
axis=0,
)
estimator.fit(X_train, y_train, **params)
# if no missing values, don't predict
if np.sum(missing_row_mask) == 0:
return X_filled, estimator
# get posterior samples if there is at least one missing value
X_test = _safe_indexing(
_safe_indexing(X_filled, neighbor_feat_idx, axis=1),
missing_row_mask,
axis=0,
)
if self.sample_posterior:
mus, sigmas = estimator.predict(X_test, return_std=True)
imputed_values = np.zeros(mus.shape, dtype=X_filled.dtype)
# two types of problems: (1) non-positive sigmas
# (2) mus outside legal range of min_value and max_value
# (results in inf sample)
positive_sigmas = sigmas > 0
imputed_values[~positive_sigmas] = mus[~positive_sigmas]
mus_too_low = mus < self._min_value[feat_idx]
imputed_values[mus_too_low] = self._min_value[feat_idx]
mus_too_high = mus > self._max_value[feat_idx]
imputed_values[mus_too_high] = self._max_value[feat_idx]
# the rest can be sampled without statistical issues
inrange_mask = positive_sigmas & ~mus_too_low & ~mus_too_high
mus = mus[inrange_mask]
sigmas = sigmas[inrange_mask]
a = (self._min_value[feat_idx] - mus) / sigmas
b = (self._max_value[feat_idx] - mus) / sigmas
truncated_normal = stats.truncnorm(a=a, b=b, loc=mus, scale=sigmas)
imputed_values[inrange_mask] = truncated_normal.rvs(
random_state=self.random_state_
)
else:
imputed_values = estimator.predict(X_test)
imputed_values = np.clip(
imputed_values, self._min_value[feat_idx], self._max_value[feat_idx]
)
# update the feature
_safe_assign(
X_filled,
imputed_values,
row_indexer=missing_row_mask,
column_indexer=feat_idx,
)
return X_filled, estimator
def _get_neighbor_feat_idx(self, n_features, feat_idx, abs_corr_mat):
"""Get a list of other features to predict `feat_idx`.
If `self.n_nearest_features` is less than or equal to the total
number of features, then use a probability proportional to the absolute
correlation between `feat_idx` and each other feature to randomly
choose a subsample of the other features (without replacement).
Parameters
----------
n_features : int
Number of features in `X`.
feat_idx : int
Index of the feature currently being imputed.
abs_corr_mat : ndarray, shape (n_features, n_features)
Absolute correlation matrix of `X`. The diagonal has been zeroed
out and each feature has been normalized to sum to 1. Can be None.
Returns
-------
neighbor_feat_idx : array-like
The features to use to impute `feat_idx`.
"""
if self.n_nearest_features is not None and self.n_nearest_features < n_features:
p = abs_corr_mat[:, feat_idx]
neighbor_feat_idx = self.random_state_.choice(
np.arange(n_features), self.n_nearest_features, replace=False, p=p
)
else:
inds_left = np.arange(feat_idx)
inds_right = np.arange(feat_idx + 1, n_features)
neighbor_feat_idx = np.concatenate((inds_left, inds_right))
return neighbor_feat_idx
def _get_ordered_idx(self, mask_missing_values):
"""Decide in what order we will update the features.
As a homage to the MICE R package, we will have 4 main options of
how to order the updates, and use a random order if anything else
is specified.
Also, this function skips features which have no missing values.
Parameters
----------
mask_missing_values : array-like, shape (n_samples, n_features)
Input data's missing indicator matrix, where `n_samples` is the
number of samples and `n_features` is the number of features.
Returns
-------
ordered_idx : ndarray, shape (n_features,)
The order in which to impute the features.
"""
frac_of_missing_values = mask_missing_values.mean(axis=0)
if self.skip_complete:
missing_values_idx = np.flatnonzero(frac_of_missing_values)
else:
missing_values_idx = np.arange(np.shape(frac_of_missing_values)[0])
if self.imputation_order == "roman":
ordered_idx = missing_values_idx
elif self.imputation_order == "arabic":
ordered_idx = missing_values_idx[::-1]
elif self.imputation_order == "ascending":
n = len(frac_of_missing_values) - len(missing_values_idx)
ordered_idx = np.argsort(frac_of_missing_values, kind="mergesort")[n:]
elif self.imputation_order == "descending":
n = len(frac_of_missing_values) - len(missing_values_idx)
ordered_idx = np.argsort(frac_of_missing_values, kind="mergesort")[n:][::-1]
elif self.imputation_order == "random":
ordered_idx = missing_values_idx
self.random_state_.shuffle(ordered_idx)
return ordered_idx
def _get_abs_corr_mat(self, X_filled, tolerance=1e-6):
"""Get absolute correlation matrix between features.
Parameters
----------
X_filled : ndarray, shape (n_samples, n_features)
Input data with the most recent imputations.
tolerance : float, default=1e-6
`abs_corr_mat` can have nans, which will be replaced
with `tolerance`.
Returns
-------
abs_corr_mat : ndarray, shape (n_features, n_features)
Absolute correlation matrix of `X` at the beginning of the
current round. The diagonal has been zeroed out and each feature's
absolute correlations with all others have been normalized to sum
to 1.
"""
n_features = X_filled.shape[1]
if self.n_nearest_features is None or self.n_nearest_features >= n_features:
return None
with np.errstate(invalid="ignore"):
# if a feature in the neighborhood has only a single value
# (e.g., categorical feature), the std. dev. will be null and
# np.corrcoef will raise a warning due to a division by zero
abs_corr_mat = np.abs(np.corrcoef(X_filled.T))
# np.corrcoef is not defined for features with zero std
abs_corr_mat[np.isnan(abs_corr_mat)] = tolerance
# ensures exploration, i.e. at least some probability of sampling
np.clip(abs_corr_mat, tolerance, None, out=abs_corr_mat)
# features are not their own neighbors
np.fill_diagonal(abs_corr_mat, 0)
# needs to sum to 1 for np.random.choice sampling
abs_corr_mat = normalize(abs_corr_mat, norm="l1", axis=0, copy=False)
return abs_corr_mat
def _initial_imputation(self, X, in_fit=False):
"""Perform initial imputation for input `X`.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Input data, where `n_samples` is the number of samples and
`n_features` is the number of features.
in_fit : bool, default=False
Whether function is called in :meth:`fit`.
Returns
-------
Xt : ndarray of shape (n_samples, n_features)
Input data, where `n_samples` is the number of samples and
`n_features` is the number of features.
X_filled : ndarray of shape (n_samples, n_features)
Input data with the most recent imputations.
mask_missing_values : ndarray of shape (n_samples, n_features)
Input data's missing indicator matrix, where `n_samples` is the
number of samples and `n_features` is the number of features,
masked by non-missing features.
X_missing_mask : ndarray, shape (n_samples, n_features)
Input data's mask matrix indicating missing datapoints, where
`n_samples` is the number of samples and `n_features` is the
number of features.
"""
if is_scalar_nan(self.missing_values):
ensure_all_finite = "allow-nan"
else:
ensure_all_finite = True
X = validate_data(
self,
X,
dtype=FLOAT_DTYPES,
order="F",
reset=in_fit,
ensure_all_finite=ensure_all_finite,
)
_check_inputs_dtype(X, self.missing_values)
X_missing_mask = _get_mask(X, self.missing_values)
mask_missing_values = X_missing_mask.copy()
# TODO (1.8): remove this once the deprecation is removed. In the meantime,
# we need to catch the warning to avoid false positives.
catch_warning = (
self.initial_strategy == "constant" and not self.keep_empty_features
)
if self.initial_imputer_ is None:
self.initial_imputer_ = SimpleImputer(
missing_values=self.missing_values,
strategy=self.initial_strategy,
fill_value=self.fill_value,
keep_empty_features=self.keep_empty_features,
).set_output(transform="default")
# TODO (1.8): remove this once the deprecation is removed to keep only
# the code in the else case.
if catch_warning:
with warnings.catch_warnings():
warnings.simplefilter("ignore", FutureWarning)
X_filled = self.initial_imputer_.fit_transform(X)
else:
X_filled = self.initial_imputer_.fit_transform(X)
else:
# TODO (1.8): remove this once the deprecation is removed to keep only
# the code in the else case.
if catch_warning:
with warnings.catch_warnings():
warnings.simplefilter("ignore", FutureWarning)
X_filled = self.initial_imputer_.transform(X)
else:
X_filled = self.initial_imputer_.transform(X)
if in_fit:
self._is_empty_feature = np.all(mask_missing_values, axis=0)
if not self.keep_empty_features:
# drop empty features
Xt = X[:, ~self._is_empty_feature]
mask_missing_values = mask_missing_values[:, ~self._is_empty_feature]
if self.initial_imputer_.get_params()["strategy"] == "constant":
# The constant strategy has a specific behavior and preserve empty
# features even with ``keep_empty_features=False``. We need to drop
# the column for consistency.
# TODO (1.8): remove this `if` branch once the following issue is
# addressed:
# https://github.com/scikit-learn/scikit-learn/issues/29827
X_filled = X_filled[:, ~self._is_empty_feature]
else:
# mark empty features as not missing and keep the original
# imputation
mask_missing_values[:, self._is_empty_feature] = False
Xt = X
Xt[:, self._is_empty_feature] = X_filled[:, self._is_empty_feature]
return Xt, X_filled, mask_missing_values, X_missing_mask
@staticmethod
def _validate_limit(
limit, limit_type, n_features, is_empty_feature, keep_empty_feature
):
"""Validate the limits (min/max) of the feature values.
Converts scalar min/max limits to vectors of shape `(n_features,)`.
Parameters
----------
limit: scalar or array-like
The user-specified limit (i.e, min_value or max_value).
limit_type: {'max', 'min'}
Type of limit to validate.
n_features: int
Number of features in the dataset.
is_empty_feature: ndarray, shape (n_features, )
Mask array indicating empty feature imputer has seen during fit.
keep_empty_feature: bool
If False, remove empty-feature indices from the limit.
Returns
-------
limit: ndarray, shape(n_features,)
Array of limits, one for each feature.
"""
n_features_in = _num_samples(is_empty_feature)
if (
limit is not None
and not np.isscalar(limit)
and _num_samples(limit) != n_features_in
):
raise ValueError(
f"'{limit_type}_value' should be of shape ({n_features_in},) when an"
f" array-like is provided. Got {len(limit)}, instead."
)
limit_bound = np.inf if limit_type == "max" else -np.inf
limit = limit_bound if limit is None else limit
if np.isscalar(limit):
limit = np.full(n_features, limit)
limit = check_array(limit, ensure_all_finite=False, copy=False, ensure_2d=False)
# Make sure to remove the empty feature elements from the bounds
if not keep_empty_feature and len(limit) == len(is_empty_feature):
limit = limit[~is_empty_feature]
return limit
@_fit_context(
# IterativeImputer.estimator is not validated yet
prefer_skip_nested_validation=False
)
def fit_transform(self, X, y=None, **params):
"""Fit the imputer on `X` and return the transformed `X`.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Input data, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : Ignored
Not used, present for API consistency by convention.
**params : dict
Parameters routed to the `fit` method of the sub-estimator via the
metadata routing API.
.. versionadded:: 1.5
Only available if
`sklearn.set_config(enable_metadata_routing=True)` is set. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
Xt : array-like, shape (n_samples, n_features)
The imputed input data.
"""
_raise_for_params(params, self, "fit")
routed_params = process_routing(
self,
"fit",
**params,
)
self.random_state_ = getattr(
self, "random_state_", check_random_state(self.random_state)
)
if self.estimator is None:
from ..linear_model import BayesianRidge
self._estimator = BayesianRidge()
else:
self._estimator = clone(self.estimator)
self.imputation_sequence_ = []
self.initial_imputer_ = None
X, Xt, mask_missing_values, complete_mask = self._initial_imputation(
X, in_fit=True
)
super()._fit_indicator(complete_mask)
X_indicator = super()._transform_indicator(complete_mask)
if self.max_iter == 0 or np.all(mask_missing_values):
self.n_iter_ = 0
return super()._concatenate_indicator(Xt, X_indicator)
# Edge case: a single feature, we return the initial imputation.
if Xt.shape[1] == 1:
self.n_iter_ = 0
return super()._concatenate_indicator(Xt, X_indicator)
self._min_value = self._validate_limit(
self.min_value,
"min",
X.shape[1],
self._is_empty_feature,
self.keep_empty_features,
)
self._max_value = self._validate_limit(
self.max_value,
"max",
X.shape[1],
self._is_empty_feature,
self.keep_empty_features,
)
if not np.all(np.greater(self._max_value, self._min_value)):
raise ValueError("One (or more) features have min_value >= max_value.")
# order in which to impute
# note this is probably too slow for large feature data (d > 100000)
# and a better way would be good.
# see: https://goo.gl/KyCNwj and subsequent comments
ordered_idx = self._get_ordered_idx(mask_missing_values)
self.n_features_with_missing_ = len(ordered_idx)
abs_corr_mat = self._get_abs_corr_mat(Xt)
n_samples, n_features = Xt.shape
if self.verbose > 0:
print("[IterativeImputer] Completing matrix with shape %s" % (X.shape,))
start_t = time()
if not self.sample_posterior:
Xt_previous = Xt.copy()
normalized_tol = self.tol * np.max(np.abs(X[~mask_missing_values]))
for self.n_iter_ in range(1, self.max_iter + 1):
if self.imputation_order == "random":
ordered_idx = self._get_ordered_idx(mask_missing_values)
for feat_idx in ordered_idx:
neighbor_feat_idx = self._get_neighbor_feat_idx(
n_features, feat_idx, abs_corr_mat
)
Xt, estimator = self._impute_one_feature(
Xt,
mask_missing_values,
feat_idx,
neighbor_feat_idx,
estimator=None,
fit_mode=True,
params=routed_params.estimator.fit,
)
estimator_triplet = _ImputerTriplet(
feat_idx, neighbor_feat_idx, estimator
)
self.imputation_sequence_.append(estimator_triplet)
if self.verbose > 1:
print(
"[IterativeImputer] Ending imputation round "
"%d/%d, elapsed time %0.2f"
% (self.n_iter_, self.max_iter, time() - start_t)
)
if not self.sample_posterior:
inf_norm = np.linalg.norm(Xt - Xt_previous, ord=np.inf, axis=None)
if self.verbose > 0:
print(
"[IterativeImputer] Change: {}, scaled tolerance: {} ".format(
inf_norm, normalized_tol
)
)
if inf_norm < normalized_tol:
if self.verbose > 0:
print("[IterativeImputer] Early stopping criterion reached.")
break
Xt_previous = Xt.copy()
else:
if not self.sample_posterior:
warnings.warn(
"[IterativeImputer] Early stopping criterion not reached.",
ConvergenceWarning,
)
_assign_where(Xt, X, cond=~mask_missing_values)
return super()._concatenate_indicator(Xt, X_indicator)
def transform(self, X):
"""Impute all missing values in `X`.
Note that this is stochastic, and that if `random_state` is not fixed,
repeated calls, or permuted input, results will differ.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input data to complete.
Returns
-------
Xt : array-like, shape (n_samples, n_features)
The imputed input data.
"""
check_is_fitted(self)
X, Xt, mask_missing_values, complete_mask = self._initial_imputation(
X, in_fit=False
)
X_indicator = super()._transform_indicator(complete_mask)
if self.n_iter_ == 0 or np.all(mask_missing_values):
return super()._concatenate_indicator(Xt, X_indicator)
imputations_per_round = len(self.imputation_sequence_) // self.n_iter_
i_rnd = 0
if self.verbose > 0:
print("[IterativeImputer] Completing matrix with shape %s" % (X.shape,))
start_t = time()
for it, estimator_triplet in enumerate(self.imputation_sequence_):
Xt, _ = self._impute_one_feature(
Xt,
mask_missing_values,
estimator_triplet.feat_idx,
estimator_triplet.neighbor_feat_idx,
estimator=estimator_triplet.estimator,
fit_mode=False,
)
if not (it + 1) % imputations_per_round:
if self.verbose > 1:
print(
"[IterativeImputer] Ending imputation round "
"%d/%d, elapsed time %0.2f"
% (i_rnd + 1, self.n_iter_, time() - start_t)
)
i_rnd += 1
_assign_where(Xt, X, cond=~mask_missing_values)
return super()._concatenate_indicator(Xt, X_indicator)
def fit(self, X, y=None, **fit_params):
"""Fit the imputer on `X` and return self.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Input data, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : Ignored
Not used, present for API consistency by convention.
**fit_params : dict
Parameters routed to the `fit` method of the sub-estimator via the
metadata routing API.
.. versionadded:: 1.5
Only available if
`sklearn.set_config(enable_metadata_routing=True)` is set. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
Fitted estimator.
"""
self.fit_transform(X, **fit_params)
return self
def get_feature_names_out(self, input_features=None):
"""Get output feature names for transformation.
Parameters
----------
input_features : array-like of str or None, default=None
Input features.
- If `input_features` is `None`, then `feature_names_in_` is
used as feature names in. If `feature_names_in_` is not defined,
then the following input feature names are generated:
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
- If `input_features` is an array-like, then `input_features` must
match `feature_names_in_` if `feature_names_in_` is defined.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
"""
check_is_fitted(self, "n_features_in_")
input_features = _check_feature_names_in(self, input_features)
names = self.initial_imputer_.get_feature_names_out(input_features)
return self._concatenate_indicator_feature_names_out(names, input_features)
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.5
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = MetadataRouter(owner=self.__class__.__name__).add(
estimator=self.estimator,
method_mapping=MethodMapping().add(callee="fit", caller="fit"),
)
return router
|