File size: 7,069 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import re

import numpy as np
import pytest
from numpy.testing import assert_array_equal

from sklearn import config_context
from sklearn.base import (
    BaseEstimator,
    clone,
    is_classifier,
    is_clusterer,
    is_outlier_detector,
    is_regressor,
)
from sklearn.cluster import KMeans
from sklearn.compose import make_column_transformer
from sklearn.datasets import make_classification, make_regression
from sklearn.exceptions import NotFittedError, UnsetMetadataPassedError
from sklearn.frozen import FrozenEstimator
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.neighbors import LocalOutlierFactor
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler, StandardScaler
from sklearn.utils._testing import set_random_state
from sklearn.utils.validation import check_is_fitted


@pytest.fixture
def regression_dataset():
    return make_regression()


@pytest.fixture
def classification_dataset():
    return make_classification()


@pytest.mark.parametrize(
    "estimator, dataset",
    [
        (LinearRegression(), "regression_dataset"),
        (LogisticRegression(), "classification_dataset"),
        (make_pipeline(StandardScaler(), LinearRegression()), "regression_dataset"),
        (
            make_pipeline(StandardScaler(), LogisticRegression()),
            "classification_dataset",
        ),
        (StandardScaler(), "regression_dataset"),
        (KMeans(), "regression_dataset"),
        (LocalOutlierFactor(), "regression_dataset"),
        (
            make_column_transformer(
                (StandardScaler(), [0]),
                (RobustScaler(), [1]),
            ),
            "regression_dataset",
        ),
    ],
)
@pytest.mark.parametrize(
    "method",
    ["predict", "predict_proba", "predict_log_proba", "decision_function", "transform"],
)
def test_frozen_methods(estimator, dataset, request, method):
    """Test that frozen.fit doesn't do anything, and that all other methods are
    exposed by the frozen estimator and return the same values as the estimator.
    """
    X, y = request.getfixturevalue(dataset)
    set_random_state(estimator)
    estimator.fit(X, y)
    frozen = FrozenEstimator(estimator)
    # this should be no-op
    frozen.fit([[1]], [1])

    if hasattr(estimator, method):
        assert_array_equal(getattr(estimator, method)(X), getattr(frozen, method)(X))

    assert is_classifier(estimator) == is_classifier(frozen)
    assert is_regressor(estimator) == is_regressor(frozen)
    assert is_clusterer(estimator) == is_clusterer(frozen)
    assert is_outlier_detector(estimator) == is_outlier_detector(frozen)


@config_context(enable_metadata_routing=True)
def test_frozen_metadata_routing(regression_dataset):
    """Test that metadata routing works with frozen estimators."""

    class ConsumesMetadata(BaseEstimator):
        def __init__(self, on_fit=None, on_predict=None):
            self.on_fit = on_fit
            self.on_predict = on_predict

        def fit(self, X, y, metadata=None):
            if self.on_fit:
                assert metadata is not None
            self.fitted_ = True
            return self

        def predict(self, X, metadata=None):
            if self.on_predict:
                assert metadata is not None
            return np.ones(len(X))

    X, y = regression_dataset
    pipeline = make_pipeline(
        ConsumesMetadata(on_fit=True, on_predict=True)
        .set_fit_request(metadata=True)
        .set_predict_request(metadata=True)
    )

    pipeline.fit(X, y, metadata="test")
    frozen = FrozenEstimator(pipeline)
    pipeline.predict(X, metadata="test")
    frozen.predict(X, metadata="test")

    frozen["consumesmetadata"].set_predict_request(metadata=False)
    with pytest.raises(
        TypeError,
        match=re.escape(
            "Pipeline.predict got unexpected argument(s) {'metadata'}, which are not "
            "routed to any object."
        ),
    ):
        frozen.predict(X, metadata="test")

    frozen["consumesmetadata"].set_predict_request(metadata=None)
    with pytest.raises(UnsetMetadataPassedError):
        frozen.predict(X, metadata="test")


def test_composite_fit(classification_dataset):
    """Test that calling fit_transform and fit_predict doesn't call fit."""

    class Estimator(BaseEstimator):
        def fit(self, X, y):
            try:
                self._fit_counter += 1
            except AttributeError:
                self._fit_counter = 1
            return self

        def fit_transform(self, X, y=None):
            # only here to test that it doesn't get called
            ...  # pragma: no cover

        def fit_predict(self, X, y=None):
            # only here to test that it doesn't get called
            ...  # pragma: no cover

    X, y = classification_dataset
    est = Estimator().fit(X, y)
    frozen = FrozenEstimator(est)

    with pytest.raises(AttributeError):
        frozen.fit_predict(X, y)
    with pytest.raises(AttributeError):
        frozen.fit_transform(X, y)

    assert frozen._fit_counter == 1


def test_clone_frozen(regression_dataset):
    """Test that cloning a frozen estimator keeps the frozen state."""
    X, y = regression_dataset
    estimator = LinearRegression().fit(X, y)
    frozen = FrozenEstimator(estimator)
    cloned = clone(frozen)
    assert cloned.estimator is estimator


def test_check_is_fitted(regression_dataset):
    """Test that check_is_fitted works on frozen estimators."""
    X, y = regression_dataset

    estimator = LinearRegression()
    frozen = FrozenEstimator(estimator)
    with pytest.raises(NotFittedError):
        check_is_fitted(frozen)

    estimator = LinearRegression().fit(X, y)
    frozen = FrozenEstimator(estimator)
    check_is_fitted(frozen)


def test_frozen_tags():
    """Test that frozen estimators have the same tags as the original estimator
    except for the skip_test tag."""

    class Estimator(BaseEstimator):
        def __sklearn_tags__(self):
            tags = super().__sklearn_tags__()
            tags.input_tags.categorical = True
            return tags

    estimator = Estimator()
    frozen = FrozenEstimator(estimator)
    frozen_tags = frozen.__sklearn_tags__()
    estimator_tags = estimator.__sklearn_tags__()

    assert frozen_tags._skip_test is True
    assert estimator_tags._skip_test is False

    assert estimator_tags.input_tags.categorical is True
    assert frozen_tags.input_tags.categorical is True


def test_frozen_params():
    """Test that FrozenEstimator only exposes the estimator parameter."""
    est = LogisticRegression()
    frozen = FrozenEstimator(est)

    with pytest.raises(ValueError, match="You cannot set parameters of the inner"):
        frozen.set_params(estimator__C=1)

    assert frozen.get_params() == {"estimator": est}

    other_est = LocalOutlierFactor()
    frozen.set_params(estimator=other_est)
    assert frozen.get_params() == {"estimator": other_est}