File size: 33,490 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
"""Test the stacking classifier and regressor."""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import re
from unittest.mock import Mock

import numpy as np
import pytest
from numpy.testing import assert_array_equal
from scipy import sparse

from sklearn import config_context
from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin, clone
from sklearn.datasets import (
    load_breast_cancer,
    load_diabetes,
    load_iris,
    make_classification,
    make_multilabel_classification,
    make_regression,
)
from sklearn.dummy import DummyClassifier, DummyRegressor
from sklearn.ensemble import (
    RandomForestClassifier,
    RandomForestRegressor,
    StackingClassifier,
    StackingRegressor,
)
from sklearn.exceptions import ConvergenceWarning, NotFittedError
from sklearn.linear_model import (
    LinearRegression,
    LogisticRegression,
    Ridge,
    RidgeClassifier,
)
from sklearn.model_selection import KFold, StratifiedKFold, train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import scale
from sklearn.svm import SVC, LinearSVC, LinearSVR
from sklearn.tests.metadata_routing_common import (
    ConsumingClassifier,
    ConsumingRegressor,
    _Registry,
    check_recorded_metadata,
)
from sklearn.utils._mocking import CheckingClassifier
from sklearn.utils._testing import (
    assert_allclose,
    assert_allclose_dense_sparse,
    ignore_warnings,
)
from sklearn.utils.fixes import COO_CONTAINERS, CSC_CONTAINERS, CSR_CONTAINERS

diabetes = load_diabetes()
X_diabetes, y_diabetes = diabetes.data, diabetes.target
iris = load_iris()
X_iris, y_iris = iris.data, iris.target
X_multilabel, y_multilabel = make_multilabel_classification(
    n_classes=3, random_state=42
)
X_binary, y_binary = make_classification(n_classes=2, random_state=42)


@pytest.mark.parametrize(
    "cv", [3, StratifiedKFold(n_splits=3, shuffle=True, random_state=42)]
)
@pytest.mark.parametrize(
    "final_estimator", [None, RandomForestClassifier(random_state=42)]
)
@pytest.mark.parametrize("passthrough", [False, True])
def test_stacking_classifier_iris(cv, final_estimator, passthrough):
    # prescale the data to avoid convergence warning without using a pipeline
    # for later assert
    X_train, X_test, y_train, y_test = train_test_split(
        scale(X_iris), y_iris, stratify=y_iris, random_state=42
    )
    estimators = [("lr", LogisticRegression()), ("svc", LinearSVC())]
    clf = StackingClassifier(
        estimators=estimators,
        final_estimator=final_estimator,
        cv=cv,
        passthrough=passthrough,
    )
    clf.fit(X_train, y_train)
    clf.predict(X_test)
    clf.predict_proba(X_test)
    assert clf.score(X_test, y_test) > 0.8

    X_trans = clf.transform(X_test)
    expected_column_count = 10 if passthrough else 6
    assert X_trans.shape[1] == expected_column_count
    if passthrough:
        assert_allclose(X_test, X_trans[:, -4:])

    clf.set_params(lr="drop")
    clf.fit(X_train, y_train)
    clf.predict(X_test)
    clf.predict_proba(X_test)
    if final_estimator is None:
        # LogisticRegression has decision_function method
        clf.decision_function(X_test)

    X_trans = clf.transform(X_test)
    expected_column_count_drop = 7 if passthrough else 3
    assert X_trans.shape[1] == expected_column_count_drop
    if passthrough:
        assert_allclose(X_test, X_trans[:, -4:])


def test_stacking_classifier_drop_column_binary_classification():
    # check that a column is dropped in binary classification
    X, y = load_breast_cancer(return_X_y=True)
    X_train, X_test, y_train, _ = train_test_split(
        scale(X), y, stratify=y, random_state=42
    )

    # both classifiers implement 'predict_proba' and will both drop one column
    estimators = [
        ("lr", LogisticRegression()),
        ("rf", RandomForestClassifier(random_state=42)),
    ]
    clf = StackingClassifier(estimators=estimators, cv=3)

    clf.fit(X_train, y_train)
    X_trans = clf.transform(X_test)
    assert X_trans.shape[1] == 2

    # LinearSVC does not implement 'predict_proba' and will not drop one column
    estimators = [("lr", LogisticRegression()), ("svc", LinearSVC())]
    clf.set_params(estimators=estimators)

    clf.fit(X_train, y_train)
    X_trans = clf.transform(X_test)
    assert X_trans.shape[1] == 2


def test_stacking_classifier_drop_estimator():
    # prescale the data to avoid convergence warning without using a pipeline
    # for later assert
    X_train, X_test, y_train, _ = train_test_split(
        scale(X_iris), y_iris, stratify=y_iris, random_state=42
    )
    estimators = [("lr", "drop"), ("svc", LinearSVC(random_state=0))]
    rf = RandomForestClassifier(n_estimators=10, random_state=42)
    clf = StackingClassifier(
        estimators=[("svc", LinearSVC(random_state=0))],
        final_estimator=rf,
        cv=5,
    )
    clf_drop = StackingClassifier(estimators=estimators, final_estimator=rf, cv=5)

    clf.fit(X_train, y_train)
    clf_drop.fit(X_train, y_train)
    assert_allclose(clf.predict(X_test), clf_drop.predict(X_test))
    assert_allclose(clf.predict_proba(X_test), clf_drop.predict_proba(X_test))
    assert_allclose(clf.transform(X_test), clf_drop.transform(X_test))


def test_stacking_regressor_drop_estimator():
    # prescale the data to avoid convergence warning without using a pipeline
    # for later assert
    X_train, X_test, y_train, _ = train_test_split(
        scale(X_diabetes), y_diabetes, random_state=42
    )
    estimators = [("lr", "drop"), ("svr", LinearSVR(random_state=0))]
    rf = RandomForestRegressor(n_estimators=10, random_state=42)
    reg = StackingRegressor(
        estimators=[("svr", LinearSVR(random_state=0))],
        final_estimator=rf,
        cv=5,
    )
    reg_drop = StackingRegressor(estimators=estimators, final_estimator=rf, cv=5)

    reg.fit(X_train, y_train)
    reg_drop.fit(X_train, y_train)
    assert_allclose(reg.predict(X_test), reg_drop.predict(X_test))
    assert_allclose(reg.transform(X_test), reg_drop.transform(X_test))


@pytest.mark.parametrize("cv", [3, KFold(n_splits=3, shuffle=True, random_state=42)])
@pytest.mark.parametrize(
    "final_estimator, predict_params",
    [
        (None, {}),
        (RandomForestRegressor(random_state=42), {}),
        (DummyRegressor(), {"return_std": True}),
    ],
)
@pytest.mark.parametrize("passthrough", [False, True])
def test_stacking_regressor_diabetes(cv, final_estimator, predict_params, passthrough):
    # prescale the data to avoid convergence warning without using a pipeline
    # for later assert
    X_train, X_test, y_train, _ = train_test_split(
        scale(X_diabetes), y_diabetes, random_state=42
    )
    estimators = [("lr", LinearRegression()), ("svr", LinearSVR())]
    reg = StackingRegressor(
        estimators=estimators,
        final_estimator=final_estimator,
        cv=cv,
        passthrough=passthrough,
    )
    reg.fit(X_train, y_train)
    result = reg.predict(X_test, **predict_params)
    expected_result_length = 2 if predict_params else 1
    if predict_params:
        assert len(result) == expected_result_length

    X_trans = reg.transform(X_test)
    expected_column_count = 12 if passthrough else 2
    assert X_trans.shape[1] == expected_column_count
    if passthrough:
        assert_allclose(X_test, X_trans[:, -10:])

    reg.set_params(lr="drop")
    reg.fit(X_train, y_train)
    reg.predict(X_test)

    X_trans = reg.transform(X_test)
    expected_column_count_drop = 11 if passthrough else 1
    assert X_trans.shape[1] == expected_column_count_drop
    if passthrough:
        assert_allclose(X_test, X_trans[:, -10:])


@pytest.mark.parametrize(
    "sparse_container", COO_CONTAINERS + CSC_CONTAINERS + CSR_CONTAINERS
)
def test_stacking_regressor_sparse_passthrough(sparse_container):
    # Check passthrough behavior on a sparse X matrix
    X_train, X_test, y_train, _ = train_test_split(
        sparse_container(scale(X_diabetes)), y_diabetes, random_state=42
    )
    estimators = [("lr", LinearRegression()), ("svr", LinearSVR())]
    rf = RandomForestRegressor(n_estimators=10, random_state=42)
    clf = StackingRegressor(
        estimators=estimators, final_estimator=rf, cv=5, passthrough=True
    )
    clf.fit(X_train, y_train)
    X_trans = clf.transform(X_test)
    assert_allclose_dense_sparse(X_test, X_trans[:, -10:])
    assert sparse.issparse(X_trans)
    assert X_test.format == X_trans.format


@pytest.mark.parametrize(
    "sparse_container", COO_CONTAINERS + CSC_CONTAINERS + CSR_CONTAINERS
)
def test_stacking_classifier_sparse_passthrough(sparse_container):
    # Check passthrough behavior on a sparse X matrix
    X_train, X_test, y_train, _ = train_test_split(
        sparse_container(scale(X_iris)), y_iris, random_state=42
    )
    estimators = [("lr", LogisticRegression()), ("svc", LinearSVC())]
    rf = RandomForestClassifier(n_estimators=10, random_state=42)
    clf = StackingClassifier(
        estimators=estimators, final_estimator=rf, cv=5, passthrough=True
    )
    clf.fit(X_train, y_train)
    X_trans = clf.transform(X_test)
    assert_allclose_dense_sparse(X_test, X_trans[:, -4:])
    assert sparse.issparse(X_trans)
    assert X_test.format == X_trans.format


def test_stacking_classifier_drop_binary_prob():
    # check that classifier will drop one of the probability column for
    # binary classification problem

    # Select only the 2 first classes
    X_, y_ = scale(X_iris[:100]), y_iris[:100]

    estimators = [("lr", LogisticRegression()), ("rf", RandomForestClassifier())]
    clf = StackingClassifier(estimators=estimators)
    clf.fit(X_, y_)
    X_meta = clf.transform(X_)
    assert X_meta.shape[1] == 2


class NoWeightRegressor(RegressorMixin, BaseEstimator):
    def fit(self, X, y):
        self.reg = DummyRegressor()
        return self.reg.fit(X, y)

    def predict(self, X):
        return np.ones(X.shape[0])


class NoWeightClassifier(ClassifierMixin, BaseEstimator):
    def fit(self, X, y):
        self.clf = DummyClassifier(strategy="stratified")
        return self.clf.fit(X, y)


@pytest.mark.parametrize(
    "y, params, type_err, msg_err",
    [
        (y_iris, {"estimators": []}, ValueError, "Invalid 'estimators' attribute,"),
        (
            y_iris,
            {
                "estimators": [
                    ("lr", LogisticRegression()),
                    ("svm", SVC(max_iter=50_000)),
                ],
                "stack_method": "predict_proba",
            },
            ValueError,
            "does not implement the method predict_proba",
        ),
        (
            y_iris,
            {
                "estimators": [
                    ("lr", LogisticRegression()),
                    ("cor", NoWeightClassifier()),
                ]
            },
            TypeError,
            "does not support sample weight",
        ),
        (
            y_iris,
            {
                "estimators": [
                    ("lr", LogisticRegression()),
                    ("cor", LinearSVC(max_iter=50_000)),
                ],
                "final_estimator": NoWeightClassifier(),
            },
            TypeError,
            "does not support sample weight",
        ),
    ],
)
def test_stacking_classifier_error(y, params, type_err, msg_err):
    with pytest.raises(type_err, match=msg_err):
        clf = StackingClassifier(**params, cv=3)
        clf.fit(scale(X_iris), y, sample_weight=np.ones(X_iris.shape[0]))


@pytest.mark.parametrize(
    "y, params, type_err, msg_err",
    [
        (y_diabetes, {"estimators": []}, ValueError, "Invalid 'estimators' attribute,"),
        (
            y_diabetes,
            {"estimators": [("lr", LinearRegression()), ("cor", NoWeightRegressor())]},
            TypeError,
            "does not support sample weight",
        ),
        (
            y_diabetes,
            {
                "estimators": [
                    ("lr", LinearRegression()),
                    ("cor", LinearSVR()),
                ],
                "final_estimator": NoWeightRegressor(),
            },
            TypeError,
            "does not support sample weight",
        ),
    ],
)
def test_stacking_regressor_error(y, params, type_err, msg_err):
    with pytest.raises(type_err, match=msg_err):
        reg = StackingRegressor(**params, cv=3)
        reg.fit(scale(X_diabetes), y, sample_weight=np.ones(X_diabetes.shape[0]))


@pytest.mark.parametrize(
    "estimator, X, y",
    [
        (
            StackingClassifier(
                estimators=[
                    ("lr", LogisticRegression(random_state=0)),
                    ("svm", LinearSVC(random_state=0)),
                ]
            ),
            X_iris[:100],
            y_iris[:100],
        ),  # keep only classes 0 and 1
        (
            StackingRegressor(
                estimators=[
                    ("lr", LinearRegression()),
                    ("svm", LinearSVR(random_state=0)),
                ]
            ),
            X_diabetes,
            y_diabetes,
        ),
    ],
    ids=["StackingClassifier", "StackingRegressor"],
)
def test_stacking_randomness(estimator, X, y):
    # checking that fixing the random state of the CV will lead to the same
    # results
    estimator_full = clone(estimator)
    estimator_full.set_params(
        cv=KFold(shuffle=True, random_state=np.random.RandomState(0))
    )

    estimator_drop = clone(estimator)
    estimator_drop.set_params(lr="drop")
    estimator_drop.set_params(
        cv=KFold(shuffle=True, random_state=np.random.RandomState(0))
    )

    assert_allclose(
        estimator_full.fit(X, y).transform(X)[:, 1:],
        estimator_drop.fit(X, y).transform(X),
    )


def test_stacking_classifier_stratify_default():
    # check that we stratify the classes for the default CV
    clf = StackingClassifier(
        estimators=[
            ("lr", LogisticRegression(max_iter=10_000)),
            ("svm", LinearSVC(max_iter=10_000)),
        ]
    )
    # since iris is not shuffled, a simple k-fold would not contain the
    # 3 classes during training
    clf.fit(X_iris, y_iris)


@pytest.mark.parametrize(
    "stacker, X, y",
    [
        (
            StackingClassifier(
                estimators=[
                    ("lr", LogisticRegression()),
                    ("svm", LinearSVC(random_state=42)),
                ],
                final_estimator=LogisticRegression(),
                cv=KFold(shuffle=True, random_state=42),
            ),
            *load_breast_cancer(return_X_y=True),
        ),
        (
            StackingRegressor(
                estimators=[
                    ("lr", LinearRegression()),
                    ("svm", LinearSVR(random_state=42)),
                ],
                final_estimator=LinearRegression(),
                cv=KFold(shuffle=True, random_state=42),
            ),
            X_diabetes,
            y_diabetes,
        ),
    ],
    ids=["StackingClassifier", "StackingRegressor"],
)
def test_stacking_with_sample_weight(stacker, X, y):
    # check that sample weights has an influence on the fitting
    # note: ConvergenceWarning are catch since we are not worrying about the
    # convergence here
    n_half_samples = len(y) // 2
    total_sample_weight = np.array(
        [0.1] * n_half_samples + [0.9] * (len(y) - n_half_samples)
    )
    X_train, X_test, y_train, _, sample_weight_train, _ = train_test_split(
        X, y, total_sample_weight, random_state=42
    )

    with ignore_warnings(category=ConvergenceWarning):
        stacker.fit(X_train, y_train)
    y_pred_no_weight = stacker.predict(X_test)

    with ignore_warnings(category=ConvergenceWarning):
        stacker.fit(X_train, y_train, sample_weight=np.ones(y_train.shape))
    y_pred_unit_weight = stacker.predict(X_test)

    assert_allclose(y_pred_no_weight, y_pred_unit_weight)

    with ignore_warnings(category=ConvergenceWarning):
        stacker.fit(X_train, y_train, sample_weight=sample_weight_train)
    y_pred_biased = stacker.predict(X_test)

    assert np.abs(y_pred_no_weight - y_pred_biased).sum() > 0


def test_stacking_classifier_sample_weight_fit_param():
    # check sample_weight is passed to all invocations of fit
    stacker = StackingClassifier(
        estimators=[("lr", CheckingClassifier(expected_sample_weight=True))],
        final_estimator=CheckingClassifier(expected_sample_weight=True),
    )
    stacker.fit(X_iris, y_iris, sample_weight=np.ones(X_iris.shape[0]))


@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
@pytest.mark.parametrize(
    "stacker, X, y",
    [
        (
            StackingClassifier(
                estimators=[
                    ("lr", LogisticRegression()),
                    ("svm", LinearSVC(random_state=42)),
                ],
                final_estimator=LogisticRegression(),
            ),
            *load_breast_cancer(return_X_y=True),
        ),
        (
            StackingRegressor(
                estimators=[
                    ("lr", LinearRegression()),
                    ("svm", LinearSVR(random_state=42)),
                ],
                final_estimator=LinearRegression(),
            ),
            X_diabetes,
            y_diabetes,
        ),
    ],
    ids=["StackingClassifier", "StackingRegressor"],
)
def test_stacking_cv_influence(stacker, X, y):
    # check that the stacking affects the fit of the final estimator but not
    # the fit of the base estimators
    # note: ConvergenceWarning are catch since we are not worrying about the
    # convergence here
    stacker_cv_3 = clone(stacker)
    stacker_cv_5 = clone(stacker)

    stacker_cv_3.set_params(cv=3)
    stacker_cv_5.set_params(cv=5)

    stacker_cv_3.fit(X, y)
    stacker_cv_5.fit(X, y)

    # the base estimators should be identical
    for est_cv_3, est_cv_5 in zip(stacker_cv_3.estimators_, stacker_cv_5.estimators_):
        assert_allclose(est_cv_3.coef_, est_cv_5.coef_)

    # the final estimator should be different
    with pytest.raises(AssertionError, match="Not equal"):
        assert_allclose(
            stacker_cv_3.final_estimator_.coef_, stacker_cv_5.final_estimator_.coef_
        )


@pytest.mark.parametrize(
    "Stacker, Estimator, stack_method, final_estimator, X, y",
    [
        (
            StackingClassifier,
            DummyClassifier,
            "predict_proba",
            LogisticRegression(random_state=42),
            X_iris,
            y_iris,
        ),
        (
            StackingRegressor,
            DummyRegressor,
            "predict",
            LinearRegression(),
            X_diabetes,
            y_diabetes,
        ),
    ],
)
def test_stacking_prefit(Stacker, Estimator, stack_method, final_estimator, X, y):
    """Check the behaviour of stacking when `cv='prefit'`"""
    X_train1, X_train2, y_train1, y_train2 = train_test_split(
        X, y, random_state=42, test_size=0.5
    )
    estimators = [
        ("d0", Estimator().fit(X_train1, y_train1)),
        ("d1", Estimator().fit(X_train1, y_train1)),
    ]

    # mock out fit and stack_method to be asserted later
    for _, estimator in estimators:
        estimator.fit = Mock(name="fit")
        stack_func = getattr(estimator, stack_method)
        predict_method_mocked = Mock(side_effect=stack_func)
        # Mocking a method will not provide a `__name__` while Python methods
        # do and we are using it in `_get_response_method`.
        predict_method_mocked.__name__ = stack_method
        setattr(estimator, stack_method, predict_method_mocked)

    stacker = Stacker(
        estimators=estimators, cv="prefit", final_estimator=final_estimator
    )
    stacker.fit(X_train2, y_train2)

    assert stacker.estimators_ == [estimator for _, estimator in estimators]
    # fit was not called again
    assert all(estimator.fit.call_count == 0 for estimator in stacker.estimators_)

    # stack method is called with the proper inputs
    for estimator in stacker.estimators_:
        stack_func_mock = getattr(estimator, stack_method)
        stack_func_mock.assert_called_with(X_train2)


@pytest.mark.parametrize(
    "stacker, X, y",
    [
        (
            StackingClassifier(
                estimators=[("lr", LogisticRegression()), ("svm", SVC())],
                cv="prefit",
            ),
            X_iris,
            y_iris,
        ),
        (
            StackingRegressor(
                estimators=[
                    ("lr", LinearRegression()),
                    ("svm", LinearSVR()),
                ],
                cv="prefit",
            ),
            X_diabetes,
            y_diabetes,
        ),
    ],
)
def test_stacking_prefit_error(stacker, X, y):
    # check that NotFittedError is raised
    # if base estimators are not fitted when cv="prefit"
    with pytest.raises(NotFittedError):
        stacker.fit(X, y)


@pytest.mark.parametrize(
    "make_dataset, Stacking, Estimator",
    [
        (make_classification, StackingClassifier, LogisticRegression),
        (make_regression, StackingRegressor, LinearRegression),
    ],
)
def test_stacking_without_n_features_in(make_dataset, Stacking, Estimator):
    # Stacking supports estimators without `n_features_in_`. Regression test
    # for #17353

    class MyEstimator(Estimator):
        """Estimator without n_features_in_"""

        def fit(self, X, y):
            super().fit(X, y)
            del self.n_features_in_

    X, y = make_dataset(random_state=0, n_samples=100)
    stacker = Stacking(estimators=[("lr", MyEstimator())])

    msg = f"{Stacking.__name__} object has no attribute n_features_in_"
    with pytest.raises(AttributeError, match=msg):
        stacker.n_features_in_

    # Does not raise
    stacker.fit(X, y)

    msg = "'MyEstimator' object has no attribute 'n_features_in_'"
    with pytest.raises(AttributeError, match=msg):
        stacker.n_features_in_


@pytest.mark.parametrize(
    "estimator",
    [
        # output a 2D array of the probability of the positive class for each output
        MLPClassifier(random_state=42),
        # output a list of 2D array containing the probability of each class
        # for each output
        RandomForestClassifier(random_state=42),
    ],
    ids=["MLPClassifier", "RandomForestClassifier"],
)
def test_stacking_classifier_multilabel_predict_proba(estimator):
    """Check the behaviour for the multilabel classification case and the
    `predict_proba` stacking method.

    Estimators are not consistent with the output arrays and we need to ensure that
    we handle all cases.
    """
    X_train, X_test, y_train, y_test = train_test_split(
        X_multilabel, y_multilabel, stratify=y_multilabel, random_state=42
    )
    n_outputs = 3

    estimators = [("est", estimator)]
    stacker = StackingClassifier(
        estimators=estimators,
        final_estimator=KNeighborsClassifier(),
        stack_method="predict_proba",
    ).fit(X_train, y_train)

    X_trans = stacker.transform(X_test)
    assert X_trans.shape == (X_test.shape[0], n_outputs)
    # we should not have any collinear classes and thus nothing should sum to 1
    assert not any(np.isclose(X_trans.sum(axis=1), 1.0))

    y_pred = stacker.predict(X_test)
    assert y_pred.shape == y_test.shape


def test_stacking_classifier_multilabel_decision_function():
    """Check the behaviour for the multilabel classification case and the
    `decision_function` stacking method. Only `RidgeClassifier` supports this
    case.
    """
    X_train, X_test, y_train, y_test = train_test_split(
        X_multilabel, y_multilabel, stratify=y_multilabel, random_state=42
    )
    n_outputs = 3

    estimators = [("est", RidgeClassifier())]
    stacker = StackingClassifier(
        estimators=estimators,
        final_estimator=KNeighborsClassifier(),
        stack_method="decision_function",
    ).fit(X_train, y_train)

    X_trans = stacker.transform(X_test)
    assert X_trans.shape == (X_test.shape[0], n_outputs)

    y_pred = stacker.predict(X_test)
    assert y_pred.shape == y_test.shape


@pytest.mark.parametrize("stack_method", ["auto", "predict"])
@pytest.mark.parametrize("passthrough", [False, True])
def test_stacking_classifier_multilabel_auto_predict(stack_method, passthrough):
    """Check the behaviour for the multilabel classification case for stack methods
    supported for all estimators or automatically picked up.
    """
    X_train, X_test, y_train, y_test = train_test_split(
        X_multilabel, y_multilabel, stratify=y_multilabel, random_state=42
    )
    y_train_before_fit = y_train.copy()
    n_outputs = 3

    estimators = [
        ("mlp", MLPClassifier(random_state=42)),
        ("rf", RandomForestClassifier(random_state=42)),
        ("ridge", RidgeClassifier()),
    ]
    final_estimator = KNeighborsClassifier()

    clf = StackingClassifier(
        estimators=estimators,
        final_estimator=final_estimator,
        passthrough=passthrough,
        stack_method=stack_method,
    ).fit(X_train, y_train)

    # make sure we don't change `y_train` inplace
    assert_array_equal(y_train_before_fit, y_train)

    y_pred = clf.predict(X_test)
    assert y_pred.shape == y_test.shape

    if stack_method == "auto":
        expected_stack_methods = ["predict_proba", "predict_proba", "decision_function"]
    else:
        expected_stack_methods = ["predict"] * len(estimators)
    assert clf.stack_method_ == expected_stack_methods

    n_features_X_trans = n_outputs * len(estimators)
    if passthrough:
        n_features_X_trans += X_train.shape[1]
    X_trans = clf.transform(X_test)
    assert X_trans.shape == (X_test.shape[0], n_features_X_trans)

    assert_array_equal(clf.classes_, [np.array([0, 1])] * n_outputs)


@pytest.mark.parametrize(
    "stacker, feature_names, X, y, expected_names",
    [
        (
            StackingClassifier(
                estimators=[
                    ("lr", LogisticRegression(random_state=0)),
                    ("svm", LinearSVC(random_state=0)),
                ]
            ),
            iris.feature_names,
            X_iris,
            y_iris,
            [
                "stackingclassifier_lr0",
                "stackingclassifier_lr1",
                "stackingclassifier_lr2",
                "stackingclassifier_svm0",
                "stackingclassifier_svm1",
                "stackingclassifier_svm2",
            ],
        ),
        (
            StackingClassifier(
                estimators=[
                    ("lr", LogisticRegression(random_state=0)),
                    ("other", "drop"),
                    ("svm", LinearSVC(random_state=0)),
                ]
            ),
            iris.feature_names,
            X_iris[:100],
            y_iris[:100],  # keep only classes 0 and 1
            [
                "stackingclassifier_lr",
                "stackingclassifier_svm",
            ],
        ),
        (
            StackingRegressor(
                estimators=[
                    ("lr", LinearRegression()),
                    ("svm", LinearSVR(random_state=0)),
                ]
            ),
            diabetes.feature_names,
            X_diabetes,
            y_diabetes,
            [
                "stackingregressor_lr",
                "stackingregressor_svm",
            ],
        ),
    ],
    ids=[
        "StackingClassifier_multiclass",
        "StackingClassifier_binary",
        "StackingRegressor",
    ],
)
@pytest.mark.parametrize("passthrough", [True, False])
def test_get_feature_names_out(
    stacker, feature_names, X, y, expected_names, passthrough
):
    """Check get_feature_names_out works for stacking."""

    stacker.set_params(passthrough=passthrough)
    stacker.fit(scale(X), y)

    if passthrough:
        expected_names = np.concatenate((expected_names, feature_names))

    names_out = stacker.get_feature_names_out(feature_names)
    assert_array_equal(names_out, expected_names)


def test_stacking_classifier_base_regressor():
    """Check that a regressor can be used as the first layer in `StackingClassifier`."""
    X_train, X_test, y_train, y_test = train_test_split(
        scale(X_iris), y_iris, stratify=y_iris, random_state=42
    )
    clf = StackingClassifier(estimators=[("ridge", Ridge())])
    clf.fit(X_train, y_train)
    clf.predict(X_test)
    clf.predict_proba(X_test)
    assert clf.score(X_test, y_test) > 0.8


def test_stacking_final_estimator_attribute_error():
    """Check that we raise the proper AttributeError when the final estimator
    does not implement the `decision_function` method, which is decorated with
    `available_if`.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/28108
    """
    X, y = make_classification(random_state=42)

    estimators = [
        ("lr", LogisticRegression()),
        ("rf", RandomForestClassifier(n_estimators=2, random_state=42)),
    ]
    # RandomForestClassifier does not implement 'decision_function' and should raise
    # an AttributeError
    final_estimator = RandomForestClassifier(n_estimators=2, random_state=42)
    clf = StackingClassifier(
        estimators=estimators, final_estimator=final_estimator, cv=3
    )

    outer_msg = "This 'StackingClassifier' has no attribute 'decision_function'"
    inner_msg = "'RandomForestClassifier' object has no attribute 'decision_function'"
    with pytest.raises(AttributeError, match=outer_msg) as exec_info:
        clf.fit(X, y).decision_function(X)
    assert isinstance(exec_info.value.__cause__, AttributeError)
    assert inner_msg in str(exec_info.value.__cause__)


# Metadata Routing Tests
# ======================


@pytest.mark.parametrize(
    "Estimator, Child",
    [
        (StackingClassifier, ConsumingClassifier),
        (StackingRegressor, ConsumingRegressor),
    ],
)
def test_routing_passed_metadata_not_supported(Estimator, Child):
    """Test that the right error message is raised when metadata is passed while
    not supported when `enable_metadata_routing=False`."""

    with pytest.raises(
        ValueError, match="is only supported if enable_metadata_routing=True"
    ):
        Estimator(["clf", Child()]).fit(
            X_iris, y_iris, sample_weight=[1, 1, 1, 1, 1], metadata="a"
        )


@pytest.mark.parametrize(
    "Estimator, Child",
    [
        (StackingClassifier, ConsumingClassifier),
        (StackingRegressor, ConsumingRegressor),
    ],
)
@config_context(enable_metadata_routing=True)
def test_get_metadata_routing_without_fit(Estimator, Child):
    # Test that metadata_routing() doesn't raise when called before fit.
    est = Estimator([("sub_est", Child())])
    est.get_metadata_routing()


@pytest.mark.parametrize(
    "Estimator, Child",
    [
        (StackingClassifier, ConsumingClassifier),
        (StackingRegressor, ConsumingRegressor),
    ],
)
@pytest.mark.parametrize(
    "prop, prop_value", [("sample_weight", np.ones(X_iris.shape[0])), ("metadata", "a")]
)
@config_context(enable_metadata_routing=True)
def test_metadata_routing_for_stacking_estimators(Estimator, Child, prop, prop_value):
    """Test that metadata is routed correctly for Stacking*."""

    est = Estimator(
        [
            (
                "sub_est1",
                Child(registry=_Registry()).set_fit_request(**{prop: True}),
            ),
            (
                "sub_est2",
                Child(registry=_Registry()).set_fit_request(**{prop: True}),
            ),
        ],
        final_estimator=Child(registry=_Registry()).set_predict_request(**{prop: True}),
    )

    est.fit(X_iris, y_iris, **{prop: prop_value})
    est.fit_transform(X_iris, y_iris, **{prop: prop_value})

    est.predict(X_iris, **{prop: prop_value})

    for estimator in est.estimators:
        # access sub-estimator in (name, est) with estimator[1]:
        registry = estimator[1].registry
        assert len(registry)
        for sub_est in registry:
            check_recorded_metadata(
                obj=sub_est,
                method="fit",
                parent="fit",
                split_params=(prop),
                **{prop: prop_value},
            )
    # access final_estimator:
    registry = est.final_estimator_.registry
    assert len(registry)
    check_recorded_metadata(
        obj=registry[-1],
        method="predict",
        parent="predict",
        split_params=(prop),
        **{prop: prop_value},
    )


@pytest.mark.parametrize(
    "Estimator, Child",
    [
        (StackingClassifier, ConsumingClassifier),
        (StackingRegressor, ConsumingRegressor),
    ],
)
@config_context(enable_metadata_routing=True)
def test_metadata_routing_error_for_stacking_estimators(Estimator, Child):
    """Test that the right error is raised when metadata is not requested."""
    sample_weight, metadata = np.ones(X_iris.shape[0]), "a"

    est = Estimator([("sub_est", Child())])

    error_message = (
        "[sample_weight, metadata] are passed but are not explicitly set as requested"
        f" or not requested for {Child.__name__}.fit"
    )

    with pytest.raises(ValueError, match=re.escape(error_message)):
        est.fit(X_iris, y_iris, sample_weight=sample_weight, metadata=metadata)


# End of Metadata Routing Tests
# =============================