File size: 87,570 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
"""Gradient Boosted Regression Trees.

This module contains methods for fitting gradient boosted regression trees for
both classification and regression.

The module structure is the following:

- The ``BaseGradientBoosting`` base class implements a common ``fit`` method
  for all the estimators in the module. Regression and classification
  only differ in the concrete ``LossFunction`` used.

- ``GradientBoostingClassifier`` implements gradient boosting for
  classification problems.

- ``GradientBoostingRegressor`` implements gradient boosting for
  regression problems.
"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import math
import warnings
from abc import ABCMeta, abstractmethod
from numbers import Integral, Real
from time import time

import numpy as np
from scipy.sparse import csc_matrix, csr_matrix, issparse

from .._loss.loss import (
    _LOSSES,
    AbsoluteError,
    ExponentialLoss,
    HalfBinomialLoss,
    HalfMultinomialLoss,
    HalfSquaredError,
    HuberLoss,
    PinballLoss,
)
from ..base import ClassifierMixin, RegressorMixin, _fit_context, is_classifier
from ..dummy import DummyClassifier, DummyRegressor
from ..exceptions import NotFittedError
from ..model_selection import train_test_split
from ..preprocessing import LabelEncoder
from ..tree import DecisionTreeRegressor
from ..tree._tree import DOUBLE, DTYPE, TREE_LEAF
from ..utils import check_array, check_random_state, column_or_1d
from ..utils._param_validation import HasMethods, Interval, StrOptions
from ..utils.multiclass import check_classification_targets
from ..utils.stats import _weighted_percentile
from ..utils.validation import _check_sample_weight, check_is_fitted, validate_data
from ._base import BaseEnsemble
from ._gradient_boosting import _random_sample_mask, predict_stage, predict_stages

_LOSSES = _LOSSES.copy()
_LOSSES.update(
    {
        "quantile": PinballLoss,
        "huber": HuberLoss,
    }
)


def _safe_divide(numerator, denominator):
    """Prevents overflow and division by zero."""
    # This is used for classifiers where the denominator might become zero exatly.
    # For instance for log loss, HalfBinomialLoss, if proba=0 or proba=1 exactly, then
    # denominator = hessian = 0, and we should set the node value in the line search to
    # zero as there is no improvement of the loss possible.
    # For numerical safety, we do this already for extremely tiny values.
    if abs(denominator) < 1e-150:
        return 0.0
    else:
        # Cast to Python float to trigger Python errors, e.g. ZeroDivisionError,
        # without relying on `np.errstate` that is not supported by Pyodide.
        result = float(numerator) / float(denominator)
        # Cast to Python float to trigger a ZeroDivisionError without relying
        # on `np.errstate` that is not supported by Pyodide.
        result = float(numerator) / float(denominator)
        if math.isinf(result):
            warnings.warn("overflow encountered in _safe_divide", RuntimeWarning)
        return result


def _init_raw_predictions(X, estimator, loss, use_predict_proba):
    """Return the initial raw predictions.

    Parameters
    ----------
    X : ndarray of shape (n_samples, n_features)
        The data array.
    estimator : object
        The estimator to use to compute the predictions.
    loss : BaseLoss
        An instance of a loss function class.
    use_predict_proba : bool
        Whether estimator.predict_proba is used instead of estimator.predict.

    Returns
    -------
    raw_predictions : ndarray of shape (n_samples, K)
        The initial raw predictions. K is equal to 1 for binary
        classification and regression, and equal to the number of classes
        for multiclass classification. ``raw_predictions`` is casted
        into float64.
    """
    # TODO: Use loss.fit_intercept_only where appropriate instead of
    # DummyRegressor which is the default given by the `init` parameter,
    # see also _init_state.
    if use_predict_proba:
        # Our parameter validation, set via _fit_context and _parameter_constraints
        # already guarantees that estimator has a predict_proba method.
        predictions = estimator.predict_proba(X)
        if not loss.is_multiclass:
            predictions = predictions[:, 1]  # probability of positive class
        eps = np.finfo(np.float32).eps  # FIXME: This is quite large!
        predictions = np.clip(predictions, eps, 1 - eps, dtype=np.float64)
    else:
        predictions = estimator.predict(X).astype(np.float64)

    if predictions.ndim == 1:
        return loss.link.link(predictions).reshape(-1, 1)
    else:
        return loss.link.link(predictions)


def _update_terminal_regions(
    loss,
    tree,
    X,
    y,
    neg_gradient,
    raw_prediction,
    sample_weight,
    sample_mask,
    learning_rate=0.1,
    k=0,
):
    """Update the leaf values to be predicted by the tree and raw_prediction.

    The current raw predictions of the model (of this stage) are updated.

    Additionally, the terminal regions (=leaves) of the given tree are updated as well.
    This corresponds to the line search step in "Greedy Function Approximation" by
    Friedman, Algorithm 1 step 5.

    Update equals:
        argmin_{x} loss(y_true, raw_prediction_old + x * tree.value)

    For non-trivial cases like the Binomial loss, the update has no closed formula and
    is an approximation, again, see the Friedman paper.

    Also note that the update formula for the SquaredError is the identity. Therefore,
    in this case, the leaf values don't need an update and only the raw_predictions are
    updated (with the learning rate included).

    Parameters
    ----------
    loss : BaseLoss
    tree : tree.Tree
        The tree object.
    X : ndarray of shape (n_samples, n_features)
        The data array.
    y : ndarray of shape (n_samples,)
        The target labels.
    neg_gradient : ndarray of shape (n_samples,)
        The negative gradient.
    raw_prediction : ndarray of shape (n_samples, n_trees_per_iteration)
        The raw predictions (i.e. values from the tree leaves) of the
        tree ensemble at iteration ``i - 1``.
    sample_weight : ndarray of shape (n_samples,)
        The weight of each sample.
    sample_mask : ndarray of shape (n_samples,)
        The sample mask to be used.
    learning_rate : float, default=0.1
        Learning rate shrinks the contribution of each tree by
         ``learning_rate``.
    k : int, default=0
        The index of the estimator being updated.
    """
    # compute leaf for each sample in ``X``.
    terminal_regions = tree.apply(X)

    if not isinstance(loss, HalfSquaredError):
        # mask all which are not in sample mask.
        masked_terminal_regions = terminal_regions.copy()
        masked_terminal_regions[~sample_mask] = -1

        if isinstance(loss, HalfBinomialLoss):

            def compute_update(y_, indices, neg_gradient, raw_prediction, k):
                # Make a single Newton-Raphson step, see "Additive Logistic Regression:
                # A Statistical View of Boosting" FHT00 and note that we use a slightly
                # different version (factor 2) of "F" with proba=expit(raw_prediction).
                # Our node estimate is given by:
                #    sum(w * (y - prob)) / sum(w * prob * (1 - prob))
                # we take advantage that: y - prob = neg_gradient
                neg_g = neg_gradient.take(indices, axis=0)
                prob = y_ - neg_g
                # numerator = negative gradient = y - prob
                numerator = np.average(neg_g, weights=sw)
                # denominator = hessian = prob * (1 - prob)
                denominator = np.average(prob * (1 - prob), weights=sw)
                return _safe_divide(numerator, denominator)

        elif isinstance(loss, HalfMultinomialLoss):

            def compute_update(y_, indices, neg_gradient, raw_prediction, k):
                # we take advantage that: y - prob = neg_gradient
                neg_g = neg_gradient.take(indices, axis=0)
                prob = y_ - neg_g
                K = loss.n_classes
                # numerator = negative gradient * (k - 1) / k
                # Note: The factor (k - 1)/k appears in the original papers "Greedy
                # Function Approximation" by Friedman and "Additive Logistic
                # Regression" by Friedman, Hastie, Tibshirani. This factor is, however,
                # wrong or at least arbitrary as it directly multiplies the
                # learning_rate. We keep it for backward compatibility.
                numerator = np.average(neg_g, weights=sw)
                numerator *= (K - 1) / K
                # denominator = (diagonal) hessian = prob * (1 - prob)
                denominator = np.average(prob * (1 - prob), weights=sw)
                return _safe_divide(numerator, denominator)

        elif isinstance(loss, ExponentialLoss):

            def compute_update(y_, indices, neg_gradient, raw_prediction, k):
                neg_g = neg_gradient.take(indices, axis=0)
                # numerator = negative gradient = y * exp(-raw) - (1-y) * exp(raw)
                numerator = np.average(neg_g, weights=sw)
                # denominator = hessian = y * exp(-raw) + (1-y) * exp(raw)
                # if y=0: hessian = exp(raw) = -neg_g
                #    y=1: hessian = exp(-raw) = neg_g
                hessian = neg_g.copy()
                hessian[y_ == 0] *= -1
                denominator = np.average(hessian, weights=sw)
                return _safe_divide(numerator, denominator)

        else:

            def compute_update(y_, indices, neg_gradient, raw_prediction, k):
                return loss.fit_intercept_only(
                    y_true=y_ - raw_prediction[indices, k],
                    sample_weight=sw,
                )

        # update each leaf (= perform line search)
        for leaf in np.nonzero(tree.children_left == TREE_LEAF)[0]:
            indices = np.nonzero(masked_terminal_regions == leaf)[
                0
            ]  # of terminal regions
            y_ = y.take(indices, axis=0)
            sw = None if sample_weight is None else sample_weight[indices]
            update = compute_update(y_, indices, neg_gradient, raw_prediction, k)

            # TODO: Multiply here by learning rate instead of everywhere else.
            tree.value[leaf, 0, 0] = update

    # update predictions (both in-bag and out-of-bag)
    raw_prediction[:, k] += learning_rate * tree.value[:, 0, 0].take(
        terminal_regions, axis=0
    )


def set_huber_delta(loss, y_true, raw_prediction, sample_weight=None):
    """Calculate and set self.closs.delta based on self.quantile."""
    abserr = np.abs(y_true - raw_prediction.squeeze())
    # sample_weight is always a ndarray, never None.
    delta = _weighted_percentile(abserr, sample_weight, 100 * loss.quantile)
    loss.closs.delta = float(delta)


class VerboseReporter:
    """Reports verbose output to stdout.

    Parameters
    ----------
    verbose : int
        Verbosity level. If ``verbose==1`` output is printed once in a while
        (when iteration mod verbose_mod is zero).; if larger than 1 then output
        is printed for each update.
    """

    def __init__(self, verbose):
        self.verbose = verbose

    def init(self, est, begin_at_stage=0):
        """Initialize reporter

        Parameters
        ----------
        est : Estimator
            The estimator

        begin_at_stage : int, default=0
            stage at which to begin reporting
        """
        # header fields and line format str
        header_fields = ["Iter", "Train Loss"]
        verbose_fmt = ["{iter:>10d}", "{train_score:>16.4f}"]
        # do oob?
        if est.subsample < 1:
            header_fields.append("OOB Improve")
            verbose_fmt.append("{oob_impr:>16.4f}")
        header_fields.append("Remaining Time")
        verbose_fmt.append("{remaining_time:>16s}")

        # print the header line
        print(("%10s " + "%16s " * (len(header_fields) - 1)) % tuple(header_fields))

        self.verbose_fmt = " ".join(verbose_fmt)
        # plot verbose info each time i % verbose_mod == 0
        self.verbose_mod = 1
        self.start_time = time()
        self.begin_at_stage = begin_at_stage

    def update(self, j, est):
        """Update reporter with new iteration.

        Parameters
        ----------
        j : int
            The new iteration.
        est : Estimator
            The estimator.
        """
        do_oob = est.subsample < 1
        # we need to take into account if we fit additional estimators.
        i = j - self.begin_at_stage  # iteration relative to the start iter
        if (i + 1) % self.verbose_mod == 0:
            oob_impr = est.oob_improvement_[j] if do_oob else 0
            remaining_time = (
                (est.n_estimators - (j + 1)) * (time() - self.start_time) / float(i + 1)
            )
            if remaining_time > 60:
                remaining_time = "{0:.2f}m".format(remaining_time / 60.0)
            else:
                remaining_time = "{0:.2f}s".format(remaining_time)
            print(
                self.verbose_fmt.format(
                    iter=j + 1,
                    train_score=est.train_score_[j],
                    oob_impr=oob_impr,
                    remaining_time=remaining_time,
                )
            )
            if self.verbose == 1 and ((i + 1) // (self.verbose_mod * 10) > 0):
                # adjust verbose frequency (powers of 10)
                self.verbose_mod *= 10


class BaseGradientBoosting(BaseEnsemble, metaclass=ABCMeta):
    """Abstract base class for Gradient Boosting."""

    _parameter_constraints: dict = {
        **DecisionTreeRegressor._parameter_constraints,
        "learning_rate": [Interval(Real, 0.0, None, closed="left")],
        "n_estimators": [Interval(Integral, 1, None, closed="left")],
        "criterion": [StrOptions({"friedman_mse", "squared_error"})],
        "subsample": [Interval(Real, 0.0, 1.0, closed="right")],
        "verbose": ["verbose"],
        "warm_start": ["boolean"],
        "validation_fraction": [Interval(Real, 0.0, 1.0, closed="neither")],
        "n_iter_no_change": [Interval(Integral, 1, None, closed="left"), None],
        "tol": [Interval(Real, 0.0, None, closed="left")],
    }
    _parameter_constraints.pop("splitter")
    _parameter_constraints.pop("monotonic_cst")

    @abstractmethod
    def __init__(
        self,
        *,
        loss,
        learning_rate,
        n_estimators,
        criterion,
        min_samples_split,
        min_samples_leaf,
        min_weight_fraction_leaf,
        max_depth,
        min_impurity_decrease,
        init,
        subsample,
        max_features,
        ccp_alpha,
        random_state,
        alpha=0.9,
        verbose=0,
        max_leaf_nodes=None,
        warm_start=False,
        validation_fraction=0.1,
        n_iter_no_change=None,
        tol=1e-4,
    ):
        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        self.loss = loss
        self.criterion = criterion
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.subsample = subsample
        self.max_features = max_features
        self.max_depth = max_depth
        self.min_impurity_decrease = min_impurity_decrease
        self.ccp_alpha = ccp_alpha
        self.init = init
        self.random_state = random_state
        self.alpha = alpha
        self.verbose = verbose
        self.max_leaf_nodes = max_leaf_nodes
        self.warm_start = warm_start
        self.validation_fraction = validation_fraction
        self.n_iter_no_change = n_iter_no_change
        self.tol = tol

    @abstractmethod
    def _encode_y(self, y=None, sample_weight=None):
        """Called by fit to validate and encode y."""

    @abstractmethod
    def _get_loss(self, sample_weight):
        """Get loss object from sklearn._loss.loss."""

    def _fit_stage(
        self,
        i,
        X,
        y,
        raw_predictions,
        sample_weight,
        sample_mask,
        random_state,
        X_csc=None,
        X_csr=None,
    ):
        """Fit another stage of ``n_trees_per_iteration_`` trees."""
        original_y = y

        if isinstance(self._loss, HuberLoss):
            set_huber_delta(
                loss=self._loss,
                y_true=y,
                raw_prediction=raw_predictions,
                sample_weight=sample_weight,
            )
        # TODO: Without oob, i.e. with self.subsample = 1.0, we could call
        # self._loss.loss_gradient and use it to set train_score_.
        # But note that train_score_[i] is the score AFTER fitting the i-th tree.
        # Note: We need the negative gradient!
        neg_gradient = -self._loss.gradient(
            y_true=y,
            raw_prediction=raw_predictions,
            sample_weight=None,  # We pass sample_weights to the tree directly.
        )
        # 2-d views of shape (n_samples, n_trees_per_iteration_) or (n_samples, 1)
        # on neg_gradient to simplify the loop over n_trees_per_iteration_.
        if neg_gradient.ndim == 1:
            neg_g_view = neg_gradient.reshape((-1, 1))
        else:
            neg_g_view = neg_gradient

        for k in range(self.n_trees_per_iteration_):
            if self._loss.is_multiclass:
                y = np.array(original_y == k, dtype=np.float64)

            # induce regression tree on the negative gradient
            tree = DecisionTreeRegressor(
                criterion=self.criterion,
                splitter="best",
                max_depth=self.max_depth,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                min_weight_fraction_leaf=self.min_weight_fraction_leaf,
                min_impurity_decrease=self.min_impurity_decrease,
                max_features=self.max_features,
                max_leaf_nodes=self.max_leaf_nodes,
                random_state=random_state,
                ccp_alpha=self.ccp_alpha,
            )

            if self.subsample < 1.0:
                # no inplace multiplication!
                sample_weight = sample_weight * sample_mask.astype(np.float64)

            X = X_csc if X_csc is not None else X
            tree.fit(
                X, neg_g_view[:, k], sample_weight=sample_weight, check_input=False
            )

            # update tree leaves
            X_for_tree_update = X_csr if X_csr is not None else X
            _update_terminal_regions(
                self._loss,
                tree.tree_,
                X_for_tree_update,
                y,
                neg_g_view[:, k],
                raw_predictions,
                sample_weight,
                sample_mask,
                learning_rate=self.learning_rate,
                k=k,
            )

            # add tree to ensemble
            self.estimators_[i, k] = tree

        return raw_predictions

    def _set_max_features(self):
        """Set self.max_features_."""
        if isinstance(self.max_features, str):
            if self.max_features == "auto":
                if is_classifier(self):
                    max_features = max(1, int(np.sqrt(self.n_features_in_)))
                else:
                    max_features = self.n_features_in_
            elif self.max_features == "sqrt":
                max_features = max(1, int(np.sqrt(self.n_features_in_)))
            else:  # self.max_features == "log2"
                max_features = max(1, int(np.log2(self.n_features_in_)))
        elif self.max_features is None:
            max_features = self.n_features_in_
        elif isinstance(self.max_features, Integral):
            max_features = self.max_features
        else:  # float
            max_features = max(1, int(self.max_features * self.n_features_in_))

        self.max_features_ = max_features

    def _init_state(self):
        """Initialize model state and allocate model state data structures."""

        self.init_ = self.init
        if self.init_ is None:
            if is_classifier(self):
                self.init_ = DummyClassifier(strategy="prior")
            elif isinstance(self._loss, (AbsoluteError, HuberLoss)):
                self.init_ = DummyRegressor(strategy="quantile", quantile=0.5)
            elif isinstance(self._loss, PinballLoss):
                self.init_ = DummyRegressor(strategy="quantile", quantile=self.alpha)
            else:
                self.init_ = DummyRegressor(strategy="mean")

        self.estimators_ = np.empty(
            (self.n_estimators, self.n_trees_per_iteration_), dtype=object
        )
        self.train_score_ = np.zeros((self.n_estimators,), dtype=np.float64)
        # do oob?
        if self.subsample < 1.0:
            self.oob_improvement_ = np.zeros((self.n_estimators), dtype=np.float64)
            self.oob_scores_ = np.zeros((self.n_estimators), dtype=np.float64)
            self.oob_score_ = np.nan

    def _clear_state(self):
        """Clear the state of the gradient boosting model."""
        if hasattr(self, "estimators_"):
            self.estimators_ = np.empty((0, 0), dtype=object)
        if hasattr(self, "train_score_"):
            del self.train_score_
        if hasattr(self, "oob_improvement_"):
            del self.oob_improvement_
        if hasattr(self, "oob_scores_"):
            del self.oob_scores_
        if hasattr(self, "oob_score_"):
            del self.oob_score_
        if hasattr(self, "init_"):
            del self.init_
        if hasattr(self, "_rng"):
            del self._rng

    def _resize_state(self):
        """Add additional ``n_estimators`` entries to all attributes."""
        # self.n_estimators is the number of additional est to fit
        total_n_estimators = self.n_estimators
        if total_n_estimators < self.estimators_.shape[0]:
            raise ValueError(
                "resize with smaller n_estimators %d < %d"
                % (total_n_estimators, self.estimators_[0])
            )

        self.estimators_ = np.resize(
            self.estimators_, (total_n_estimators, self.n_trees_per_iteration_)
        )
        self.train_score_ = np.resize(self.train_score_, total_n_estimators)
        if self.subsample < 1 or hasattr(self, "oob_improvement_"):
            # if do oob resize arrays or create new if not available
            if hasattr(self, "oob_improvement_"):
                self.oob_improvement_ = np.resize(
                    self.oob_improvement_, total_n_estimators
                )
                self.oob_scores_ = np.resize(self.oob_scores_, total_n_estimators)
                self.oob_score_ = np.nan
            else:
                self.oob_improvement_ = np.zeros(
                    (total_n_estimators,), dtype=np.float64
                )
                self.oob_scores_ = np.zeros((total_n_estimators,), dtype=np.float64)
                self.oob_score_ = np.nan

    def _is_fitted(self):
        return len(getattr(self, "estimators_", [])) > 0

    def _check_initialized(self):
        """Check that the estimator is initialized, raising an error if not."""
        check_is_fitted(self)

    @_fit_context(
        # GradientBoosting*.init is not validated yet
        prefer_skip_nested_validation=False
    )
    def fit(self, X, y, sample_weight=None, monitor=None):
        """Fit the gradient boosting model.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        y : array-like of shape (n_samples,)
            Target values (strings or integers in classification, real numbers
            in regression)
            For classification, labels must correspond to classes.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        monitor : callable, default=None
            The monitor is called after each iteration with the current
            iteration, a reference to the estimator and the local variables of
            ``_fit_stages`` as keyword arguments ``callable(i, self,
            locals())``. If the callable returns ``True`` the fitting procedure
            is stopped. The monitor can be used for various things such as
            computing held-out estimates, early stopping, model introspect, and
            snapshotting.

        Returns
        -------
        self : object
            Fitted estimator.
        """
        if not self.warm_start:
            self._clear_state()

        # Check input
        # Since check_array converts both X and y to the same dtype, but the
        # trees use different types for X and y, checking them separately.

        X, y = validate_data(
            self,
            X,
            y,
            accept_sparse=["csr", "csc", "coo"],
            dtype=DTYPE,
            multi_output=True,
        )
        sample_weight_is_none = sample_weight is None
        sample_weight = _check_sample_weight(sample_weight, X)
        if sample_weight_is_none:
            y = self._encode_y(y=y, sample_weight=None)
        else:
            y = self._encode_y(y=y, sample_weight=sample_weight)
        y = column_or_1d(y, warn=True)  # TODO: Is this still required?

        self._set_max_features()

        # self.loss is guaranteed to be a string
        self._loss = self._get_loss(sample_weight=sample_weight)

        if self.n_iter_no_change is not None:
            stratify = y if is_classifier(self) else None
            (
                X_train,
                X_val,
                y_train,
                y_val,
                sample_weight_train,
                sample_weight_val,
            ) = train_test_split(
                X,
                y,
                sample_weight,
                random_state=self.random_state,
                test_size=self.validation_fraction,
                stratify=stratify,
            )
            if is_classifier(self):
                if self.n_classes_ != np.unique(y_train).shape[0]:
                    # We choose to error here. The problem is that the init
                    # estimator would be trained on y, which has some missing
                    # classes now, so its predictions would not have the
                    # correct shape.
                    raise ValueError(
                        "The training data after the early stopping split "
                        "is missing some classes. Try using another random "
                        "seed."
                    )
        else:
            X_train, y_train, sample_weight_train = X, y, sample_weight
            X_val = y_val = sample_weight_val = None

        n_samples = X_train.shape[0]

        # First time calling fit.
        if not self._is_fitted():
            # init state
            self._init_state()

            # fit initial model and initialize raw predictions
            if self.init_ == "zero":
                raw_predictions = np.zeros(
                    shape=(n_samples, self.n_trees_per_iteration_),
                    dtype=np.float64,
                )
            else:
                # XXX clean this once we have a support_sample_weight tag
                if sample_weight_is_none:
                    self.init_.fit(X_train, y_train)
                else:
                    msg = (
                        "The initial estimator {} does not support sample "
                        "weights.".format(self.init_.__class__.__name__)
                    )
                    try:
                        self.init_.fit(
                            X_train, y_train, sample_weight=sample_weight_train
                        )
                    except TypeError as e:
                        if "unexpected keyword argument 'sample_weight'" in str(e):
                            # regular estimator without SW support
                            raise ValueError(msg) from e
                        else:  # regular estimator whose input checking failed
                            raise
                    except ValueError as e:
                        if (
                            "pass parameters to specific steps of "
                            "your pipeline using the "
                            "stepname__parameter" in str(e)
                        ):  # pipeline
                            raise ValueError(msg) from e
                        else:  # regular estimator whose input checking failed
                            raise

                raw_predictions = _init_raw_predictions(
                    X_train, self.init_, self._loss, is_classifier(self)
                )

            begin_at_stage = 0

            # The rng state must be preserved if warm_start is True
            self._rng = check_random_state(self.random_state)

        # warm start: this is not the first time fit was called
        else:
            # add more estimators to fitted model
            # invariant: warm_start = True
            if self.n_estimators < self.estimators_.shape[0]:
                raise ValueError(
                    "n_estimators=%d must be larger or equal to "
                    "estimators_.shape[0]=%d when "
                    "warm_start==True" % (self.n_estimators, self.estimators_.shape[0])
                )
            begin_at_stage = self.estimators_.shape[0]
            # The requirements of _raw_predict
            # are more constrained than fit. It accepts only CSR
            # matrices. Finite values have already been checked in _validate_data.
            X_train = check_array(
                X_train,
                dtype=DTYPE,
                order="C",
                accept_sparse="csr",
                ensure_all_finite=False,
            )
            raw_predictions = self._raw_predict(X_train)
            self._resize_state()

        # fit the boosting stages
        n_stages = self._fit_stages(
            X_train,
            y_train,
            raw_predictions,
            sample_weight_train,
            self._rng,
            X_val,
            y_val,
            sample_weight_val,
            begin_at_stage,
            monitor,
        )

        # change shape of arrays after fit (early-stopping or additional ests)
        if n_stages != self.estimators_.shape[0]:
            self.estimators_ = self.estimators_[:n_stages]
            self.train_score_ = self.train_score_[:n_stages]
            if hasattr(self, "oob_improvement_"):
                # OOB scores were computed
                self.oob_improvement_ = self.oob_improvement_[:n_stages]
                self.oob_scores_ = self.oob_scores_[:n_stages]
                self.oob_score_ = self.oob_scores_[-1]
        self.n_estimators_ = n_stages
        return self

    def _fit_stages(
        self,
        X,
        y,
        raw_predictions,
        sample_weight,
        random_state,
        X_val,
        y_val,
        sample_weight_val,
        begin_at_stage=0,
        monitor=None,
    ):
        """Iteratively fits the stages.

        For each stage it computes the progress (OOB, train score)
        and delegates to ``_fit_stage``.
        Returns the number of stages fit; might differ from ``n_estimators``
        due to early stopping.
        """
        n_samples = X.shape[0]
        do_oob = self.subsample < 1.0
        sample_mask = np.ones((n_samples,), dtype=bool)
        n_inbag = max(1, int(self.subsample * n_samples))

        if self.verbose:
            verbose_reporter = VerboseReporter(verbose=self.verbose)
            verbose_reporter.init(self, begin_at_stage)

        X_csc = csc_matrix(X) if issparse(X) else None
        X_csr = csr_matrix(X) if issparse(X) else None

        if self.n_iter_no_change is not None:
            loss_history = np.full(self.n_iter_no_change, np.inf)
            # We create a generator to get the predictions for X_val after
            # the addition of each successive stage
            y_val_pred_iter = self._staged_raw_predict(X_val, check_input=False)

        # Older versions of GBT had its own loss functions. With the new common
        # private loss function submodule _loss, we often are a factor of 2
        # away from the old version. Here we keep backward compatibility for
        # oob_scores_ and oob_improvement_, even if the old way is quite
        # inconsistent (sometimes the gradient is half the gradient, sometimes
        # not).
        if isinstance(
            self._loss,
            (
                HalfSquaredError,
                HalfBinomialLoss,
            ),
        ):
            factor = 2
        else:
            factor = 1

        # perform boosting iterations
        i = begin_at_stage
        for i in range(begin_at_stage, self.n_estimators):
            # subsampling
            if do_oob:
                sample_mask = _random_sample_mask(n_samples, n_inbag, random_state)
                y_oob_masked = y[~sample_mask]
                sample_weight_oob_masked = sample_weight[~sample_mask]
                if i == 0:  # store the initial loss to compute the OOB score
                    initial_loss = factor * self._loss(
                        y_true=y_oob_masked,
                        raw_prediction=raw_predictions[~sample_mask],
                        sample_weight=sample_weight_oob_masked,
                    )

            # fit next stage of trees
            raw_predictions = self._fit_stage(
                i,
                X,
                y,
                raw_predictions,
                sample_weight,
                sample_mask,
                random_state,
                X_csc=X_csc,
                X_csr=X_csr,
            )

            # track loss
            if do_oob:
                self.train_score_[i] = factor * self._loss(
                    y_true=y[sample_mask],
                    raw_prediction=raw_predictions[sample_mask],
                    sample_weight=sample_weight[sample_mask],
                )
                self.oob_scores_[i] = factor * self._loss(
                    y_true=y_oob_masked,
                    raw_prediction=raw_predictions[~sample_mask],
                    sample_weight=sample_weight_oob_masked,
                )
                previous_loss = initial_loss if i == 0 else self.oob_scores_[i - 1]
                self.oob_improvement_[i] = previous_loss - self.oob_scores_[i]
                self.oob_score_ = self.oob_scores_[-1]
            else:
                # no need to fancy index w/ no subsampling
                self.train_score_[i] = factor * self._loss(
                    y_true=y,
                    raw_prediction=raw_predictions,
                    sample_weight=sample_weight,
                )

            if self.verbose > 0:
                verbose_reporter.update(i, self)

            if monitor is not None:
                early_stopping = monitor(i, self, locals())
                if early_stopping:
                    break

            # We also provide an early stopping based on the score from
            # validation set (X_val, y_val), if n_iter_no_change is set
            if self.n_iter_no_change is not None:
                # By calling next(y_val_pred_iter), we get the predictions
                # for X_val after the addition of the current stage
                validation_loss = factor * self._loss(
                    y_val, next(y_val_pred_iter), sample_weight_val
                )

                # Require validation_score to be better (less) than at least
                # one of the last n_iter_no_change evaluations
                if np.any(validation_loss + self.tol < loss_history):
                    loss_history[i % len(loss_history)] = validation_loss
                else:
                    break

        return i + 1

    def _make_estimator(self, append=True):
        # we don't need _make_estimator
        raise NotImplementedError()

    def _raw_predict_init(self, X):
        """Check input and compute raw predictions of the init estimator."""
        self._check_initialized()
        X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True)
        if self.init_ == "zero":
            raw_predictions = np.zeros(
                shape=(X.shape[0], self.n_trees_per_iteration_), dtype=np.float64
            )
        else:
            raw_predictions = _init_raw_predictions(
                X, self.init_, self._loss, is_classifier(self)
            )
        return raw_predictions

    def _raw_predict(self, X):
        """Return the sum of the trees raw predictions (+ init estimator)."""
        check_is_fitted(self)
        raw_predictions = self._raw_predict_init(X)
        predict_stages(self.estimators_, X, self.learning_rate, raw_predictions)
        return raw_predictions

    def _staged_raw_predict(self, X, check_input=True):
        """Compute raw predictions of ``X`` for each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        check_input : bool, default=True
            If False, the input arrays X will not be checked.

        Returns
        -------
        raw_predictions : generator of ndarray of shape (n_samples, k)
            The raw predictions of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
            Regression and binary classification are special cases with
            ``k == 1``, otherwise ``k==n_classes``.
        """
        if check_input:
            X = validate_data(
                self, X, dtype=DTYPE, order="C", accept_sparse="csr", reset=False
            )
        raw_predictions = self._raw_predict_init(X)
        for i in range(self.estimators_.shape[0]):
            predict_stage(self.estimators_, i, X, self.learning_rate, raw_predictions)
            yield raw_predictions.copy()

    @property
    def feature_importances_(self):
        """The impurity-based feature importances.

        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

        Returns
        -------
        feature_importances_ : ndarray of shape (n_features,)
            The values of this array sum to 1, unless all trees are single node
            trees consisting of only the root node, in which case it will be an
            array of zeros.
        """
        self._check_initialized()

        relevant_trees = [
            tree
            for stage in self.estimators_
            for tree in stage
            if tree.tree_.node_count > 1
        ]
        if not relevant_trees:
            # degenerate case where all trees have only one node
            return np.zeros(shape=self.n_features_in_, dtype=np.float64)

        relevant_feature_importances = [
            tree.tree_.compute_feature_importances(normalize=False)
            for tree in relevant_trees
        ]
        avg_feature_importances = np.mean(
            relevant_feature_importances, axis=0, dtype=np.float64
        )
        return avg_feature_importances / np.sum(avg_feature_importances)

    def _compute_partial_dependence_recursion(self, grid, target_features):
        """Fast partial dependence computation.

        Parameters
        ----------
        grid : ndarray of shape (n_samples, n_target_features), dtype=np.float32
            The grid points on which the partial dependence should be
            evaluated.
        target_features : ndarray of shape (n_target_features,), dtype=np.intp
            The set of target features for which the partial dependence
            should be evaluated.

        Returns
        -------
        averaged_predictions : ndarray of shape \
                (n_trees_per_iteration_, n_samples)
            The value of the partial dependence function on each grid point.
        """
        if self.init is not None:
            warnings.warn(
                "Using recursion method with a non-constant init predictor "
                "will lead to incorrect partial dependence values. "
                "Got init=%s." % self.init,
                UserWarning,
            )
        grid = np.asarray(grid, dtype=DTYPE, order="C")
        n_estimators, n_trees_per_stage = self.estimators_.shape
        averaged_predictions = np.zeros(
            (n_trees_per_stage, grid.shape[0]), dtype=np.float64, order="C"
        )
        target_features = np.asarray(target_features, dtype=np.intp, order="C")

        for stage in range(n_estimators):
            for k in range(n_trees_per_stage):
                tree = self.estimators_[stage, k].tree_
                tree.compute_partial_dependence(
                    grid, target_features, averaged_predictions[k]
                )
        averaged_predictions *= self.learning_rate

        return averaged_predictions

    def apply(self, X):
        """Apply trees in the ensemble to X, return leaf indices.

        .. versionadded:: 0.17

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will
            be converted to a sparse ``csr_matrix``.

        Returns
        -------
        X_leaves : array-like of shape (n_samples, n_estimators, n_classes)
            For each datapoint x in X and for each tree in the ensemble,
            return the index of the leaf x ends up in each estimator.
            In the case of binary classification n_classes is 1.
        """

        self._check_initialized()
        X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True)

        # n_classes will be equal to 1 in the binary classification or the
        # regression case.
        n_estimators, n_classes = self.estimators_.shape
        leaves = np.zeros((X.shape[0], n_estimators, n_classes))

        for i in range(n_estimators):
            for j in range(n_classes):
                estimator = self.estimators_[i, j]
                leaves[:, i, j] = estimator.apply(X, check_input=False)

        return leaves

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.sparse = True
        return tags


class GradientBoostingClassifier(ClassifierMixin, BaseGradientBoosting):
    """Gradient Boosting for classification.

    This algorithm builds an additive model in a forward stage-wise fashion; it
    allows for the optimization of arbitrary differentiable loss functions. In
    each stage ``n_classes_`` regression trees are fit on the negative gradient
    of the loss function, e.g. binary or multiclass log loss. Binary
    classification is a special case where only a single regression tree is
    induced.

    :class:`~sklearn.ensemble.HistGradientBoostingClassifier` is a much faster variant
    of this algorithm for intermediate and large datasets (`n_samples >= 10_000`) and
    supports monotonic constraints.

    Read more in the :ref:`User Guide <gradient_boosting>`.

    Parameters
    ----------
    loss : {'log_loss', 'exponential'}, default='log_loss'
        The loss function to be optimized. 'log_loss' refers to binomial and
        multinomial deviance, the same as used in logistic regression.
        It is a good choice for classification with probabilistic outputs.
        For loss 'exponential', gradient boosting recovers the AdaBoost algorithm.

    learning_rate : float, default=0.1
        Learning rate shrinks the contribution of each tree by `learning_rate`.
        There is a trade-off between learning_rate and n_estimators.
        Values must be in the range `[0.0, inf)`.

    n_estimators : int, default=100
        The number of boosting stages to perform. Gradient boosting
        is fairly robust to over-fitting so a large number usually
        results in better performance.
        Values must be in the range `[1, inf)`.

    subsample : float, default=1.0
        The fraction of samples to be used for fitting the individual base
        learners. If smaller than 1.0 this results in Stochastic Gradient
        Boosting. `subsample` interacts with the parameter `n_estimators`.
        Choosing `subsample < 1.0` leads to a reduction of variance
        and an increase in bias.
        Values must be in the range `(0.0, 1.0]`.

    criterion : {'friedman_mse', 'squared_error'}, default='friedman_mse'
        The function to measure the quality of a split. Supported criteria are
        'friedman_mse' for the mean squared error with improvement score by
        Friedman, 'squared_error' for mean squared error. The default value of
        'friedman_mse' is generally the best as it can provide a better
        approximation in some cases.

        .. versionadded:: 0.18

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, values must be in the range `[2, inf)`.
        - If float, values must be in the range `(0.0, 1.0]` and `min_samples_split`
          will be `ceil(min_samples_split * n_samples)`.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, values must be in the range `[1, inf)`.
        - If float, values must be in the range `(0.0, 1.0)` and `min_samples_leaf`
          will be `ceil(min_samples_leaf * n_samples)`.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.
        Values must be in the range `[0.0, 0.5]`.

    max_depth : int or None, default=3
        Maximum depth of the individual regression estimators. The maximum
        depth limits the number of nodes in the tree. Tune this parameter
        for best performance; the best value depends on the interaction
        of the input variables. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.
        If int, values must be in the range `[1, inf)`.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.
        Values must be in the range `[0.0, inf)`.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    init : estimator or 'zero', default=None
        An estimator object that is used to compute the initial predictions.
        ``init`` has to provide :term:`fit` and :term:`predict_proba`. If
        'zero', the initial raw predictions are set to zero. By default, a
        ``DummyEstimator`` predicting the classes priors is used.

    random_state : int, RandomState instance or None, default=None
        Controls the random seed given to each Tree estimator at each
        boosting iteration.
        In addition, it controls the random permutation of the features at
        each split (see Notes for more details).
        It also controls the random splitting of the training data to obtain a
        validation set if `n_iter_no_change` is not None.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    max_features : {'sqrt', 'log2'}, int or float, default=None
        The number of features to consider when looking for the best split:

        - If int, values must be in the range `[1, inf)`.
        - If float, values must be in the range `(0.0, 1.0]` and the features
          considered at each split will be `max(1, int(max_features * n_features_in_))`.
        - If 'sqrt', then `max_features=sqrt(n_features)`.
        - If 'log2', then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Choosing `max_features < n_features` leads to a reduction of variance
        and an increase in bias.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    verbose : int, default=0
        Enable verbose output. If 1 then it prints progress and performance
        once in a while (the more trees the lower the frequency). If greater
        than 1 then it prints progress and performance for every tree.
        Values must be in the range `[0, inf)`.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        Values must be in the range `[2, inf)`.
        If `None`, then unlimited number of leaf nodes.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just erase the
        previous solution. See :term:`the Glossary <warm_start>`.

    validation_fraction : float, default=0.1
        The proportion of training data to set aside as validation set for
        early stopping. Values must be in the range `(0.0, 1.0)`.
        Only used if ``n_iter_no_change`` is set to an integer.

        .. versionadded:: 0.20

    n_iter_no_change : int, default=None
        ``n_iter_no_change`` is used to decide if early stopping will be used
        to terminate training when validation score is not improving. By
        default it is set to None to disable early stopping. If set to a
        number, it will set aside ``validation_fraction`` size of the training
        data as validation and terminate training when validation score is not
        improving in all of the previous ``n_iter_no_change`` numbers of
        iterations. The split is stratified.
        Values must be in the range `[1, inf)`.
        See
        :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_early_stopping.py`.

        .. versionadded:: 0.20

    tol : float, default=1e-4
        Tolerance for the early stopping. When the loss is not improving
        by at least tol for ``n_iter_no_change`` iterations (if set to a
        number), the training stops.
        Values must be in the range `[0.0, inf)`.

        .. versionadded:: 0.20

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed.
        Values must be in the range `[0.0, inf)`.
        See :ref:`minimal_cost_complexity_pruning` for details. See
        :ref:`sphx_glr_auto_examples_tree_plot_cost_complexity_pruning.py`
        for an example of such pruning.

        .. versionadded:: 0.22

    Attributes
    ----------
    n_estimators_ : int
        The number of estimators as selected by early stopping (if
        ``n_iter_no_change`` is specified). Otherwise it is set to
        ``n_estimators``.

        .. versionadded:: 0.20

    n_trees_per_iteration_ : int
        The number of trees that are built at each iteration. For binary classifiers,
        this is always 1.

        .. versionadded:: 1.4.0

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    oob_improvement_ : ndarray of shape (n_estimators,)
        The improvement in loss on the out-of-bag samples
        relative to the previous iteration.
        ``oob_improvement_[0]`` is the improvement in
        loss of the first stage over the ``init`` estimator.
        Only available if ``subsample < 1.0``.

    oob_scores_ : ndarray of shape (n_estimators,)
        The full history of the loss values on the out-of-bag
        samples. Only available if `subsample < 1.0`.

        .. versionadded:: 1.3

    oob_score_ : float
        The last value of the loss on the out-of-bag samples. It is
        the same as `oob_scores_[-1]`. Only available if `subsample < 1.0`.

        .. versionadded:: 1.3

    train_score_ : ndarray of shape (n_estimators,)
        The i-th score ``train_score_[i]`` is the loss of the
        model at iteration ``i`` on the in-bag sample.
        If ``subsample == 1`` this is the loss on the training data.

    init_ : estimator
        The estimator that provides the initial predictions. Set via the ``init``
        argument.

    estimators_ : ndarray of DecisionTreeRegressor of \
            shape (n_estimators, ``n_trees_per_iteration_``)
        The collection of fitted sub-estimators. ``n_trees_per_iteration_`` is 1 for
        binary classification, otherwise ``n_classes``.

    classes_ : ndarray of shape (n_classes,)
        The classes labels.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_classes_ : int
        The number of classes.

    max_features_ : int
        The inferred value of max_features.

    See Also
    --------
    HistGradientBoostingClassifier : Histogram-based Gradient Boosting
        Classification Tree.
    sklearn.tree.DecisionTreeClassifier : A decision tree classifier.
    RandomForestClassifier : A meta-estimator that fits a number of decision
        tree classifiers on various sub-samples of the dataset and uses
        averaging to improve the predictive accuracy and control over-fitting.
    AdaBoostClassifier : A meta-estimator that begins by fitting a classifier
        on the original dataset and then fits additional copies of the
        classifier on the same dataset where the weights of incorrectly
        classified instances are adjusted such that subsequent classifiers
        focus more on difficult cases.

    Notes
    -----
    The features are always randomly permuted at each split. Therefore,
    the best found split may vary, even with the same training data and
    ``max_features=n_features``, if the improvement of the criterion is
    identical for several splits enumerated during the search of the best
    split. To obtain a deterministic behaviour during fitting,
    ``random_state`` has to be fixed.

    References
    ----------
    J. Friedman, Greedy Function Approximation: A Gradient Boosting
    Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.

    J. Friedman, Stochastic Gradient Boosting, 1999

    T. Hastie, R. Tibshirani and J. Friedman.
    Elements of Statistical Learning Ed. 2, Springer, 2009.

    Examples
    --------
    The following example shows how to fit a gradient boosting classifier with
    100 decision stumps as weak learners.

    >>> from sklearn.datasets import make_hastie_10_2
    >>> from sklearn.ensemble import GradientBoostingClassifier

    >>> X, y = make_hastie_10_2(random_state=0)
    >>> X_train, X_test = X[:2000], X[2000:]
    >>> y_train, y_test = y[:2000], y[2000:]

    >>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
    ...     max_depth=1, random_state=0).fit(X_train, y_train)
    >>> clf.score(X_test, y_test)
    0.913...
    """

    _parameter_constraints: dict = {
        **BaseGradientBoosting._parameter_constraints,
        "loss": [StrOptions({"log_loss", "exponential"})],
        "init": [StrOptions({"zero"}), None, HasMethods(["fit", "predict_proba"])],
    }

    def __init__(
        self,
        *,
        loss="log_loss",
        learning_rate=0.1,
        n_estimators=100,
        subsample=1.0,
        criterion="friedman_mse",
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_depth=3,
        min_impurity_decrease=0.0,
        init=None,
        random_state=None,
        max_features=None,
        verbose=0,
        max_leaf_nodes=None,
        warm_start=False,
        validation_fraction=0.1,
        n_iter_no_change=None,
        tol=1e-4,
        ccp_alpha=0.0,
    ):
        super().__init__(
            loss=loss,
            learning_rate=learning_rate,
            n_estimators=n_estimators,
            criterion=criterion,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_depth=max_depth,
            init=init,
            subsample=subsample,
            max_features=max_features,
            random_state=random_state,
            verbose=verbose,
            max_leaf_nodes=max_leaf_nodes,
            min_impurity_decrease=min_impurity_decrease,
            warm_start=warm_start,
            validation_fraction=validation_fraction,
            n_iter_no_change=n_iter_no_change,
            tol=tol,
            ccp_alpha=ccp_alpha,
        )

    def _encode_y(self, y, sample_weight):
        # encode classes into 0 ... n_classes - 1 and sets attributes classes_
        # and n_trees_per_iteration_
        check_classification_targets(y)

        label_encoder = LabelEncoder()
        encoded_y_int = label_encoder.fit_transform(y)
        self.classes_ = label_encoder.classes_
        n_classes = self.classes_.shape[0]
        # only 1 tree for binary classification. For multiclass classification,
        # we build 1 tree per class.
        self.n_trees_per_iteration_ = 1 if n_classes <= 2 else n_classes
        encoded_y = encoded_y_int.astype(float, copy=False)

        # From here on, it is additional to the HGBT case.
        # expose n_classes_ attribute
        self.n_classes_ = n_classes
        if sample_weight is None:
            n_trim_classes = n_classes
        else:
            n_trim_classes = np.count_nonzero(np.bincount(encoded_y_int, sample_weight))

        if n_trim_classes < 2:
            raise ValueError(
                "y contains %d class after sample_weight "
                "trimmed classes with zero weights, while a "
                "minimum of 2 classes are required." % n_trim_classes
            )
        return encoded_y

    def _get_loss(self, sample_weight):
        if self.loss == "log_loss":
            if self.n_classes_ == 2:
                return HalfBinomialLoss(sample_weight=sample_weight)
            else:
                return HalfMultinomialLoss(
                    sample_weight=sample_weight, n_classes=self.n_classes_
                )
        elif self.loss == "exponential":
            if self.n_classes_ > 2:
                raise ValueError(
                    f"loss='{self.loss}' is only suitable for a binary classification "
                    f"problem, you have n_classes={self.n_classes_}. "
                    "Please use loss='log_loss' instead."
                )
            else:
                return ExponentialLoss(sample_weight=sample_weight)

    def decision_function(self, X):
        """Compute the decision function of ``X``.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        score : ndarray of shape (n_samples, n_classes) or (n_samples,)
            The decision function of the input samples, which corresponds to
            the raw values predicted from the trees of the ensemble . The
            order of the classes corresponds to that in the attribute
            :term:`classes_`. Regression and binary classification produce an
            array of shape (n_samples,).
        """
        X = validate_data(
            self, X, dtype=DTYPE, order="C", accept_sparse="csr", reset=False
        )
        raw_predictions = self._raw_predict(X)
        if raw_predictions.shape[1] == 1:
            return raw_predictions.ravel()
        return raw_predictions

    def staged_decision_function(self, X):
        """Compute decision function of ``X`` for each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Yields
        ------
        score : generator of ndarray of shape (n_samples, k)
            The decision function of the input samples, which corresponds to
            the raw values predicted from the trees of the ensemble . The
            classes corresponds to that in the attribute :term:`classes_`.
            Regression and binary classification are special cases with
            ``k == 1``, otherwise ``k==n_classes``.
        """
        yield from self._staged_raw_predict(X)

    def predict(self, X):
        """Predict class for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            The predicted values.
        """
        raw_predictions = self.decision_function(X)
        if raw_predictions.ndim == 1:  # decision_function already squeezed it
            encoded_classes = (raw_predictions >= 0).astype(int)
        else:
            encoded_classes = np.argmax(raw_predictions, axis=1)
        return self.classes_[encoded_classes]

    def staged_predict(self, X):
        """Predict class at each stage for X.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Yields
        ------
        y : generator of ndarray of shape (n_samples,)
            The predicted value of the input samples.
        """
        if self.n_classes_ == 2:  # n_trees_per_iteration_ = 1
            for raw_predictions in self._staged_raw_predict(X):
                encoded_classes = (raw_predictions.squeeze() >= 0).astype(int)
                yield self.classes_.take(encoded_classes, axis=0)
        else:
            for raw_predictions in self._staged_raw_predict(X):
                encoded_classes = np.argmax(raw_predictions, axis=1)
                yield self.classes_.take(encoded_classes, axis=0)

    def predict_proba(self, X):
        """Predict class probabilities for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes)
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.

        Raises
        ------
        AttributeError
            If the ``loss`` does not support probabilities.
        """
        raw_predictions = self.decision_function(X)
        return self._loss.predict_proba(raw_predictions)

    def predict_log_proba(self, X):
        """Predict class log-probabilities for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes)
            The class log-probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.

        Raises
        ------
        AttributeError
            If the ``loss`` does not support probabilities.
        """
        proba = self.predict_proba(X)
        return np.log(proba)

    def staged_predict_proba(self, X):
        """Predict class probabilities at each stage for X.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Yields
        ------
        y : generator of ndarray of shape (n_samples,)
            The predicted value of the input samples.
        """
        try:
            for raw_predictions in self._staged_raw_predict(X):
                yield self._loss.predict_proba(raw_predictions)
        except NotFittedError:
            raise
        except AttributeError as e:
            raise AttributeError(
                "loss=%r does not support predict_proba" % self.loss
            ) from e


class GradientBoostingRegressor(RegressorMixin, BaseGradientBoosting):
    """Gradient Boosting for regression.

    This estimator builds an additive model in a forward stage-wise fashion; it
    allows for the optimization of arbitrary differentiable loss functions. In
    each stage a regression tree is fit on the negative gradient of the given
    loss function.

    :class:`~sklearn.ensemble.HistGradientBoostingRegressor` is a much faster variant
    of this algorithm for intermediate and large datasets (`n_samples >= 10_000`) and
    supports monotonic constraints.

    Read more in the :ref:`User Guide <gradient_boosting>`.

    Parameters
    ----------
    loss : {'squared_error', 'absolute_error', 'huber', 'quantile'}, \
            default='squared_error'
        Loss function to be optimized. 'squared_error' refers to the squared
        error for regression. 'absolute_error' refers to the absolute error of
        regression and is a robust loss function. 'huber' is a
        combination of the two. 'quantile' allows quantile regression (use
        `alpha` to specify the quantile).
        See
        :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`
        for an example that demonstrates quantile regression for creating
        prediction intervals with `loss='quantile'`.

    learning_rate : float, default=0.1
        Learning rate shrinks the contribution of each tree by `learning_rate`.
        There is a trade-off between learning_rate and n_estimators.
        Values must be in the range `[0.0, inf)`.

    n_estimators : int, default=100
        The number of boosting stages to perform. Gradient boosting
        is fairly robust to over-fitting so a large number usually
        results in better performance.
        Values must be in the range `[1, inf)`.

    subsample : float, default=1.0
        The fraction of samples to be used for fitting the individual base
        learners. If smaller than 1.0 this results in Stochastic Gradient
        Boosting. `subsample` interacts with the parameter `n_estimators`.
        Choosing `subsample < 1.0` leads to a reduction of variance
        and an increase in bias.
        Values must be in the range `(0.0, 1.0]`.

    criterion : {'friedman_mse', 'squared_error'}, default='friedman_mse'
        The function to measure the quality of a split. Supported criteria are
        "friedman_mse" for the mean squared error with improvement score by
        Friedman, "squared_error" for mean squared error. The default value of
        "friedman_mse" is generally the best as it can provide a better
        approximation in some cases.

        .. versionadded:: 0.18

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, values must be in the range `[2, inf)`.
        - If float, values must be in the range `(0.0, 1.0]` and `min_samples_split`
          will be `ceil(min_samples_split * n_samples)`.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, values must be in the range `[1, inf)`.
        - If float, values must be in the range `(0.0, 1.0)` and `min_samples_leaf`
          will be `ceil(min_samples_leaf * n_samples)`.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.
        Values must be in the range `[0.0, 0.5]`.

    max_depth : int or None, default=3
        Maximum depth of the individual regression estimators. The maximum
        depth limits the number of nodes in the tree. Tune this parameter
        for best performance; the best value depends on the interaction
        of the input variables. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.
        If int, values must be in the range `[1, inf)`.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.
        Values must be in the range `[0.0, inf)`.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    init : estimator or 'zero', default=None
        An estimator object that is used to compute the initial predictions.
        ``init`` has to provide :term:`fit` and :term:`predict`. If 'zero', the
        initial raw predictions are set to zero. By default a
        ``DummyEstimator`` is used, predicting either the average target value
        (for loss='squared_error'), or a quantile for the other losses.

    random_state : int, RandomState instance or None, default=None
        Controls the random seed given to each Tree estimator at each
        boosting iteration.
        In addition, it controls the random permutation of the features at
        each split (see Notes for more details).
        It also controls the random splitting of the training data to obtain a
        validation set if `n_iter_no_change` is not None.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    max_features : {'sqrt', 'log2'}, int or float, default=None
        The number of features to consider when looking for the best split:

        - If int, values must be in the range `[1, inf)`.
        - If float, values must be in the range `(0.0, 1.0]` and the features
          considered at each split will be `max(1, int(max_features * n_features_in_))`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Choosing `max_features < n_features` leads to a reduction of variance
        and an increase in bias.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    alpha : float, default=0.9
        The alpha-quantile of the huber loss function and the quantile
        loss function. Only if ``loss='huber'`` or ``loss='quantile'``.
        Values must be in the range `(0.0, 1.0)`.

    verbose : int, default=0
        Enable verbose output. If 1 then it prints progress and performance
        once in a while (the more trees the lower the frequency). If greater
        than 1 then it prints progress and performance for every tree.
        Values must be in the range `[0, inf)`.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        Values must be in the range `[2, inf)`.
        If None, then unlimited number of leaf nodes.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just erase the
        previous solution. See :term:`the Glossary <warm_start>`.

    validation_fraction : float, default=0.1
        The proportion of training data to set aside as validation set for
        early stopping. Values must be in the range `(0.0, 1.0)`.
        Only used if ``n_iter_no_change`` is set to an integer.

        .. versionadded:: 0.20

    n_iter_no_change : int, default=None
        ``n_iter_no_change`` is used to decide if early stopping will be used
        to terminate training when validation score is not improving. By
        default it is set to None to disable early stopping. If set to a
        number, it will set aside ``validation_fraction`` size of the training
        data as validation and terminate training when validation score is not
        improving in all of the previous ``n_iter_no_change`` numbers of
        iterations.
        Values must be in the range `[1, inf)`.
        See
        :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_early_stopping.py`.

        .. versionadded:: 0.20

    tol : float, default=1e-4
        Tolerance for the early stopping. When the loss is not improving
        by at least tol for ``n_iter_no_change`` iterations (if set to a
        number), the training stops.
        Values must be in the range `[0.0, inf)`.

        .. versionadded:: 0.20

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed.
        Values must be in the range `[0.0, inf)`.
        See :ref:`minimal_cost_complexity_pruning` for details. See
        :ref:`sphx_glr_auto_examples_tree_plot_cost_complexity_pruning.py`
        for an example of such pruning.

        .. versionadded:: 0.22

    Attributes
    ----------
    n_estimators_ : int
        The number of estimators as selected by early stopping (if
        ``n_iter_no_change`` is specified). Otherwise it is set to
        ``n_estimators``.

    n_trees_per_iteration_ : int
        The number of trees that are built at each iteration. For regressors, this is
        always 1.

        .. versionadded:: 1.4.0

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    oob_improvement_ : ndarray of shape (n_estimators,)
        The improvement in loss on the out-of-bag samples
        relative to the previous iteration.
        ``oob_improvement_[0]`` is the improvement in
        loss of the first stage over the ``init`` estimator.
        Only available if ``subsample < 1.0``.

    oob_scores_ : ndarray of shape (n_estimators,)
        The full history of the loss values on the out-of-bag
        samples. Only available if `subsample < 1.0`.

        .. versionadded:: 1.3

    oob_score_ : float
        The last value of the loss on the out-of-bag samples. It is
        the same as `oob_scores_[-1]`. Only available if `subsample < 1.0`.

        .. versionadded:: 1.3

    train_score_ : ndarray of shape (n_estimators,)
        The i-th score ``train_score_[i]`` is the loss of the
        model at iteration ``i`` on the in-bag sample.
        If ``subsample == 1`` this is the loss on the training data.

    init_ : estimator
        The estimator that provides the initial predictions. Set via the ``init``
        argument.

    estimators_ : ndarray of DecisionTreeRegressor of shape (n_estimators, 1)
        The collection of fitted sub-estimators.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    max_features_ : int
        The inferred value of max_features.

    See Also
    --------
    HistGradientBoostingRegressor : Histogram-based Gradient Boosting
        Classification Tree.
    sklearn.tree.DecisionTreeRegressor : A decision tree regressor.
    sklearn.ensemble.RandomForestRegressor : A random forest regressor.

    Notes
    -----
    The features are always randomly permuted at each split. Therefore,
    the best found split may vary, even with the same training data and
    ``max_features=n_features``, if the improvement of the criterion is
    identical for several splits enumerated during the search of the best
    split. To obtain a deterministic behaviour during fitting,
    ``random_state`` has to be fixed.

    References
    ----------
    J. Friedman, Greedy Function Approximation: A Gradient Boosting
    Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.

    J. Friedman, Stochastic Gradient Boosting, 1999

    T. Hastie, R. Tibshirani and J. Friedman.
    Elements of Statistical Learning Ed. 2, Springer, 2009.

    Examples
    --------
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.ensemble import GradientBoostingRegressor
    >>> from sklearn.model_selection import train_test_split
    >>> X, y = make_regression(random_state=0)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, random_state=0)
    >>> reg = GradientBoostingRegressor(random_state=0)
    >>> reg.fit(X_train, y_train)
    GradientBoostingRegressor(random_state=0)
    >>> reg.predict(X_test[1:2])
    array([-61...])
    >>> reg.score(X_test, y_test)
    0.4...

    For a detailed example of utilizing
    :class:`~sklearn.ensemble.GradientBoostingRegressor`
    to fit an ensemble of weak predictive models, please refer to
    :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py`.
    """

    _parameter_constraints: dict = {
        **BaseGradientBoosting._parameter_constraints,
        "loss": [StrOptions({"squared_error", "absolute_error", "huber", "quantile"})],
        "init": [StrOptions({"zero"}), None, HasMethods(["fit", "predict"])],
        "alpha": [Interval(Real, 0.0, 1.0, closed="neither")],
    }

    def __init__(
        self,
        *,
        loss="squared_error",
        learning_rate=0.1,
        n_estimators=100,
        subsample=1.0,
        criterion="friedman_mse",
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_depth=3,
        min_impurity_decrease=0.0,
        init=None,
        random_state=None,
        max_features=None,
        alpha=0.9,
        verbose=0,
        max_leaf_nodes=None,
        warm_start=False,
        validation_fraction=0.1,
        n_iter_no_change=None,
        tol=1e-4,
        ccp_alpha=0.0,
    ):
        super().__init__(
            loss=loss,
            learning_rate=learning_rate,
            n_estimators=n_estimators,
            criterion=criterion,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_depth=max_depth,
            init=init,
            subsample=subsample,
            max_features=max_features,
            min_impurity_decrease=min_impurity_decrease,
            random_state=random_state,
            alpha=alpha,
            verbose=verbose,
            max_leaf_nodes=max_leaf_nodes,
            warm_start=warm_start,
            validation_fraction=validation_fraction,
            n_iter_no_change=n_iter_no_change,
            tol=tol,
            ccp_alpha=ccp_alpha,
        )

    def _encode_y(self, y=None, sample_weight=None):
        # Just convert y to the expected dtype
        self.n_trees_per_iteration_ = 1
        y = y.astype(DOUBLE, copy=False)
        return y

    def _get_loss(self, sample_weight):
        if self.loss in ("quantile", "huber"):
            return _LOSSES[self.loss](sample_weight=sample_weight, quantile=self.alpha)
        else:
            return _LOSSES[self.loss](sample_weight=sample_weight)

    def predict(self, X):
        """Predict regression target for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            The predicted values.
        """
        X = validate_data(
            self, X, dtype=DTYPE, order="C", accept_sparse="csr", reset=False
        )
        # In regression we can directly return the raw value from the trees.
        return self._raw_predict(X).ravel()

    def staged_predict(self, X):
        """Predict regression target at each stage for X.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Yields
        ------
        y : generator of ndarray of shape (n_samples,)
            The predicted value of the input samples.
        """
        for raw_predictions in self._staged_raw_predict(X):
            yield raw_predictions.ravel()

    def apply(self, X):
        """Apply trees in the ensemble to X, return leaf indices.

        .. versionadded:: 0.17

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will
            be converted to a sparse ``csr_matrix``.

        Returns
        -------
        X_leaves : array-like of shape (n_samples, n_estimators)
            For each datapoint x in X and for each tree in the ensemble,
            return the index of the leaf x ends up in each estimator.
        """

        leaves = super().apply(X)
        leaves = leaves.reshape(X.shape[0], self.estimators_.shape[0])
        return leaves