File size: 46,391 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
"""Bagging meta-estimator."""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause


import itertools
import numbers
from abc import ABCMeta, abstractmethod
from functools import partial
from numbers import Integral
from warnings import warn

import numpy as np

from ..base import ClassifierMixin, RegressorMixin, _fit_context
from ..metrics import accuracy_score, r2_score
from ..tree import DecisionTreeClassifier, DecisionTreeRegressor
from ..utils import (
    Bunch,
    _safe_indexing,
    check_random_state,
    column_or_1d,
)
from ..utils._mask import indices_to_mask
from ..utils._param_validation import HasMethods, Interval, RealNotInt
from ..utils._tags import get_tags
from ..utils.metadata_routing import (
    MetadataRouter,
    MethodMapping,
    _raise_for_params,
    _routing_enabled,
    get_routing_for_object,
    process_routing,
)
from ..utils.metaestimators import available_if
from ..utils.multiclass import check_classification_targets
from ..utils.parallel import Parallel, delayed
from ..utils.random import sample_without_replacement
from ..utils.validation import (
    _check_method_params,
    _check_sample_weight,
    _deprecate_positional_args,
    _estimator_has,
    check_is_fitted,
    has_fit_parameter,
    validate_data,
)
from ._base import BaseEnsemble, _partition_estimators

__all__ = ["BaggingClassifier", "BaggingRegressor"]

MAX_INT = np.iinfo(np.int32).max


def _generate_indices(random_state, bootstrap, n_population, n_samples):
    """Draw randomly sampled indices."""
    # Draw sample indices
    if bootstrap:
        indices = random_state.randint(0, n_population, n_samples)
    else:
        indices = sample_without_replacement(
            n_population, n_samples, random_state=random_state
        )

    return indices


def _generate_bagging_indices(
    random_state,
    bootstrap_features,
    bootstrap_samples,
    n_features,
    n_samples,
    max_features,
    max_samples,
):
    """Randomly draw feature and sample indices."""
    # Get valid random state
    random_state = check_random_state(random_state)

    # Draw indices
    feature_indices = _generate_indices(
        random_state, bootstrap_features, n_features, max_features
    )
    sample_indices = _generate_indices(
        random_state, bootstrap_samples, n_samples, max_samples
    )

    return feature_indices, sample_indices


def _parallel_build_estimators(
    n_estimators,
    ensemble,
    X,
    y,
    seeds,
    total_n_estimators,
    verbose,
    check_input,
    fit_params,
):
    """Private function used to build a batch of estimators within a job."""
    # Retrieve settings
    n_samples, n_features = X.shape
    max_features = ensemble._max_features
    max_samples = ensemble._max_samples
    bootstrap = ensemble.bootstrap
    bootstrap_features = ensemble.bootstrap_features
    has_check_input = has_fit_parameter(ensemble.estimator_, "check_input")
    requires_feature_indexing = bootstrap_features or max_features != n_features

    # Build estimators
    estimators = []
    estimators_features = []

    # TODO: (slep6) remove if condition for unrouted sample_weight when metadata
    # routing can't be disabled.
    support_sample_weight = has_fit_parameter(ensemble.estimator_, "sample_weight")
    if not _routing_enabled() and (
        not support_sample_weight and fit_params.get("sample_weight") is not None
    ):
        raise ValueError(
            "The base estimator doesn't support sample weight, but sample_weight is "
            "passed to the fit method."
        )

    for i in range(n_estimators):
        if verbose > 1:
            print(
                "Building estimator %d of %d for this parallel run (total %d)..."
                % (i + 1, n_estimators, total_n_estimators)
            )

        random_state = seeds[i]
        estimator = ensemble._make_estimator(append=False, random_state=random_state)

        if has_check_input:
            estimator_fit = partial(estimator.fit, check_input=check_input)
        else:
            estimator_fit = estimator.fit

        # Draw random feature, sample indices
        features, indices = _generate_bagging_indices(
            random_state,
            bootstrap_features,
            bootstrap,
            n_features,
            n_samples,
            max_features,
            max_samples,
        )

        fit_params_ = fit_params.copy()

        # TODO(SLEP6): remove if condition for unrouted sample_weight when metadata
        # routing can't be disabled.
        # 1. If routing is enabled, we will check if the routing supports sample
        # weight and use it if it does.
        # 2. If routing is not enabled, we will check if the base
        # estimator supports sample_weight and use it if it does.

        # Note: Row sampling can be achieved either through setting sample_weight or
        # by indexing. The former is more efficient. Therefore, use this method
        # if possible, otherwise use indexing.
        if _routing_enabled():
            request_or_router = get_routing_for_object(ensemble.estimator_)
            consumes_sample_weight = request_or_router.consumes(
                "fit", ("sample_weight",)
            )
        else:
            consumes_sample_weight = support_sample_weight
        if consumes_sample_weight:
            # Draw sub samples, using sample weights, and then fit
            curr_sample_weight = _check_sample_weight(
                fit_params_.pop("sample_weight", None), X
            ).copy()

            if bootstrap:
                sample_counts = np.bincount(indices, minlength=n_samples)
                curr_sample_weight *= sample_counts
            else:
                not_indices_mask = ~indices_to_mask(indices, n_samples)
                curr_sample_weight[not_indices_mask] = 0

            fit_params_["sample_weight"] = curr_sample_weight
            X_ = X[:, features] if requires_feature_indexing else X
            estimator_fit(X_, y, **fit_params_)
        else:
            # cannot use sample_weight, so use indexing
            y_ = _safe_indexing(y, indices)
            X_ = _safe_indexing(X, indices)
            fit_params_ = _check_method_params(X, params=fit_params_, indices=indices)
            if requires_feature_indexing:
                X_ = X_[:, features]
            estimator_fit(X_, y_, **fit_params_)

        estimators.append(estimator)
        estimators_features.append(features)

    return estimators, estimators_features


def _parallel_predict_proba(estimators, estimators_features, X, n_classes):
    """Private function used to compute (proba-)predictions within a job."""
    n_samples = X.shape[0]
    proba = np.zeros((n_samples, n_classes))

    for estimator, features in zip(estimators, estimators_features):
        if hasattr(estimator, "predict_proba"):
            proba_estimator = estimator.predict_proba(X[:, features])

            if n_classes == len(estimator.classes_):
                proba += proba_estimator

            else:
                proba[:, estimator.classes_] += proba_estimator[
                    :, range(len(estimator.classes_))
                ]

        else:
            # Resort to voting
            predictions = estimator.predict(X[:, features])

            for i in range(n_samples):
                proba[i, predictions[i]] += 1

    return proba


def _parallel_predict_log_proba(estimators, estimators_features, X, n_classes):
    """Private function used to compute log probabilities within a job."""
    n_samples = X.shape[0]
    log_proba = np.empty((n_samples, n_classes))
    log_proba.fill(-np.inf)
    all_classes = np.arange(n_classes, dtype=int)

    for estimator, features in zip(estimators, estimators_features):
        log_proba_estimator = estimator.predict_log_proba(X[:, features])

        if n_classes == len(estimator.classes_):
            log_proba = np.logaddexp(log_proba, log_proba_estimator)

        else:
            log_proba[:, estimator.classes_] = np.logaddexp(
                log_proba[:, estimator.classes_],
                log_proba_estimator[:, range(len(estimator.classes_))],
            )

            missing = np.setdiff1d(all_classes, estimator.classes_)
            log_proba[:, missing] = np.logaddexp(log_proba[:, missing], -np.inf)

    return log_proba


def _parallel_decision_function(estimators, estimators_features, X):
    """Private function used to compute decisions within a job."""
    return sum(
        estimator.decision_function(X[:, features])
        for estimator, features in zip(estimators, estimators_features)
    )


def _parallel_predict_regression(estimators, estimators_features, X):
    """Private function used to compute predictions within a job."""
    return sum(
        estimator.predict(X[:, features])
        for estimator, features in zip(estimators, estimators_features)
    )


class BaseBagging(BaseEnsemble, metaclass=ABCMeta):
    """Base class for Bagging meta-estimator.

    Warning: This class should not be used directly. Use derived classes
    instead.
    """

    _parameter_constraints: dict = {
        "estimator": [HasMethods(["fit", "predict"]), None],
        "n_estimators": [Interval(Integral, 1, None, closed="left")],
        "max_samples": [
            Interval(Integral, 1, None, closed="left"),
            Interval(RealNotInt, 0, 1, closed="right"),
        ],
        "max_features": [
            Interval(Integral, 1, None, closed="left"),
            Interval(RealNotInt, 0, 1, closed="right"),
        ],
        "bootstrap": ["boolean"],
        "bootstrap_features": ["boolean"],
        "oob_score": ["boolean"],
        "warm_start": ["boolean"],
        "n_jobs": [None, Integral],
        "random_state": ["random_state"],
        "verbose": ["verbose"],
    }

    @abstractmethod
    def __init__(
        self,
        estimator=None,
        n_estimators=10,
        *,
        max_samples=1.0,
        max_features=1.0,
        bootstrap=True,
        bootstrap_features=False,
        oob_score=False,
        warm_start=False,
        n_jobs=None,
        random_state=None,
        verbose=0,
    ):
        super().__init__(
            estimator=estimator,
            n_estimators=n_estimators,
        )
        self.max_samples = max_samples
        self.max_features = max_features
        self.bootstrap = bootstrap
        self.bootstrap_features = bootstrap_features
        self.oob_score = oob_score
        self.warm_start = warm_start
        self.n_jobs = n_jobs
        self.random_state = random_state
        self.verbose = verbose

    # TODO(1.7): remove `sample_weight` from the signature after deprecation
    # cycle; pop it from `fit_params` before the `_raise_for_params` check and
    # reinsert later, for backwards compatibility
    @_deprecate_positional_args(version="1.7")
    @_fit_context(
        # BaseBagging.estimator is not validated yet
        prefer_skip_nested_validation=False
    )
    def fit(self, X, y, *, sample_weight=None, **fit_params):
        """Build a Bagging ensemble of estimators from the training set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrices are accepted only if
            they are supported by the base estimator.

        y : array-like of shape (n_samples,)
            The target values (class labels in classification, real numbers in
            regression).

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted.
            Note that this is supported only if the base estimator supports
            sample weighting.

        **fit_params : dict
            Parameters to pass to the underlying estimators.

            .. versionadded:: 1.5

                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        self : object
            Fitted estimator.
        """
        _raise_for_params(fit_params, self, "fit")

        # Convert data (X is required to be 2d and indexable)
        X, y = validate_data(
            self,
            X,
            y,
            accept_sparse=["csr", "csc"],
            dtype=None,
            ensure_all_finite=False,
            multi_output=True,
        )

        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
            fit_params["sample_weight"] = sample_weight

        return self._fit(X, y, max_samples=self.max_samples, **fit_params)

    def _parallel_args(self):
        return {}

    def _fit(
        self,
        X,
        y,
        max_samples=None,
        max_depth=None,
        check_input=True,
        **fit_params,
    ):
        """Build a Bagging ensemble of estimators from the training
           set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrices are accepted only if
            they are supported by the base estimator.

        y : array-like of shape (n_samples,)
            The target values (class labels in classification, real numbers in
            regression).

        max_samples : int or float, default=None
            Argument to use instead of self.max_samples.

        max_depth : int, default=None
            Override value used when constructing base estimator. Only
            supported if the base estimator has a max_depth parameter.

        check_input : bool, default=True
            Override value used when fitting base estimator. Only supported
            if the base estimator has a check_input parameter for fit function.
            If the meta-estimator already checks the input, set this value to
            False to prevent redundant input validation.

        **fit_params : dict, default=None
            Parameters to pass to the :term:`fit` method of the underlying
            estimator.

        Returns
        -------
        self : object
            Fitted estimator.
        """
        random_state = check_random_state(self.random_state)

        # Remap output
        n_samples = X.shape[0]
        self._n_samples = n_samples
        y = self._validate_y(y)

        # Check parameters
        self._validate_estimator(self._get_estimator())

        if _routing_enabled():
            routed_params = process_routing(self, "fit", **fit_params)
        else:
            routed_params = Bunch()
            routed_params.estimator = Bunch(fit=fit_params)
            if "sample_weight" in fit_params:
                routed_params.estimator.fit["sample_weight"] = fit_params[
                    "sample_weight"
                ]

        if max_depth is not None:
            self.estimator_.max_depth = max_depth

        # Validate max_samples
        if max_samples is None:
            max_samples = self.max_samples
        elif not isinstance(max_samples, numbers.Integral):
            max_samples = int(max_samples * X.shape[0])

        if max_samples > X.shape[0]:
            raise ValueError("max_samples must be <= n_samples")

        # Store validated integer row sampling value
        self._max_samples = max_samples

        # Validate max_features
        if isinstance(self.max_features, numbers.Integral):
            max_features = self.max_features
        elif isinstance(self.max_features, float):
            max_features = int(self.max_features * self.n_features_in_)

        if max_features > self.n_features_in_:
            raise ValueError("max_features must be <= n_features")

        max_features = max(1, int(max_features))

        # Store validated integer feature sampling value
        self._max_features = max_features

        # Other checks
        if not self.bootstrap and self.oob_score:
            raise ValueError("Out of bag estimation only available if bootstrap=True")

        if self.warm_start and self.oob_score:
            raise ValueError("Out of bag estimate only available if warm_start=False")

        if hasattr(self, "oob_score_") and self.warm_start:
            del self.oob_score_

        if not self.warm_start or not hasattr(self, "estimators_"):
            # Free allocated memory, if any
            self.estimators_ = []
            self.estimators_features_ = []

        n_more_estimators = self.n_estimators - len(self.estimators_)

        if n_more_estimators < 0:
            raise ValueError(
                "n_estimators=%d must be larger or equal to "
                "len(estimators_)=%d when warm_start==True"
                % (self.n_estimators, len(self.estimators_))
            )

        elif n_more_estimators == 0:
            warn(
                "Warm-start fitting without increasing n_estimators does not "
                "fit new trees."
            )
            return self

        # Parallel loop
        n_jobs, n_estimators, starts = _partition_estimators(
            n_more_estimators, self.n_jobs
        )
        total_n_estimators = sum(n_estimators)

        # Advance random state to state after training
        # the first n_estimators
        if self.warm_start and len(self.estimators_) > 0:
            random_state.randint(MAX_INT, size=len(self.estimators_))

        seeds = random_state.randint(MAX_INT, size=n_more_estimators)
        self._seeds = seeds

        all_results = Parallel(
            n_jobs=n_jobs, verbose=self.verbose, **self._parallel_args()
        )(
            delayed(_parallel_build_estimators)(
                n_estimators[i],
                self,
                X,
                y,
                seeds[starts[i] : starts[i + 1]],
                total_n_estimators,
                verbose=self.verbose,
                check_input=check_input,
                fit_params=routed_params.estimator.fit,
            )
            for i in range(n_jobs)
        )

        # Reduce
        self.estimators_ += list(
            itertools.chain.from_iterable(t[0] for t in all_results)
        )
        self.estimators_features_ += list(
            itertools.chain.from_iterable(t[1] for t in all_results)
        )

        if self.oob_score:
            self._set_oob_score(X, y)

        return self

    @abstractmethod
    def _set_oob_score(self, X, y):
        """Calculate out of bag predictions and score."""

    def _validate_y(self, y):
        if len(y.shape) == 1 or y.shape[1] == 1:
            return column_or_1d(y, warn=True)
        return y

    def _get_estimators_indices(self):
        # Get drawn indices along both sample and feature axes
        for seed in self._seeds:
            # Operations accessing random_state must be performed identically
            # to those in `_parallel_build_estimators()`
            feature_indices, sample_indices = _generate_bagging_indices(
                seed,
                self.bootstrap_features,
                self.bootstrap,
                self.n_features_in_,
                self._n_samples,
                self._max_features,
                self._max_samples,
            )

            yield feature_indices, sample_indices

    @property
    def estimators_samples_(self):
        """
        The subset of drawn samples for each base estimator.

        Returns a dynamically generated list of indices identifying
        the samples used for fitting each member of the ensemble, i.e.,
        the in-bag samples.

        Note: the list is re-created at each call to the property in order
        to reduce the object memory footprint by not storing the sampling
        data. Thus fetching the property may be slower than expected.
        """
        return [sample_indices for _, sample_indices in self._get_estimators_indices()]

    def get_metadata_routing(self):
        """Get metadata routing of this object.

        Please check :ref:`User Guide <metadata_routing>` on how the routing
        mechanism works.

        .. versionadded:: 1.5

        Returns
        -------
        routing : MetadataRouter
            A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
            routing information.
        """
        router = MetadataRouter(owner=self.__class__.__name__)
        router.add(
            estimator=self._get_estimator(),
            method_mapping=MethodMapping().add(callee="fit", caller="fit"),
        )
        return router

    @abstractmethod
    def _get_estimator(self):
        """Resolve which estimator to return."""

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.sparse = get_tags(self._get_estimator()).input_tags.sparse
        tags.input_tags.allow_nan = get_tags(self._get_estimator()).input_tags.allow_nan
        return tags


class BaggingClassifier(ClassifierMixin, BaseBagging):
    """A Bagging classifier.

    A Bagging classifier is an ensemble meta-estimator that fits base
    classifiers each on random subsets of the original dataset and then
    aggregate their individual predictions (either by voting or by averaging)
    to form a final prediction. Such a meta-estimator can typically be used as
    a way to reduce the variance of a black-box estimator (e.g., a decision
    tree), by introducing randomization into its construction procedure and
    then making an ensemble out of it.

    This algorithm encompasses several works from the literature. When random
    subsets of the dataset are drawn as random subsets of the samples, then
    this algorithm is known as Pasting [1]_. If samples are drawn with
    replacement, then the method is known as Bagging [2]_. When random subsets
    of the dataset are drawn as random subsets of the features, then the method
    is known as Random Subspaces [3]_. Finally, when base estimators are built
    on subsets of both samples and features, then the method is known as
    Random Patches [4]_.

    Read more in the :ref:`User Guide <bagging>`.

    .. versionadded:: 0.15

    Parameters
    ----------
    estimator : object, default=None
        The base estimator to fit on random subsets of the dataset.
        If None, then the base estimator is a
        :class:`~sklearn.tree.DecisionTreeClassifier`.

        .. versionadded:: 1.2
           `base_estimator` was renamed to `estimator`.

    n_estimators : int, default=10
        The number of base estimators in the ensemble.

    max_samples : int or float, default=1.0
        The number of samples to draw from X to train each base estimator (with
        replacement by default, see `bootstrap` for more details).

        - If int, then draw `max_samples` samples.
        - If float, then draw `max_samples * X.shape[0]` samples.

    max_features : int or float, default=1.0
        The number of features to draw from X to train each base estimator (
        without replacement by default, see `bootstrap_features` for more
        details).

        - If int, then draw `max_features` features.
        - If float, then draw `max(1, int(max_features * n_features_in_))` features.

    bootstrap : bool, default=True
        Whether samples are drawn with replacement. If False, sampling
        without replacement is performed.

    bootstrap_features : bool, default=False
        Whether features are drawn with replacement.

    oob_score : bool, default=False
        Whether to use out-of-bag samples to estimate
        the generalization error. Only available if bootstrap=True.

    warm_start : bool, default=False
        When set to True, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit
        a whole new ensemble. See :term:`the Glossary <warm_start>`.

        .. versionadded:: 0.17
           *warm_start* constructor parameter.

    n_jobs : int, default=None
        The number of jobs to run in parallel for both :meth:`fit` and
        :meth:`predict`. ``None`` means 1 unless in a
        :obj:`joblib.parallel_backend` context. ``-1`` means using all
        processors. See :term:`Glossary <n_jobs>` for more details.

    random_state : int, RandomState instance or None, default=None
        Controls the random resampling of the original dataset
        (sample wise and feature wise).
        If the base estimator accepts a `random_state` attribute, a different
        seed is generated for each instance in the ensemble.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    verbose : int, default=0
        Controls the verbosity when fitting and predicting.

    Attributes
    ----------
    estimator_ : estimator
        The base estimator from which the ensemble is grown.

        .. versionadded:: 1.2
           `base_estimator_` was renamed to `estimator_`.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    estimators_ : list of estimators
        The collection of fitted base estimators.

    estimators_samples_ : list of arrays
        The subset of drawn samples (i.e., the in-bag samples) for each base
        estimator. Each subset is defined by an array of the indices selected.

    estimators_features_ : list of arrays
        The subset of drawn features for each base estimator.

    classes_ : ndarray of shape (n_classes,)
        The classes labels.

    n_classes_ : int or list
        The number of classes.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.
        This attribute exists only when ``oob_score`` is True.

    oob_decision_function_ : ndarray of shape (n_samples, n_classes)
        Decision function computed with out-of-bag estimate on the training
        set. If n_estimators is small it might be possible that a data point
        was never left out during the bootstrap. In this case,
        `oob_decision_function_` might contain NaN. This attribute exists
        only when ``oob_score`` is True.

    See Also
    --------
    BaggingRegressor : A Bagging regressor.

    References
    ----------

    .. [1] L. Breiman, "Pasting small votes for classification in large
           databases and on-line", Machine Learning, 36(1), 85-103, 1999.

    .. [2] L. Breiman, "Bagging predictors", Machine Learning, 24(2), 123-140,
           1996.

    .. [3] T. Ho, "The random subspace method for constructing decision
           forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844,
           1998.

    .. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine
           Learning and Knowledge Discovery in Databases, 346-361, 2012.

    Examples
    --------
    >>> from sklearn.svm import SVC
    >>> from sklearn.ensemble import BaggingClassifier
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_samples=100, n_features=4,
    ...                            n_informative=2, n_redundant=0,
    ...                            random_state=0, shuffle=False)
    >>> clf = BaggingClassifier(estimator=SVC(),
    ...                         n_estimators=10, random_state=0).fit(X, y)
    >>> clf.predict([[0, 0, 0, 0]])
    array([1])
    """

    def __init__(
        self,
        estimator=None,
        n_estimators=10,
        *,
        max_samples=1.0,
        max_features=1.0,
        bootstrap=True,
        bootstrap_features=False,
        oob_score=False,
        warm_start=False,
        n_jobs=None,
        random_state=None,
        verbose=0,
    ):
        super().__init__(
            estimator=estimator,
            n_estimators=n_estimators,
            max_samples=max_samples,
            max_features=max_features,
            bootstrap=bootstrap,
            bootstrap_features=bootstrap_features,
            oob_score=oob_score,
            warm_start=warm_start,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
        )

    def _get_estimator(self):
        """Resolve which estimator to return (default is DecisionTreeClassifier)"""
        if self.estimator is None:
            return DecisionTreeClassifier()
        return self.estimator

    def _set_oob_score(self, X, y):
        n_samples = y.shape[0]
        n_classes_ = self.n_classes_

        predictions = np.zeros((n_samples, n_classes_))

        for estimator, samples, features in zip(
            self.estimators_, self.estimators_samples_, self.estimators_features_
        ):
            # Create mask for OOB samples
            mask = ~indices_to_mask(samples, n_samples)

            if hasattr(estimator, "predict_proba"):
                predictions[mask, :] += estimator.predict_proba(
                    (X[mask, :])[:, features]
                )

            else:
                p = estimator.predict((X[mask, :])[:, features])
                j = 0

                for i in range(n_samples):
                    if mask[i]:
                        predictions[i, p[j]] += 1
                        j += 1

        if (predictions.sum(axis=1) == 0).any():
            warn(
                "Some inputs do not have OOB scores. "
                "This probably means too few estimators were used "
                "to compute any reliable oob estimates."
            )

        oob_decision_function = predictions / predictions.sum(axis=1)[:, np.newaxis]
        oob_score = accuracy_score(y, np.argmax(predictions, axis=1))

        self.oob_decision_function_ = oob_decision_function
        self.oob_score_ = oob_score

    def _validate_y(self, y):
        y = column_or_1d(y, warn=True)
        check_classification_targets(y)
        self.classes_, y = np.unique(y, return_inverse=True)
        self.n_classes_ = len(self.classes_)

        return y

    def predict(self, X):
        """Predict class for X.

        The predicted class of an input sample is computed as the class with
        the highest mean predicted probability. If base estimators do not
        implement a ``predict_proba`` method, then it resorts to voting.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrices are accepted only if
            they are supported by the base estimator.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            The predicted classes.
        """
        predicted_probabilitiy = self.predict_proba(X)
        return self.classes_.take((np.argmax(predicted_probabilitiy, axis=1)), axis=0)

    def predict_proba(self, X):
        """Predict class probabilities for X.

        The predicted class probabilities of an input sample is computed as
        the mean predicted class probabilities of the base estimators in the
        ensemble. If base estimators do not implement a ``predict_proba``
        method, then it resorts to voting and the predicted class probabilities
        of an input sample represents the proportion of estimators predicting
        each class.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrices are accepted only if
            they are supported by the base estimator.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes)
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        check_is_fitted(self)
        # Check data
        X = validate_data(
            self,
            X,
            accept_sparse=["csr", "csc"],
            dtype=None,
            ensure_all_finite=False,
            reset=False,
        )

        # Parallel loop
        n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)

        all_proba = Parallel(
            n_jobs=n_jobs, verbose=self.verbose, **self._parallel_args()
        )(
            delayed(_parallel_predict_proba)(
                self.estimators_[starts[i] : starts[i + 1]],
                self.estimators_features_[starts[i] : starts[i + 1]],
                X,
                self.n_classes_,
            )
            for i in range(n_jobs)
        )

        # Reduce
        proba = sum(all_proba) / self.n_estimators

        return proba

    def predict_log_proba(self, X):
        """Predict class log-probabilities for X.

        The predicted class log-probabilities of an input sample is computed as
        the log of the mean predicted class probabilities of the base
        estimators in the ensemble.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrices are accepted only if
            they are supported by the base estimator.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes)
            The class log-probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        check_is_fitted(self)
        if hasattr(self.estimator_, "predict_log_proba"):
            # Check data
            X = validate_data(
                self,
                X,
                accept_sparse=["csr", "csc"],
                dtype=None,
                ensure_all_finite=False,
                reset=False,
            )

            # Parallel loop
            n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)

            all_log_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
                delayed(_parallel_predict_log_proba)(
                    self.estimators_[starts[i] : starts[i + 1]],
                    self.estimators_features_[starts[i] : starts[i + 1]],
                    X,
                    self.n_classes_,
                )
                for i in range(n_jobs)
            )

            # Reduce
            log_proba = all_log_proba[0]

            for j in range(1, len(all_log_proba)):
                log_proba = np.logaddexp(log_proba, all_log_proba[j])

            log_proba -= np.log(self.n_estimators)

        else:
            log_proba = np.log(self.predict_proba(X))

        return log_proba

    @available_if(
        _estimator_has("decision_function", delegates=("estimators_", "estimator"))
    )
    def decision_function(self, X):
        """Average of the decision functions of the base classifiers.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrices are accepted only if
            they are supported by the base estimator.

        Returns
        -------
        score : ndarray of shape (n_samples, k)
            The decision function of the input samples. The columns correspond
            to the classes in sorted order, as they appear in the attribute
            ``classes_``. Regression and binary classification are special
            cases with ``k == 1``, otherwise ``k==n_classes``.
        """
        check_is_fitted(self)

        # Check data
        X = validate_data(
            self,
            X,
            accept_sparse=["csr", "csc"],
            dtype=None,
            ensure_all_finite=False,
            reset=False,
        )

        # Parallel loop
        n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)

        all_decisions = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
            delayed(_parallel_decision_function)(
                self.estimators_[starts[i] : starts[i + 1]],
                self.estimators_features_[starts[i] : starts[i + 1]],
                X,
            )
            for i in range(n_jobs)
        )

        # Reduce
        decisions = sum(all_decisions) / self.n_estimators

        return decisions


class BaggingRegressor(RegressorMixin, BaseBagging):
    """A Bagging regressor.

    A Bagging regressor is an ensemble meta-estimator that fits base
    regressors each on random subsets of the original dataset and then
    aggregate their individual predictions (either by voting or by averaging)
    to form a final prediction. Such a meta-estimator can typically be used as
    a way to reduce the variance of a black-box estimator (e.g., a decision
    tree), by introducing randomization into its construction procedure and
    then making an ensemble out of it.

    This algorithm encompasses several works from the literature. When random
    subsets of the dataset are drawn as random subsets of the samples, then
    this algorithm is known as Pasting [1]_. If samples are drawn with
    replacement, then the method is known as Bagging [2]_. When random subsets
    of the dataset are drawn as random subsets of the features, then the method
    is known as Random Subspaces [3]_. Finally, when base estimators are built
    on subsets of both samples and features, then the method is known as
    Random Patches [4]_.

    Read more in the :ref:`User Guide <bagging>`.

    .. versionadded:: 0.15

    Parameters
    ----------
    estimator : object, default=None
        The base estimator to fit on random subsets of the dataset.
        If None, then the base estimator is a
        :class:`~sklearn.tree.DecisionTreeRegressor`.

        .. versionadded:: 1.2
           `base_estimator` was renamed to `estimator`.

    n_estimators : int, default=10
        The number of base estimators in the ensemble.

    max_samples : int or float, default=1.0
        The number of samples to draw from X to train each base estimator (with
        replacement by default, see `bootstrap` for more details).

        - If int, then draw `max_samples` samples.
        - If float, then draw `max_samples * X.shape[0]` samples.

    max_features : int or float, default=1.0
        The number of features to draw from X to train each base estimator (
        without replacement by default, see `bootstrap_features` for more
        details).

        - If int, then draw `max_features` features.
        - If float, then draw `max(1, int(max_features * n_features_in_))` features.

    bootstrap : bool, default=True
        Whether samples are drawn with replacement. If False, sampling
        without replacement is performed.

    bootstrap_features : bool, default=False
        Whether features are drawn with replacement.

    oob_score : bool, default=False
        Whether to use out-of-bag samples to estimate
        the generalization error. Only available if bootstrap=True.

    warm_start : bool, default=False
        When set to True, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit
        a whole new ensemble. See :term:`the Glossary <warm_start>`.

    n_jobs : int, default=None
        The number of jobs to run in parallel for both :meth:`fit` and
        :meth:`predict`. ``None`` means 1 unless in a
        :obj:`joblib.parallel_backend` context. ``-1`` means using all
        processors. See :term:`Glossary <n_jobs>` for more details.

    random_state : int, RandomState instance or None, default=None
        Controls the random resampling of the original dataset
        (sample wise and feature wise).
        If the base estimator accepts a `random_state` attribute, a different
        seed is generated for each instance in the ensemble.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    verbose : int, default=0
        Controls the verbosity when fitting and predicting.

    Attributes
    ----------
    estimator_ : estimator
        The base estimator from which the ensemble is grown.

        .. versionadded:: 1.2
           `base_estimator_` was renamed to `estimator_`.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    estimators_ : list of estimators
        The collection of fitted sub-estimators.

    estimators_samples_ : list of arrays
        The subset of drawn samples (i.e., the in-bag samples) for each base
        estimator. Each subset is defined by an array of the indices selected.

    estimators_features_ : list of arrays
        The subset of drawn features for each base estimator.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.
        This attribute exists only when ``oob_score`` is True.

    oob_prediction_ : ndarray of shape (n_samples,)
        Prediction computed with out-of-bag estimate on the training
        set. If n_estimators is small it might be possible that a data point
        was never left out during the bootstrap. In this case,
        `oob_prediction_` might contain NaN. This attribute exists only
        when ``oob_score`` is True.

    See Also
    --------
    BaggingClassifier : A Bagging classifier.

    References
    ----------

    .. [1] L. Breiman, "Pasting small votes for classification in large
           databases and on-line", Machine Learning, 36(1), 85-103, 1999.

    .. [2] L. Breiman, "Bagging predictors", Machine Learning, 24(2), 123-140,
           1996.

    .. [3] T. Ho, "The random subspace method for constructing decision
           forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844,
           1998.

    .. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine
           Learning and Knowledge Discovery in Databases, 346-361, 2012.

    Examples
    --------
    >>> from sklearn.svm import SVR
    >>> from sklearn.ensemble import BaggingRegressor
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(n_samples=100, n_features=4,
    ...                        n_informative=2, n_targets=1,
    ...                        random_state=0, shuffle=False)
    >>> regr = BaggingRegressor(estimator=SVR(),
    ...                         n_estimators=10, random_state=0).fit(X, y)
    >>> regr.predict([[0, 0, 0, 0]])
    array([-2.8720...])
    """

    def __init__(
        self,
        estimator=None,
        n_estimators=10,
        *,
        max_samples=1.0,
        max_features=1.0,
        bootstrap=True,
        bootstrap_features=False,
        oob_score=False,
        warm_start=False,
        n_jobs=None,
        random_state=None,
        verbose=0,
    ):
        super().__init__(
            estimator=estimator,
            n_estimators=n_estimators,
            max_samples=max_samples,
            max_features=max_features,
            bootstrap=bootstrap,
            bootstrap_features=bootstrap_features,
            oob_score=oob_score,
            warm_start=warm_start,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
        )

    def predict(self, X):
        """Predict regression target for X.

        The predicted regression target of an input sample is computed as the
        mean predicted regression targets of the estimators in the ensemble.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrices are accepted only if
            they are supported by the base estimator.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            The predicted values.
        """
        check_is_fitted(self)
        # Check data
        X = validate_data(
            self,
            X,
            accept_sparse=["csr", "csc"],
            dtype=None,
            ensure_all_finite=False,
            reset=False,
        )

        # Parallel loop
        n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)

        all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
            delayed(_parallel_predict_regression)(
                self.estimators_[starts[i] : starts[i + 1]],
                self.estimators_features_[starts[i] : starts[i + 1]],
                X,
            )
            for i in range(n_jobs)
        )

        # Reduce
        y_hat = sum(all_y_hat) / self.n_estimators

        return y_hat

    def _set_oob_score(self, X, y):
        n_samples = y.shape[0]

        predictions = np.zeros((n_samples,))
        n_predictions = np.zeros((n_samples,))

        for estimator, samples, features in zip(
            self.estimators_, self.estimators_samples_, self.estimators_features_
        ):
            # Create mask for OOB samples
            mask = ~indices_to_mask(samples, n_samples)

            predictions[mask] += estimator.predict((X[mask, :])[:, features])
            n_predictions[mask] += 1

        if (n_predictions == 0).any():
            warn(
                "Some inputs do not have OOB scores. "
                "This probably means too few estimators were used "
                "to compute any reliable oob estimates."
            )
            n_predictions[n_predictions == 0] = 1

        predictions /= n_predictions

        self.oob_prediction_ = predictions
        self.oob_score_ = r2_score(y, predictions)

    def _get_estimator(self):
        """Resolve which estimator to return (default is DecisionTreeClassifier)"""
        if self.estimator is None:
            return DecisionTreeRegressor()
        return self.estimator