File size: 34,668 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 |
"""Principal Component Analysis."""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
from math import log, sqrt
from numbers import Integral, Real
import numpy as np
from scipy import linalg
from scipy.sparse import issparse
from scipy.sparse.linalg import svds
from scipy.special import gammaln
from ..base import _fit_context
from ..utils import check_random_state
from ..utils._arpack import _init_arpack_v0
from ..utils._array_api import _convert_to_numpy, get_namespace
from ..utils._param_validation import Interval, RealNotInt, StrOptions
from ..utils.extmath import fast_logdet, randomized_svd, stable_cumsum, svd_flip
from ..utils.sparsefuncs import _implicit_column_offset, mean_variance_axis
from ..utils.validation import check_is_fitted, validate_data
from ._base import _BasePCA
def _assess_dimension(spectrum, rank, n_samples):
"""Compute the log-likelihood of a rank ``rank`` dataset.
The dataset is assumed to be embedded in gaussian noise of shape(n,
dimf) having spectrum ``spectrum``. This implements the method of
T. P. Minka.
Parameters
----------
spectrum : ndarray of shape (n_features,)
Data spectrum.
rank : int
Tested rank value. It should be strictly lower than n_features,
otherwise the method isn't specified (division by zero in equation
(31) from the paper).
n_samples : int
Number of samples.
Returns
-------
ll : float
The log-likelihood.
References
----------
This implements the method of `Thomas P. Minka:
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604
<https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf>`_
"""
xp, _ = get_namespace(spectrum)
n_features = spectrum.shape[0]
if not 1 <= rank < n_features:
raise ValueError("the tested rank should be in [1, n_features - 1]")
eps = 1e-15
if spectrum[rank - 1] < eps:
# When the tested rank is associated with a small eigenvalue, there's
# no point in computing the log-likelihood: it's going to be very
# small and won't be the max anyway. Also, it can lead to numerical
# issues below when computing pa, in particular in log((spectrum[i] -
# spectrum[j]) because this will take the log of something very small.
return -xp.inf
pu = -rank * log(2.0)
for i in range(1, rank + 1):
pu += (
gammaln((n_features - i + 1) / 2.0)
- log(xp.pi) * (n_features - i + 1) / 2.0
)
pl = xp.sum(xp.log(spectrum[:rank]))
pl = -pl * n_samples / 2.0
v = max(eps, xp.sum(spectrum[rank:]) / (n_features - rank))
pv = -log(v) * n_samples * (n_features - rank) / 2.0
m = n_features * rank - rank * (rank + 1.0) / 2.0
pp = log(2.0 * xp.pi) * (m + rank) / 2.0
pa = 0.0
spectrum_ = xp.asarray(spectrum, copy=True)
spectrum_[rank:n_features] = v
for i in range(rank):
for j in range(i + 1, spectrum.shape[0]):
pa += log(
(spectrum[i] - spectrum[j]) * (1.0 / spectrum_[j] - 1.0 / spectrum_[i])
) + log(n_samples)
ll = pu + pl + pv + pp - pa / 2.0 - rank * log(n_samples) / 2.0
return ll
def _infer_dimension(spectrum, n_samples):
"""Infers the dimension of a dataset with a given spectrum.
The returned value will be in [1, n_features - 1].
"""
xp, _ = get_namespace(spectrum)
ll = xp.empty_like(spectrum)
ll[0] = -xp.inf # we don't want to return n_components = 0
for rank in range(1, spectrum.shape[0]):
ll[rank] = _assess_dimension(spectrum, rank, n_samples)
return xp.argmax(ll)
class PCA(_BasePCA):
"""Principal component analysis (PCA).
Linear dimensionality reduction using Singular Value Decomposition of the
data to project it to a lower dimensional space. The input data is centered
but not scaled for each feature before applying the SVD.
It uses the LAPACK implementation of the full SVD or a randomized truncated
SVD by the method of Halko et al. 2009, depending on the shape of the input
data and the number of components to extract.
With sparse inputs, the ARPACK implementation of the truncated SVD can be
used (i.e. through :func:`scipy.sparse.linalg.svds`). Alternatively, one
may consider :class:`TruncatedSVD` where the data are not centered.
Notice that this class only supports sparse inputs for some solvers such as
"arpack" and "covariance_eigh". See :class:`TruncatedSVD` for an
alternative with sparse data.
For a usage example, see
:ref:`sphx_glr_auto_examples_decomposition_plot_pca_iris.py`
Read more in the :ref:`User Guide <PCA>`.
Parameters
----------
n_components : int, float or 'mle', default=None
Number of components to keep.
if n_components is not set all components are kept::
n_components == min(n_samples, n_features)
If ``n_components == 'mle'`` and ``svd_solver == 'full'``, Minka's
MLE is used to guess the dimension. Use of ``n_components == 'mle'``
will interpret ``svd_solver == 'auto'`` as ``svd_solver == 'full'``.
If ``0 < n_components < 1`` and ``svd_solver == 'full'``, select the
number of components such that the amount of variance that needs to be
explained is greater than the percentage specified by n_components.
If ``svd_solver == 'arpack'``, the number of components must be
strictly less than the minimum of n_features and n_samples.
Hence, the None case results in::
n_components == min(n_samples, n_features) - 1
copy : bool, default=True
If False, data passed to fit are overwritten and running
fit(X).transform(X) will not yield the expected results,
use fit_transform(X) instead.
whiten : bool, default=False
When True (False by default) the `components_` vectors are multiplied
by the square root of n_samples and then divided by the singular values
to ensure uncorrelated outputs with unit component-wise variances.
Whitening will remove some information from the transformed signal
(the relative variance scales of the components) but can sometime
improve the predictive accuracy of the downstream estimators by
making their data respect some hard-wired assumptions.
svd_solver : {'auto', 'full', 'covariance_eigh', 'arpack', 'randomized'},\
default='auto'
"auto" :
The solver is selected by a default 'auto' policy is based on `X.shape` and
`n_components`: if the input data has fewer than 1000 features and
more than 10 times as many samples, then the "covariance_eigh"
solver is used. Otherwise, if the input data is larger than 500x500
and the number of components to extract is lower than 80% of the
smallest dimension of the data, then the more efficient
"randomized" method is selected. Otherwise the exact "full" SVD is
computed and optionally truncated afterwards.
"full" :
Run exact full SVD calling the standard LAPACK solver via
`scipy.linalg.svd` and select the components by postprocessing
"covariance_eigh" :
Precompute the covariance matrix (on centered data), run a
classical eigenvalue decomposition on the covariance matrix
typically using LAPACK and select the components by postprocessing.
This solver is very efficient for n_samples >> n_features and small
n_features. It is, however, not tractable otherwise for large
n_features (large memory footprint required to materialize the
covariance matrix). Also note that compared to the "full" solver,
this solver effectively doubles the condition number and is
therefore less numerical stable (e.g. on input data with a large
range of singular values).
"arpack" :
Run SVD truncated to `n_components` calling ARPACK solver via
`scipy.sparse.linalg.svds`. It requires strictly
`0 < n_components < min(X.shape)`
"randomized" :
Run randomized SVD by the method of Halko et al.
.. versionadded:: 0.18.0
.. versionchanged:: 1.5
Added the 'covariance_eigh' solver.
tol : float, default=0.0
Tolerance for singular values computed by svd_solver == 'arpack'.
Must be of range [0.0, infinity).
.. versionadded:: 0.18.0
iterated_power : int or 'auto', default='auto'
Number of iterations for the power method computed by
svd_solver == 'randomized'.
Must be of range [0, infinity).
.. versionadded:: 0.18.0
n_oversamples : int, default=10
This parameter is only relevant when `svd_solver="randomized"`.
It corresponds to the additional number of random vectors to sample the
range of `X` so as to ensure proper conditioning. See
:func:`~sklearn.utils.extmath.randomized_svd` for more details.
.. versionadded:: 1.1
power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto'
Power iteration normalizer for randomized SVD solver.
Not used by ARPACK. See :func:`~sklearn.utils.extmath.randomized_svd`
for more details.
.. versionadded:: 1.1
random_state : int, RandomState instance or None, default=None
Used when the 'arpack' or 'randomized' solvers are used. Pass an int
for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
.. versionadded:: 0.18.0
Attributes
----------
components_ : ndarray of shape (n_components, n_features)
Principal axes in feature space, representing the directions of
maximum variance in the data. Equivalently, the right singular
vectors of the centered input data, parallel to its eigenvectors.
The components are sorted by decreasing ``explained_variance_``.
explained_variance_ : ndarray of shape (n_components,)
The amount of variance explained by each of the selected components.
The variance estimation uses `n_samples - 1` degrees of freedom.
Equal to n_components largest eigenvalues
of the covariance matrix of X.
.. versionadded:: 0.18
explained_variance_ratio_ : ndarray of shape (n_components,)
Percentage of variance explained by each of the selected components.
If ``n_components`` is not set then all components are stored and the
sum of the ratios is equal to 1.0.
singular_values_ : ndarray of shape (n_components,)
The singular values corresponding to each of the selected components.
The singular values are equal to the 2-norms of the ``n_components``
variables in the lower-dimensional space.
.. versionadded:: 0.19
mean_ : ndarray of shape (n_features,)
Per-feature empirical mean, estimated from the training set.
Equal to `X.mean(axis=0)`.
n_components_ : int
The estimated number of components. When n_components is set
to 'mle' or a number between 0 and 1 (with svd_solver == 'full') this
number is estimated from input data. Otherwise it equals the parameter
n_components, or the lesser value of n_features and n_samples
if n_components is None.
n_samples_ : int
Number of samples in the training data.
noise_variance_ : float
The estimated noise covariance following the Probabilistic PCA model
from Tipping and Bishop 1999. See "Pattern Recognition and
Machine Learning" by C. Bishop, 12.2.1 p. 574 or
http://www.miketipping.com/papers/met-mppca.pdf. It is required to
compute the estimated data covariance and score samples.
Equal to the average of (min(n_features, n_samples) - n_components)
smallest eigenvalues of the covariance matrix of X.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
KernelPCA : Kernel Principal Component Analysis.
SparsePCA : Sparse Principal Component Analysis.
TruncatedSVD : Dimensionality reduction using truncated SVD.
IncrementalPCA : Incremental Principal Component Analysis.
References
----------
For n_components == 'mle', this class uses the method from:
`Minka, T. P.. "Automatic choice of dimensionality for PCA".
In NIPS, pp. 598-604 <https://tminka.github.io/papers/pca/minka-pca.pdf>`_
Implements the probabilistic PCA model from:
`Tipping, M. E., and Bishop, C. M. (1999). "Probabilistic principal
component analysis". Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 61(3), 611-622.
<http://www.miketipping.com/papers/met-mppca.pdf>`_
via the score and score_samples methods.
For svd_solver == 'arpack', refer to `scipy.sparse.linalg.svds`.
For svd_solver == 'randomized', see:
:doi:`Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).
"Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions".
SIAM review, 53(2), 217-288.
<10.1137/090771806>`
and also
:doi:`Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011).
"A randomized algorithm for the decomposition of matrices".
Applied and Computational Harmonic Analysis, 30(1), 47-68.
<10.1016/j.acha.2010.02.003>`
Examples
--------
>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(n_components=2)
>>> print(pca.explained_variance_ratio_)
[0.9924... 0.0075...]
>>> print(pca.singular_values_)
[6.30061... 0.54980...]
>>> pca = PCA(n_components=2, svd_solver='full')
>>> pca.fit(X)
PCA(n_components=2, svd_solver='full')
>>> print(pca.explained_variance_ratio_)
[0.9924... 0.00755...]
>>> print(pca.singular_values_)
[6.30061... 0.54980...]
>>> pca = PCA(n_components=1, svd_solver='arpack')
>>> pca.fit(X)
PCA(n_components=1, svd_solver='arpack')
>>> print(pca.explained_variance_ratio_)
[0.99244...]
>>> print(pca.singular_values_)
[6.30061...]
"""
_parameter_constraints: dict = {
"n_components": [
Interval(Integral, 0, None, closed="left"),
Interval(RealNotInt, 0, 1, closed="neither"),
StrOptions({"mle"}),
None,
],
"copy": ["boolean"],
"whiten": ["boolean"],
"svd_solver": [
StrOptions({"auto", "full", "covariance_eigh", "arpack", "randomized"})
],
"tol": [Interval(Real, 0, None, closed="left")],
"iterated_power": [
StrOptions({"auto"}),
Interval(Integral, 0, None, closed="left"),
],
"n_oversamples": [Interval(Integral, 1, None, closed="left")],
"power_iteration_normalizer": [StrOptions({"auto", "QR", "LU", "none"})],
"random_state": ["random_state"],
}
def __init__(
self,
n_components=None,
*,
copy=True,
whiten=False,
svd_solver="auto",
tol=0.0,
iterated_power="auto",
n_oversamples=10,
power_iteration_normalizer="auto",
random_state=None,
):
self.n_components = n_components
self.copy = copy
self.whiten = whiten
self.svd_solver = svd_solver
self.tol = tol
self.iterated_power = iterated_power
self.n_oversamples = n_oversamples
self.power_iteration_normalizer = power_iteration_normalizer
self.random_state = random_state
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Fit the model with X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : Ignored
Ignored.
Returns
-------
self : object
Returns the instance itself.
"""
self._fit(X)
return self
@_fit_context(prefer_skip_nested_validation=True)
def fit_transform(self, X, y=None):
"""Fit the model with X and apply the dimensionality reduction on X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : Ignored
Ignored.
Returns
-------
X_new : ndarray of shape (n_samples, n_components)
Transformed values.
Notes
-----
This method returns a Fortran-ordered array. To convert it to a
C-ordered array, use 'np.ascontiguousarray'.
"""
U, S, _, X, x_is_centered, xp = self._fit(X)
if U is not None:
U = U[:, : self.n_components_]
if self.whiten:
# X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)
U *= sqrt(X.shape[0] - 1)
else:
# X_new = X * V = U * S * Vt * V = U * S
U *= S[: self.n_components_]
return U
else: # solver="covariance_eigh" does not compute U at fit time.
return self._transform(X, xp, x_is_centered=x_is_centered)
def _fit(self, X):
"""Dispatch to the right submethod depending on the chosen solver."""
xp, is_array_api_compliant = get_namespace(X)
# Raise an error for sparse input and unsupported svd_solver
if issparse(X) and self.svd_solver not in ["auto", "arpack", "covariance_eigh"]:
raise TypeError(
'PCA only support sparse inputs with the "arpack" and'
f' "covariance_eigh" solvers, while "{self.svd_solver}" was passed. See'
" TruncatedSVD for a possible alternative."
)
if self.svd_solver == "arpack" and is_array_api_compliant:
raise ValueError(
"PCA with svd_solver='arpack' is not supported for Array API inputs."
)
# Validate the data, without ever forcing a copy as any solver that
# supports sparse input data and the `covariance_eigh` solver are
# written in a way to avoid the need for any inplace modification of
# the input data contrary to the other solvers.
# The copy will happen
# later, only if needed, once the solver negotiation below is done.
X = validate_data(
self,
X,
dtype=[xp.float64, xp.float32],
force_writeable=True,
accept_sparse=("csr", "csc"),
ensure_2d=True,
copy=False,
)
self._fit_svd_solver = self.svd_solver
if self._fit_svd_solver == "auto" and issparse(X):
self._fit_svd_solver = "arpack"
if self.n_components is None:
if self._fit_svd_solver != "arpack":
n_components = min(X.shape)
else:
n_components = min(X.shape) - 1
else:
n_components = self.n_components
if self._fit_svd_solver == "auto":
# Tall and skinny problems are best handled by precomputing the
# covariance matrix.
if X.shape[1] <= 1_000 and X.shape[0] >= 10 * X.shape[1]:
self._fit_svd_solver = "covariance_eigh"
# Small problem or n_components == 'mle', just call full PCA
elif max(X.shape) <= 500 or n_components == "mle":
self._fit_svd_solver = "full"
elif 1 <= n_components < 0.8 * min(X.shape):
self._fit_svd_solver = "randomized"
# This is also the case of n_components in (0, 1)
else:
self._fit_svd_solver = "full"
# Call different fits for either full or truncated SVD
if self._fit_svd_solver in ("full", "covariance_eigh"):
return self._fit_full(X, n_components, xp, is_array_api_compliant)
elif self._fit_svd_solver in ["arpack", "randomized"]:
return self._fit_truncated(X, n_components, xp)
def _fit_full(self, X, n_components, xp, is_array_api_compliant):
"""Fit the model by computing full SVD on X."""
n_samples, n_features = X.shape
if n_components == "mle":
if n_samples < n_features:
raise ValueError(
"n_components='mle' is only supported if n_samples >= n_features"
)
elif not 0 <= n_components <= min(n_samples, n_features):
raise ValueError(
f"n_components={n_components} must be between 0 and "
f"min(n_samples, n_features)={min(n_samples, n_features)} with "
f"svd_solver={self._fit_svd_solver!r}"
)
self.mean_ = xp.mean(X, axis=0)
# When X is a scipy sparse matrix, self.mean_ is a numpy matrix, so we need
# to transform it to a 1D array. Note that this is not the case when X
# is a scipy sparse array.
# TODO: remove the following two lines when scikit-learn only depends
# on scipy versions that no longer support scipy.sparse matrices.
self.mean_ = xp.reshape(xp.asarray(self.mean_), (-1,))
if self._fit_svd_solver == "full":
X_centered = xp.asarray(X, copy=True) if self.copy else X
X_centered -= self.mean_
x_is_centered = not self.copy
if not is_array_api_compliant:
# Use scipy.linalg with NumPy/SciPy inputs for the sake of not
# introducing unanticipated behavior changes. In the long run we
# could instead decide to always use xp.linalg.svd for all inputs,
# but that would make this code rely on numpy's SVD instead of
# scipy's. It's not 100% clear whether they use the same LAPACK
# solver by default though (assuming both are built against the
# same BLAS).
U, S, Vt = linalg.svd(X_centered, full_matrices=False)
else:
U, S, Vt = xp.linalg.svd(X_centered, full_matrices=False)
explained_variance_ = (S**2) / (n_samples - 1)
else:
assert self._fit_svd_solver == "covariance_eigh"
# In the following, we center the covariance matrix C afterwards
# (without centering the data X first) to avoid an unnecessary copy
# of X. Note that the mean_ attribute is still needed to center
# test data in the transform method.
#
# Note: at the time of writing, `xp.cov` does not exist in the
# Array API standard:
# https://github.com/data-apis/array-api/issues/43
#
# Besides, using `numpy.cov`, as of numpy 1.26.0, would not be
# memory efficient for our use case when `n_samples >> n_features`:
# `numpy.cov` centers a copy of the data before computing the
# matrix product instead of subtracting a small `(n_features,
# n_features)` square matrix from the gram matrix X.T @ X, as we do
# below.
x_is_centered = False
C = X.T @ X
C -= (
n_samples
* xp.reshape(self.mean_, (-1, 1))
* xp.reshape(self.mean_, (1, -1))
)
C /= n_samples - 1
eigenvals, eigenvecs = xp.linalg.eigh(C)
# When X is a scipy sparse matrix, the following two datastructures
# are returned as instances of the soft-deprecated numpy.matrix
# class. Note that this problem does not occur when X is a scipy
# sparse array (or another other kind of supported array).
# TODO: remove the following two lines when scikit-learn only
# depends on scipy versions that no longer support scipy.sparse
# matrices.
eigenvals = xp.reshape(xp.asarray(eigenvals), (-1,))
eigenvecs = xp.asarray(eigenvecs)
eigenvals = xp.flip(eigenvals, axis=0)
eigenvecs = xp.flip(eigenvecs, axis=1)
# The covariance matrix C is positive semi-definite by
# construction. However, the eigenvalues returned by xp.linalg.eigh
# can be slightly negative due to numerical errors. This would be
# an issue for the subsequent sqrt, hence the manual clipping.
eigenvals[eigenvals < 0.0] = 0.0
explained_variance_ = eigenvals
# Re-construct SVD of centered X indirectly and make it consistent
# with the other solvers.
S = xp.sqrt(eigenvals * (n_samples - 1))
Vt = eigenvecs.T
U = None
# flip eigenvectors' sign to enforce deterministic output
U, Vt = svd_flip(U, Vt, u_based_decision=False)
components_ = Vt
# Get variance explained by singular values
total_var = xp.sum(explained_variance_)
explained_variance_ratio_ = explained_variance_ / total_var
singular_values_ = xp.asarray(S, copy=True) # Store the singular values.
# Postprocess the number of components required
if n_components == "mle":
n_components = _infer_dimension(explained_variance_, n_samples)
elif 0 < n_components < 1.0:
# number of components for which the cumulated explained
# variance percentage is superior to the desired threshold
# side='right' ensures that number of features selected
# their variance is always greater than n_components float
# passed. More discussion in issue: #15669
if is_array_api_compliant:
# Convert to numpy as xp.cumsum and xp.searchsorted are not
# part of the Array API standard yet:
#
# https://github.com/data-apis/array-api/issues/597
# https://github.com/data-apis/array-api/issues/688
#
# Furthermore, it's not always safe to call them for namespaces
# that already implement them: for instance as
# cupy.searchsorted does not accept a float as second argument.
explained_variance_ratio_np = _convert_to_numpy(
explained_variance_ratio_, xp=xp
)
else:
explained_variance_ratio_np = explained_variance_ratio_
ratio_cumsum = stable_cumsum(explained_variance_ratio_np)
n_components = np.searchsorted(ratio_cumsum, n_components, side="right") + 1
# Compute noise covariance using Probabilistic PCA model
# The sigma2 maximum likelihood (cf. eq. 12.46)
if n_components < min(n_features, n_samples):
self.noise_variance_ = xp.mean(explained_variance_[n_components:])
else:
self.noise_variance_ = 0.0
self.n_samples_ = n_samples
self.n_components_ = n_components
# Assign a copy of the result of the truncation of the components in
# order to:
# - release the memory used by the discarded components,
# - ensure that the kept components are allocated contiguously in
# memory to make the transform method faster by leveraging cache
# locality.
self.components_ = xp.asarray(components_[:n_components, :], copy=True)
# We do the same for the other arrays for the sake of consistency.
self.explained_variance_ = xp.asarray(
explained_variance_[:n_components], copy=True
)
self.explained_variance_ratio_ = xp.asarray(
explained_variance_ratio_[:n_components], copy=True
)
self.singular_values_ = xp.asarray(singular_values_[:n_components], copy=True)
return U, S, Vt, X, x_is_centered, xp
def _fit_truncated(self, X, n_components, xp):
"""Fit the model by computing truncated SVD (by ARPACK or randomized)
on X.
"""
n_samples, n_features = X.shape
svd_solver = self._fit_svd_solver
if isinstance(n_components, str):
raise ValueError(
"n_components=%r cannot be a string with svd_solver='%s'"
% (n_components, svd_solver)
)
elif not 1 <= n_components <= min(n_samples, n_features):
raise ValueError(
"n_components=%r must be between 1 and "
"min(n_samples, n_features)=%r with "
"svd_solver='%s'"
% (n_components, min(n_samples, n_features), svd_solver)
)
elif svd_solver == "arpack" and n_components == min(n_samples, n_features):
raise ValueError(
"n_components=%r must be strictly less than "
"min(n_samples, n_features)=%r with "
"svd_solver='%s'"
% (n_components, min(n_samples, n_features), svd_solver)
)
random_state = check_random_state(self.random_state)
# Center data
total_var = None
if issparse(X):
self.mean_, var = mean_variance_axis(X, axis=0)
total_var = var.sum() * n_samples / (n_samples - 1) # ddof=1
X_centered = _implicit_column_offset(X, self.mean_)
x_is_centered = False
else:
self.mean_ = xp.mean(X, axis=0)
X_centered = xp.asarray(X, copy=True) if self.copy else X
X_centered -= self.mean_
x_is_centered = not self.copy
if svd_solver == "arpack":
v0 = _init_arpack_v0(min(X.shape), random_state)
U, S, Vt = svds(X_centered, k=n_components, tol=self.tol, v0=v0)
# svds doesn't abide by scipy.linalg.svd/randomized_svd
# conventions, so reverse its outputs.
S = S[::-1]
# flip eigenvectors' sign to enforce deterministic output
U, Vt = svd_flip(U[:, ::-1], Vt[::-1], u_based_decision=False)
elif svd_solver == "randomized":
# sign flipping is done inside
U, S, Vt = randomized_svd(
X_centered,
n_components=n_components,
n_oversamples=self.n_oversamples,
n_iter=self.iterated_power,
power_iteration_normalizer=self.power_iteration_normalizer,
flip_sign=False,
random_state=random_state,
)
U, Vt = svd_flip(U, Vt, u_based_decision=False)
self.n_samples_ = n_samples
self.components_ = Vt
self.n_components_ = n_components
# Get variance explained by singular values
self.explained_variance_ = (S**2) / (n_samples - 1)
# Workaround in-place variance calculation since at the time numpy
# did not have a way to calculate variance in-place.
#
# TODO: update this code to either:
# * Use the array-api variance calculation, unless memory usage suffers
# * Update sklearn.utils.extmath._incremental_mean_and_var to support array-api
# See: https://github.com/scikit-learn/scikit-learn/pull/18689#discussion_r1335540991
if total_var is None:
N = X.shape[0] - 1
X_centered **= 2
total_var = xp.sum(X_centered) / N
self.explained_variance_ratio_ = self.explained_variance_ / total_var
self.singular_values_ = xp.asarray(S, copy=True) # Store the singular values.
if self.n_components_ < min(n_features, n_samples):
self.noise_variance_ = total_var - xp.sum(self.explained_variance_)
self.noise_variance_ /= min(n_features, n_samples) - n_components
else:
self.noise_variance_ = 0.0
return U, S, Vt, X, x_is_centered, xp
def score_samples(self, X):
"""Return the log-likelihood of each sample.
See. "Pattern Recognition and Machine Learning"
by C. Bishop, 12.2.1 p. 574
or http://www.miketipping.com/papers/met-mppca.pdf
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data.
Returns
-------
ll : ndarray of shape (n_samples,)
Log-likelihood of each sample under the current model.
"""
check_is_fitted(self)
xp, _ = get_namespace(X)
X = validate_data(self, X, dtype=[xp.float64, xp.float32], reset=False)
Xr = X - self.mean_
n_features = X.shape[1]
precision = self.get_precision()
log_like = -0.5 * xp.sum(Xr * (Xr @ precision), axis=1)
log_like -= 0.5 * (n_features * log(2.0 * np.pi) - fast_logdet(precision))
return log_like
def score(self, X, y=None):
"""Return the average log-likelihood of all samples.
See. "Pattern Recognition and Machine Learning"
by C. Bishop, 12.2.1 p. 574
or http://www.miketipping.com/papers/met-mppca.pdf
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data.
y : Ignored
Ignored.
Returns
-------
ll : float
Average log-likelihood of the samples under the current model.
"""
xp, _ = get_namespace(X)
return float(xp.mean(self.score_samples(X)))
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.transformer_tags.preserves_dtype = ["float64", "float32"]
tags.array_api_support = True
tags.input_tags.sparse = self.svd_solver in (
"auto",
"arpack",
"covariance_eigh",
)
return tags
|