File size: 9,407 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
"""
=============================
Species distribution dataset
=============================
This dataset represents the geographic distribution of species.
The dataset is provided by Phillips et. al. (2006).
The two species are:
- `"Bradypus variegatus"
<http://www.iucnredlist.org/details/3038/0>`_ ,
the Brown-throated Sloth.
- `"Microryzomys minutus"
<http://www.iucnredlist.org/details/13408/0>`_ ,
also known as the Forest Small Rice Rat, a rodent that lives in Peru,
Colombia, Ecuador, Peru, and Venezuela.
References
----------
`"Maximum entropy modeling of species geographic distributions"
<http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips,
R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006.
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import logging
from io import BytesIO
from numbers import Integral, Real
from os import PathLike, makedirs, remove
from os.path import exists
import joblib
import numpy as np
from ..utils import Bunch
from ..utils._param_validation import Interval, validate_params
from . import get_data_home
from ._base import RemoteFileMetadata, _fetch_remote, _pkl_filepath
# The original data can be found at:
# https://biodiversityinformatics.amnh.org/open_source/maxent/samples.zip
SAMPLES = RemoteFileMetadata(
filename="samples.zip",
url="https://ndownloader.figshare.com/files/5976075",
checksum="abb07ad284ac50d9e6d20f1c4211e0fd3c098f7f85955e89d321ee8efe37ac28",
)
# The original data can be found at:
# https://biodiversityinformatics.amnh.org/open_source/maxent/coverages.zip
COVERAGES = RemoteFileMetadata(
filename="coverages.zip",
url="https://ndownloader.figshare.com/files/5976078",
checksum="4d862674d72e79d6cee77e63b98651ec7926043ba7d39dcb31329cf3f6073807",
)
DATA_ARCHIVE_NAME = "species_coverage.pkz"
logger = logging.getLogger(__name__)
def _load_coverage(F, header_length=6, dtype=np.int16):
"""Load a coverage file from an open file object.
This will return a numpy array of the given dtype
"""
header = [F.readline() for _ in range(header_length)]
make_tuple = lambda t: (t.split()[0], float(t.split()[1]))
header = dict([make_tuple(line) for line in header])
M = np.loadtxt(F, dtype=dtype)
nodata = int(header[b"NODATA_value"])
if nodata != -9999:
M[nodata] = -9999
return M
def _load_csv(F):
"""Load csv file.
Parameters
----------
F : file object
CSV file open in byte mode.
Returns
-------
rec : np.ndarray
record array representing the data
"""
names = F.readline().decode("ascii").strip().split(",")
rec = np.loadtxt(F, skiprows=0, delimiter=",", dtype="S22,f4,f4")
rec.dtype.names = names
return rec
def construct_grids(batch):
"""Construct the map grid from the batch object
Parameters
----------
batch : Batch object
The object returned by :func:`fetch_species_distributions`
Returns
-------
(xgrid, ygrid) : 1-D arrays
The grid corresponding to the values in batch.coverages
"""
# x,y coordinates for corner cells
xmin = batch.x_left_lower_corner + batch.grid_size
xmax = xmin + (batch.Nx * batch.grid_size)
ymin = batch.y_left_lower_corner + batch.grid_size
ymax = ymin + (batch.Ny * batch.grid_size)
# x coordinates of the grid cells
xgrid = np.arange(xmin, xmax, batch.grid_size)
# y coordinates of the grid cells
ygrid = np.arange(ymin, ymax, batch.grid_size)
return (xgrid, ygrid)
@validate_params(
{
"data_home": [str, PathLike, None],
"download_if_missing": ["boolean"],
"n_retries": [Interval(Integral, 1, None, closed="left")],
"delay": [Interval(Real, 0.0, None, closed="neither")],
},
prefer_skip_nested_validation=True,
)
def fetch_species_distributions(
*,
data_home=None,
download_if_missing=True,
n_retries=3,
delay=1.0,
):
"""Loader for species distribution dataset from Phillips et. al. (2006).
Read more in the :ref:`User Guide <species_distribution_dataset>`.
Parameters
----------
data_home : str or path-like, default=None
Specify another download and cache folder for the datasets. By default
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
download_if_missing : bool, default=True
If False, raise an OSError if the data is not locally available
instead of trying to download the data from the source site.
n_retries : int, default=3
Number of retries when HTTP errors are encountered.
.. versionadded:: 1.5
delay : float, default=1.0
Number of seconds between retries.
.. versionadded:: 1.5
Returns
-------
data : :class:`~sklearn.utils.Bunch`
Dictionary-like object, with the following attributes.
coverages : array, shape = [14, 1592, 1212]
These represent the 14 features measured
at each point of the map grid.
The latitude/longitude values for the grid are discussed below.
Missing data is represented by the value -9999.
train : record array, shape = (1624,)
The training points for the data. Each point has three fields:
- train['species'] is the species name
- train['dd long'] is the longitude, in degrees
- train['dd lat'] is the latitude, in degrees
test : record array, shape = (620,)
The test points for the data. Same format as the training data.
Nx, Ny : integers
The number of longitudes (x) and latitudes (y) in the grid
x_left_lower_corner, y_left_lower_corner : floats
The (x,y) position of the lower-left corner, in degrees
grid_size : float
The spacing between points of the grid, in degrees
Notes
-----
This dataset represents the geographic distribution of species.
The dataset is provided by Phillips et. al. (2006).
The two species are:
- `"Bradypus variegatus"
<http://www.iucnredlist.org/details/3038/0>`_ ,
the Brown-throated Sloth.
- `"Microryzomys minutus"
<http://www.iucnredlist.org/details/13408/0>`_ ,
also known as the Forest Small Rice Rat, a rodent that lives in Peru,
Colombia, Ecuador, Peru, and Venezuela.
References
----------
* `"Maximum entropy modeling of species geographic distributions"
<http://rob.schapire.net/papers/ecolmod.pdf>`_
S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling,
190:231-259, 2006.
Examples
--------
>>> from sklearn.datasets import fetch_species_distributions
>>> species = fetch_species_distributions()
>>> species.train[:5]
array([(b'microryzomys_minutus', -64.7 , -17.85 ),
(b'microryzomys_minutus', -67.8333, -16.3333),
(b'microryzomys_minutus', -67.8833, -16.3 ),
(b'microryzomys_minutus', -67.8 , -16.2667),
(b'microryzomys_minutus', -67.9833, -15.9 )],
dtype=[('species', 'S22'), ('dd long', '<f4'), ('dd lat', '<f4')])
For a more extended example,
see :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py`
"""
data_home = get_data_home(data_home)
if not exists(data_home):
makedirs(data_home)
# Define parameters for the data files. These should not be changed
# unless the data model changes. They will be saved in the npz file
# with the downloaded data.
extra_params = dict(
x_left_lower_corner=-94.8,
Nx=1212,
y_left_lower_corner=-56.05,
Ny=1592,
grid_size=0.05,
)
dtype = np.int16
archive_path = _pkl_filepath(data_home, DATA_ARCHIVE_NAME)
if not exists(archive_path):
if not download_if_missing:
raise OSError("Data not found and `download_if_missing` is False")
logger.info("Downloading species data from %s to %s" % (SAMPLES.url, data_home))
samples_path = _fetch_remote(
SAMPLES, dirname=data_home, n_retries=n_retries, delay=delay
)
with np.load(samples_path) as X: # samples.zip is a valid npz
for f in X.files:
fhandle = BytesIO(X[f])
if "train" in f:
train = _load_csv(fhandle)
if "test" in f:
test = _load_csv(fhandle)
remove(samples_path)
logger.info(
"Downloading coverage data from %s to %s" % (COVERAGES.url, data_home)
)
coverages_path = _fetch_remote(
COVERAGES, dirname=data_home, n_retries=n_retries, delay=delay
)
with np.load(coverages_path) as X: # coverages.zip is a valid npz
coverages = []
for f in X.files:
fhandle = BytesIO(X[f])
logger.debug(" - converting {}".format(f))
coverages.append(_load_coverage(fhandle))
coverages = np.asarray(coverages, dtype=dtype)
remove(coverages_path)
bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params)
joblib.dump(bunch, archive_path, compress=9)
else:
bunch = joblib.load(archive_path)
return bunch
|