File size: 53,380 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
"""
Base IO code for all datasets
"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import csv
import gzip
import hashlib
import os
import re
import shutil
import time
import unicodedata
import warnings
from collections import namedtuple
from importlib import resources
from numbers import Integral
from os import environ, listdir, makedirs
from os.path import expanduser, isdir, join, splitext
from pathlib import Path
from tempfile import NamedTemporaryFile
from urllib.error import URLError
from urllib.parse import urlparse
from urllib.request import urlretrieve

import numpy as np

from ..preprocessing import scale
from ..utils import Bunch, check_random_state
from ..utils._optional_dependencies import check_pandas_support
from ..utils._param_validation import Interval, StrOptions, validate_params

DATA_MODULE = "sklearn.datasets.data"
DESCR_MODULE = "sklearn.datasets.descr"
IMAGES_MODULE = "sklearn.datasets.images"

RemoteFileMetadata = namedtuple("RemoteFileMetadata", ["filename", "url", "checksum"])


@validate_params(
    {
        "data_home": [str, os.PathLike, None],
    },
    prefer_skip_nested_validation=True,
)
def get_data_home(data_home=None) -> str:
    """Return the path of the scikit-learn data directory.

    This folder is used by some large dataset loaders to avoid downloading the
    data several times.

    By default the data directory is set to a folder named 'scikit_learn_data' in the
    user home folder.

    Alternatively, it can be set by the 'SCIKIT_LEARN_DATA' environment
    variable or programmatically by giving an explicit folder path. The '~'
    symbol is expanded to the user home folder.

    If the folder does not already exist, it is automatically created.

    Parameters
    ----------
    data_home : str or path-like, default=None
        The path to scikit-learn data directory. If `None`, the default path
        is `~/scikit_learn_data`.

    Returns
    -------
    data_home: str
        The path to scikit-learn data directory.

    Examples
    --------
    >>> import os
    >>> from sklearn.datasets import get_data_home
    >>> data_home_path = get_data_home()
    >>> os.path.exists(data_home_path)
    True
    """
    if data_home is None:
        data_home = environ.get("SCIKIT_LEARN_DATA", join("~", "scikit_learn_data"))
    data_home = expanduser(data_home)
    makedirs(data_home, exist_ok=True)
    return data_home


@validate_params(
    {
        "data_home": [str, os.PathLike, None],
    },
    prefer_skip_nested_validation=True,
)
def clear_data_home(data_home=None):
    """Delete all the content of the data home cache.

    Parameters
    ----------
    data_home : str or path-like, default=None
        The path to scikit-learn data directory. If `None`, the default path
        is `~/scikit_learn_data`.

    Examples
    --------
    >>> from sklearn.datasets import clear_data_home
    >>> clear_data_home()  # doctest: +SKIP
    """
    data_home = get_data_home(data_home)
    shutil.rmtree(data_home)


def _convert_data_dataframe(
    caller_name, data, target, feature_names, target_names, sparse_data=False
):
    pd = check_pandas_support("{} with as_frame=True".format(caller_name))
    if not sparse_data:
        data_df = pd.DataFrame(data, columns=feature_names, copy=False)
    else:
        data_df = pd.DataFrame.sparse.from_spmatrix(data, columns=feature_names)

    target_df = pd.DataFrame(target, columns=target_names)
    combined_df = pd.concat([data_df, target_df], axis=1)
    X = combined_df[feature_names]
    y = combined_df[target_names]
    if y.shape[1] == 1:
        y = y.iloc[:, 0]
    return combined_df, X, y


@validate_params(
    {
        "container_path": [str, os.PathLike],
        "description": [str, None],
        "categories": [list, None],
        "load_content": ["boolean"],
        "shuffle": ["boolean"],
        "encoding": [str, None],
        "decode_error": [StrOptions({"strict", "ignore", "replace"})],
        "random_state": ["random_state"],
        "allowed_extensions": [list, None],
    },
    prefer_skip_nested_validation=True,
)
def load_files(
    container_path,
    *,
    description=None,
    categories=None,
    load_content=True,
    shuffle=True,
    encoding=None,
    decode_error="strict",
    random_state=0,
    allowed_extensions=None,
):
    """Load text files with categories as subfolder names.

    Individual samples are assumed to be files stored a two levels folder
    structure such as the following:

    .. code-block:: text

        container_folder/
            category_1_folder/
                file_1.txt
                file_2.txt
                ...
                file_42.txt
            category_2_folder/
                file_43.txt
                file_44.txt
                ...

    The folder names are used as supervised signal label names. The individual
    file names are not important.

    This function does not try to extract features into a numpy array or scipy
    sparse matrix. In addition, if load_content is false it does not try to
    load the files in memory.

    To use text files in a scikit-learn classification or clustering algorithm,
    you will need to use the :mod:`~sklearn.feature_extraction.text` module to
    build a feature extraction transformer that suits your problem.

    If you set load_content=True, you should also specify the encoding of the
    text using the 'encoding' parameter. For many modern text files, 'utf-8'
    will be the correct encoding. If you leave encoding equal to None, then the
    content will be made of bytes instead of Unicode, and you will not be able
    to use most functions in :mod:`~sklearn.feature_extraction.text`.

    Similar feature extractors should be built for other kind of unstructured
    data input such as images, audio, video, ...

    If you want files with a specific file extension (e.g. `.txt`) then you
    can pass a list of those file extensions to `allowed_extensions`.

    Read more in the :ref:`User Guide <datasets>`.

    Parameters
    ----------
    container_path : str
        Path to the main folder holding one subfolder per category.

    description : str, default=None
        A paragraph describing the characteristic of the dataset: its source,
        reference, etc.

    categories : list of str, default=None
        If None (default), load all the categories. If not None, list of
        category names to load (other categories ignored).

    load_content : bool, default=True
        Whether to load or not the content of the different files. If true a
        'data' attribute containing the text information is present in the data
        structure returned. If not, a filenames attribute gives the path to the
        files.

    shuffle : bool, default=True
        Whether or not to shuffle the data: might be important for models that
        make the assumption that the samples are independent and identically
        distributed (i.i.d.), such as stochastic gradient descent.

    encoding : str, default=None
        If None, do not try to decode the content of the files (e.g. for images
        or other non-text content). If not None, encoding to use to decode text
        files to Unicode if load_content is True.

    decode_error : {'strict', 'ignore', 'replace'}, default='strict'
        Instruction on what to do if a byte sequence is given to analyze that
        contains characters not of the given `encoding`. Passed as keyword
        argument 'errors' to bytes.decode.

    random_state : int, RandomState instance or None, default=0
        Determines random number generation for dataset shuffling. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    allowed_extensions : list of str, default=None
        List of desired file extensions to filter the files to be loaded.

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : list of str
            Only present when `load_content=True`.
            The raw text data to learn.
        target : ndarray
            The target labels (integer index).
        target_names : list
            The names of target classes.
        DESCR : str
            The full description of the dataset.
        filenames: ndarray
            The filenames holding the dataset.

    Examples
    --------
    >>> from sklearn.datasets import load_files
    >>> container_path = "./"
    >>> load_files(container_path)  # doctest: +SKIP
    """

    target = []
    target_names = []
    filenames = []

    folders = [
        f for f in sorted(listdir(container_path)) if isdir(join(container_path, f))
    ]

    if categories is not None:
        folders = [f for f in folders if f in categories]

    if allowed_extensions is not None:
        allowed_extensions = frozenset(allowed_extensions)

    for label, folder in enumerate(folders):
        target_names.append(folder)
        folder_path = join(container_path, folder)
        files = sorted(listdir(folder_path))
        if allowed_extensions is not None:
            documents = [
                join(folder_path, file)
                for file in files
                if os.path.splitext(file)[1] in allowed_extensions
            ]
        else:
            documents = [join(folder_path, file) for file in files]
        target.extend(len(documents) * [label])
        filenames.extend(documents)

    # convert to array for fancy indexing
    filenames = np.array(filenames)
    target = np.array(target)

    if shuffle:
        random_state = check_random_state(random_state)
        indices = np.arange(filenames.shape[0])
        random_state.shuffle(indices)
        filenames = filenames[indices]
        target = target[indices]

    if load_content:
        data = []
        for filename in filenames:
            data.append(Path(filename).read_bytes())
        if encoding is not None:
            data = [d.decode(encoding, decode_error) for d in data]
        return Bunch(
            data=data,
            filenames=filenames,
            target_names=target_names,
            target=target,
            DESCR=description,
        )

    return Bunch(
        filenames=filenames, target_names=target_names, target=target, DESCR=description
    )


def load_csv_data(
    data_file_name,
    *,
    data_module=DATA_MODULE,
    descr_file_name=None,
    descr_module=DESCR_MODULE,
    encoding="utf-8",
):
    """Loads `data_file_name` from `data_module with `importlib.resources`.

    Parameters
    ----------
    data_file_name : str
        Name of csv file to be loaded from `data_module/data_file_name`.
        For example `'wine_data.csv'`.

    data_module : str or module, default='sklearn.datasets.data'
        Module where data lives. The default is `'sklearn.datasets.data'`.

    descr_file_name : str, default=None
        Name of rst file to be loaded from `descr_module/descr_file_name`.
        For example `'wine_data.rst'`. See also :func:`load_descr`.
        If not None, also returns the corresponding description of
        the dataset.

    descr_module : str or module, default='sklearn.datasets.descr'
        Module where `descr_file_name` lives. See also :func:`load_descr`.
        The default is `'sklearn.datasets.descr'`.

    Returns
    -------
    data : ndarray of shape (n_samples, n_features)
        A 2D array with each row representing one sample and each column
        representing the features of a given sample.

    target : ndarry of shape (n_samples,)
        A 1D array holding target variables for all the samples in `data`.
        For example target[0] is the target variable for data[0].

    target_names : ndarry of shape (n_samples,)
        A 1D array containing the names of the classifications. For example
        target_names[0] is the name of the target[0] class.

    descr : str, optional
        Description of the dataset (the content of `descr_file_name`).
        Only returned if `descr_file_name` is not None.

    encoding : str, optional
        Text encoding of the CSV file.

        .. versionadded:: 1.4
    """
    data_path = resources.files(data_module) / data_file_name
    with data_path.open("r", encoding="utf-8") as csv_file:
        data_file = csv.reader(csv_file)
        temp = next(data_file)
        n_samples = int(temp[0])
        n_features = int(temp[1])
        target_names = np.array(temp[2:])
        data = np.empty((n_samples, n_features))
        target = np.empty((n_samples,), dtype=int)

        for i, ir in enumerate(data_file):
            data[i] = np.asarray(ir[:-1], dtype=np.float64)
            target[i] = np.asarray(ir[-1], dtype=int)

    if descr_file_name is None:
        return data, target, target_names
    else:
        assert descr_module is not None
        descr = load_descr(descr_module=descr_module, descr_file_name=descr_file_name)
        return data, target, target_names, descr


def load_gzip_compressed_csv_data(
    data_file_name,
    *,
    data_module=DATA_MODULE,
    descr_file_name=None,
    descr_module=DESCR_MODULE,
    encoding="utf-8",
    **kwargs,
):
    """Loads gzip-compressed with `importlib.resources`.

    1) Open resource file with `importlib.resources.open_binary`
    2) Decompress file obj with `gzip.open`
    3) Load decompressed data with `np.loadtxt`

    Parameters
    ----------
    data_file_name : str
        Name of gzip-compressed csv file  (`'*.csv.gz'`) to be loaded from
        `data_module/data_file_name`. For example `'diabetes_data.csv.gz'`.

    data_module : str or module, default='sklearn.datasets.data'
        Module where data lives. The default is `'sklearn.datasets.data'`.

    descr_file_name : str, default=None
        Name of rst file to be loaded from `descr_module/descr_file_name`.
        For example `'wine_data.rst'`. See also :func:`load_descr`.
        If not None, also returns the corresponding description of
        the dataset.

    descr_module : str or module, default='sklearn.datasets.descr'
        Module where `descr_file_name` lives. See also :func:`load_descr`.
        The default  is `'sklearn.datasets.descr'`.

    encoding : str, default="utf-8"
        Name of the encoding that the gzip-decompressed file will be
        decoded with. The default is 'utf-8'.

    **kwargs : dict, optional
        Keyword arguments to be passed to `np.loadtxt`;
        e.g. delimiter=','.

    Returns
    -------
    data : ndarray of shape (n_samples, n_features)
        A 2D array with each row representing one sample and each column
        representing the features and/or target of a given sample.

    descr : str, optional
        Description of the dataset (the content of `descr_file_name`).
        Only returned if `descr_file_name` is not None.
    """
    data_path = resources.files(data_module) / data_file_name
    with data_path.open("rb") as compressed_file:
        compressed_file = gzip.open(compressed_file, mode="rt", encoding=encoding)
        data = np.loadtxt(compressed_file, **kwargs)

    if descr_file_name is None:
        return data
    else:
        assert descr_module is not None
        descr = load_descr(descr_module=descr_module, descr_file_name=descr_file_name)
        return data, descr


def load_descr(descr_file_name, *, descr_module=DESCR_MODULE, encoding="utf-8"):
    """Load `descr_file_name` from `descr_module` with `importlib.resources`.

    Parameters
    ----------
    descr_file_name : str, default=None
        Name of rst file to be loaded from `descr_module/descr_file_name`.
        For example `'wine_data.rst'`. See also :func:`load_descr`.
        If not None, also returns the corresponding description of
        the dataset.

    descr_module : str or module, default='sklearn.datasets.descr'
        Module where `descr_file_name` lives. See also :func:`load_descr`.
        The default  is `'sklearn.datasets.descr'`.

    encoding : str, default="utf-8"
        Name of the encoding that `descr_file_name` will be decoded with.
        The default is 'utf-8'.

        .. versionadded:: 1.4

    Returns
    -------
    fdescr : str
        Content of `descr_file_name`.
    """
    path = resources.files(descr_module) / descr_file_name
    return path.read_text(encoding=encoding)


@validate_params(
    {
        "return_X_y": ["boolean"],
        "as_frame": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def load_wine(*, return_X_y=False, as_frame=False):
    """Load and return the wine dataset (classification).

    .. versionadded:: 0.18

    The wine dataset is a classic and very easy multi-class classification
    dataset.

    =================   ==============
    Classes                          3
    Samples per class        [59,71,48]
    Samples total                  178
    Dimensionality                  13
    Features            real, positive
    =================   ==============

    The copy of UCI ML Wine Data Set dataset is downloaded and modified to fit
    standard format from:
    https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

    Read more in the :ref:`User Guide <wine_dataset>`.

    Parameters
    ----------
    return_X_y : bool, default=False
        If True, returns ``(data, target)`` instead of a Bunch object.
        See below for more information about the `data` and `target` object.

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric). The target is
        a pandas DataFrame or Series depending on the number of target columns.
        If `return_X_y` is True, then (`data`, `target`) will be pandas
        DataFrames or Series as described below.

        .. versionadded:: 0.23

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : {ndarray, dataframe} of shape (178, 13)
            The data matrix. If `as_frame=True`, `data` will be a pandas
            DataFrame.
        target: {ndarray, Series} of shape (178,)
            The classification target. If `as_frame=True`, `target` will be
            a pandas Series.
        feature_names: list
            The names of the dataset columns.
        target_names: list
            The names of target classes.
        frame: DataFrame of shape (178, 14)
            Only present when `as_frame=True`. DataFrame with `data` and
            `target`.

            .. versionadded:: 0.23
        DESCR: str
            The full description of the dataset.

    (data, target) : tuple if ``return_X_y`` is True
        A tuple of two ndarrays by default. The first contains a 2D array of shape
        (178, 13) with each row representing one sample and each column representing
        the features. The second array of shape (178,) contains the target samples.

    Examples
    --------
    Let's say you are interested in the samples 10, 80, and 140, and want to
    know their class name.

    >>> from sklearn.datasets import load_wine
    >>> data = load_wine()
    >>> data.target[[10, 80, 140]]
    array([0, 1, 2])
    >>> list(data.target_names)
    [np.str_('class_0'), np.str_('class_1'), np.str_('class_2')]
    """

    data, target, target_names, fdescr = load_csv_data(
        data_file_name="wine_data.csv", descr_file_name="wine_data.rst"
    )

    feature_names = [
        "alcohol",
        "malic_acid",
        "ash",
        "alcalinity_of_ash",
        "magnesium",
        "total_phenols",
        "flavanoids",
        "nonflavanoid_phenols",
        "proanthocyanins",
        "color_intensity",
        "hue",
        "od280/od315_of_diluted_wines",
        "proline",
    ]

    frame = None
    target_columns = [
        "target",
    ]
    if as_frame:
        frame, data, target = _convert_data_dataframe(
            "load_wine", data, target, feature_names, target_columns
        )

    if return_X_y:
        return data, target

    return Bunch(
        data=data,
        target=target,
        frame=frame,
        target_names=target_names,
        DESCR=fdescr,
        feature_names=feature_names,
    )


@validate_params(
    {"return_X_y": ["boolean"], "as_frame": ["boolean"]},
    prefer_skip_nested_validation=True,
)
def load_iris(*, return_X_y=False, as_frame=False):
    """Load and return the iris dataset (classification).

    The iris dataset is a classic and very easy multi-class classification
    dataset.

    =================   ==============
    Classes                          3
    Samples per class               50
    Samples total                  150
    Dimensionality                   4
    Features            real, positive
    =================   ==============

    Read more in the :ref:`User Guide <iris_dataset>`.

    .. versionchanged:: 0.20
        Fixed two wrong data points according to Fisher's paper.
        The new version is the same as in R, but not as in the UCI
        Machine Learning Repository.

    Parameters
    ----------
    return_X_y : bool, default=False
        If True, returns ``(data, target)`` instead of a Bunch object. See
        below for more information about the `data` and `target` object.

        .. versionadded:: 0.18

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric). The target is
        a pandas DataFrame or Series depending on the number of target columns.
        If `return_X_y` is True, then (`data`, `target`) will be pandas
        DataFrames or Series as described below.

        .. versionadded:: 0.23

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : {ndarray, dataframe} of shape (150, 4)
            The data matrix. If `as_frame=True`, `data` will be a pandas
            DataFrame.
        target: {ndarray, Series} of shape (150,)
            The classification target. If `as_frame=True`, `target` will be
            a pandas Series.
        feature_names: list
            The names of the dataset columns.
        target_names: list
            The names of target classes.
        frame: DataFrame of shape (150, 5)
            Only present when `as_frame=True`. DataFrame with `data` and
            `target`.

            .. versionadded:: 0.23
        DESCR: str
            The full description of the dataset.
        filename: str
            The path to the location of the data.

            .. versionadded:: 0.20

    (data, target) : tuple if ``return_X_y`` is True
        A tuple of two ndarray. The first containing a 2D array of shape
        (n_samples, n_features) with each row representing one sample and
        each column representing the features. The second ndarray of shape
        (n_samples,) containing the target samples.

        .. versionadded:: 0.18

    Examples
    --------
    Let's say you are interested in the samples 10, 25, and 50, and want to
    know their class name.

    >>> from sklearn.datasets import load_iris
    >>> data = load_iris()
    >>> data.target[[10, 25, 50]]
    array([0, 0, 1])
    >>> list(data.target_names)
    [np.str_('setosa'), np.str_('versicolor'), np.str_('virginica')]

    See :ref:`sphx_glr_auto_examples_decomposition_plot_pca_iris.py` for a more
    detailed example of how to work with the iris dataset.
    """
    data_file_name = "iris.csv"
    data, target, target_names, fdescr = load_csv_data(
        data_file_name=data_file_name, descr_file_name="iris.rst"
    )

    feature_names = [
        "sepal length (cm)",
        "sepal width (cm)",
        "petal length (cm)",
        "petal width (cm)",
    ]

    frame = None
    target_columns = [
        "target",
    ]
    if as_frame:
        frame, data, target = _convert_data_dataframe(
            "load_iris", data, target, feature_names, target_columns
        )

    if return_X_y:
        return data, target

    return Bunch(
        data=data,
        target=target,
        frame=frame,
        target_names=target_names,
        DESCR=fdescr,
        feature_names=feature_names,
        filename=data_file_name,
        data_module=DATA_MODULE,
    )


@validate_params(
    {"return_X_y": ["boolean"], "as_frame": ["boolean"]},
    prefer_skip_nested_validation=True,
)
def load_breast_cancer(*, return_X_y=False, as_frame=False):
    """Load and return the breast cancer wisconsin dataset (classification).

    The breast cancer dataset is a classic and very easy binary classification
    dataset.

    =================   ==============
    Classes                          2
    Samples per class    212(M),357(B)
    Samples total                  569
    Dimensionality                  30
    Features            real, positive
    =================   ==============

    The copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset is
    downloaded from:
    https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic

    Read more in the :ref:`User Guide <breast_cancer_dataset>`.

    Parameters
    ----------
    return_X_y : bool, default=False
        If True, returns ``(data, target)`` instead of a Bunch object.
        See below for more information about the `data` and `target` object.

        .. versionadded:: 0.18

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric). The target is
        a pandas DataFrame or Series depending on the number of target columns.
        If `return_X_y` is True, then (`data`, `target`) will be pandas
        DataFrames or Series as described below.

        .. versionadded:: 0.23

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : {ndarray, dataframe} of shape (569, 30)
            The data matrix. If `as_frame=True`, `data` will be a pandas
            DataFrame.
        target : {ndarray, Series} of shape (569,)
            The classification target. If `as_frame=True`, `target` will be
            a pandas Series.
        feature_names : ndarray of shape (30,)
            The names of the dataset columns.
        target_names : ndarray of shape (2,)
            The names of target classes.
        frame : DataFrame of shape (569, 31)
            Only present when `as_frame=True`. DataFrame with `data` and
            `target`.

            .. versionadded:: 0.23
        DESCR : str
            The full description of the dataset.
        filename : str
            The path to the location of the data.

            .. versionadded:: 0.20

    (data, target) : tuple if ``return_X_y`` is True
        A tuple of two ndarrays by default. The first contains a 2D ndarray of
        shape (569, 30) with each row representing one sample and each column
        representing the features. The second ndarray of shape (569,) contains
        the target samples.  If `as_frame=True`, both arrays are pandas objects,
        i.e. `X` a dataframe and `y` a series.

        .. versionadded:: 0.18

    Examples
    --------
    Let's say you are interested in the samples 10, 50, and 85, and want to
    know their class name.

    >>> from sklearn.datasets import load_breast_cancer
    >>> data = load_breast_cancer()
    >>> data.target[[10, 50, 85]]
    array([0, 1, 0])
    >>> list(data.target_names)
    [np.str_('malignant'), np.str_('benign')]
    """
    data_file_name = "breast_cancer.csv"
    data, target, target_names, fdescr = load_csv_data(
        data_file_name=data_file_name, descr_file_name="breast_cancer.rst"
    )

    feature_names = np.array(
        [
            "mean radius",
            "mean texture",
            "mean perimeter",
            "mean area",
            "mean smoothness",
            "mean compactness",
            "mean concavity",
            "mean concave points",
            "mean symmetry",
            "mean fractal dimension",
            "radius error",
            "texture error",
            "perimeter error",
            "area error",
            "smoothness error",
            "compactness error",
            "concavity error",
            "concave points error",
            "symmetry error",
            "fractal dimension error",
            "worst radius",
            "worst texture",
            "worst perimeter",
            "worst area",
            "worst smoothness",
            "worst compactness",
            "worst concavity",
            "worst concave points",
            "worst symmetry",
            "worst fractal dimension",
        ]
    )

    frame = None
    target_columns = [
        "target",
    ]
    if as_frame:
        frame, data, target = _convert_data_dataframe(
            "load_breast_cancer", data, target, feature_names, target_columns
        )

    if return_X_y:
        return data, target

    return Bunch(
        data=data,
        target=target,
        frame=frame,
        target_names=target_names,
        DESCR=fdescr,
        feature_names=feature_names,
        filename=data_file_name,
        data_module=DATA_MODULE,
    )


@validate_params(
    {
        "n_class": [Interval(Integral, 1, 10, closed="both")],
        "return_X_y": ["boolean"],
        "as_frame": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def load_digits(*, n_class=10, return_X_y=False, as_frame=False):
    """Load and return the digits dataset (classification).

    Each datapoint is a 8x8 image of a digit.

    =================   ==============
    Classes                         10
    Samples per class             ~180
    Samples total                 1797
    Dimensionality                  64
    Features             integers 0-16
    =================   ==============

    This is a copy of the test set of the UCI ML hand-written digits datasets
    https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

    Read more in the :ref:`User Guide <digits_dataset>`.

    Parameters
    ----------
    n_class : int, default=10
        The number of classes to return. Between 0 and 10.

    return_X_y : bool, default=False
        If True, returns ``(data, target)`` instead of a Bunch object.
        See below for more information about the `data` and `target` object.

        .. versionadded:: 0.18

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric). The target is
        a pandas DataFrame or Series depending on the number of target columns.
        If `return_X_y` is True, then (`data`, `target`) will be pandas
        DataFrames or Series as described below.

        .. versionadded:: 0.23

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : {ndarray, dataframe} of shape (1797, 64)
            The flattened data matrix. If `as_frame=True`, `data` will be
            a pandas DataFrame.
        target: {ndarray, Series} of shape (1797,)
            The classification target. If `as_frame=True`, `target` will be
            a pandas Series.
        feature_names: list
            The names of the dataset columns.
        target_names: list
            The names of target classes.

            .. versionadded:: 0.20

        frame: DataFrame of shape (1797, 65)
            Only present when `as_frame=True`. DataFrame with `data` and
            `target`.

            .. versionadded:: 0.23
        images: {ndarray} of shape (1797, 8, 8)
            The raw image data.
        DESCR: str
            The full description of the dataset.

    (data, target) : tuple if ``return_X_y`` is True
        A tuple of two ndarrays by default. The first contains a 2D ndarray of
        shape (1797, 64) with each row representing one sample and each column
        representing the features. The second ndarray of shape (1797) contains
        the target samples.  If `as_frame=True`, both arrays are pandas objects,
        i.e. `X` a dataframe and `y` a series.

        .. versionadded:: 0.18

    Examples
    --------
    To load the data and visualize the images::

        >>> from sklearn.datasets import load_digits
        >>> digits = load_digits()
        >>> print(digits.data.shape)
        (1797, 64)
        >>> import matplotlib.pyplot as plt
        >>> plt.gray()
        >>> plt.matshow(digits.images[0])
        <...>
        >>> plt.show()
    """

    data, fdescr = load_gzip_compressed_csv_data(
        data_file_name="digits.csv.gz", descr_file_name="digits.rst", delimiter=","
    )

    target = data[:, -1].astype(int, copy=False)
    flat_data = data[:, :-1]
    images = flat_data.view()
    images.shape = (-1, 8, 8)

    if n_class < 10:
        idx = target < n_class
        flat_data, target = flat_data[idx], target[idx]
        images = images[idx]

    feature_names = [
        "pixel_{}_{}".format(row_idx, col_idx)
        for row_idx in range(8)
        for col_idx in range(8)
    ]

    frame = None
    target_columns = [
        "target",
    ]
    if as_frame:
        frame, flat_data, target = _convert_data_dataframe(
            "load_digits", flat_data, target, feature_names, target_columns
        )

    if return_X_y:
        return flat_data, target

    return Bunch(
        data=flat_data,
        target=target,
        frame=frame,
        feature_names=feature_names,
        target_names=np.arange(10),
        images=images,
        DESCR=fdescr,
    )


@validate_params(
    {"return_X_y": ["boolean"], "as_frame": ["boolean"], "scaled": ["boolean"]},
    prefer_skip_nested_validation=True,
)
def load_diabetes(*, return_X_y=False, as_frame=False, scaled=True):
    """Load and return the diabetes dataset (regression).

    ==============   ==================
    Samples total    442
    Dimensionality   10
    Features         real, -.2 < x < .2
    Targets          integer 25 - 346
    ==============   ==================

    .. note::
       The meaning of each feature (i.e. `feature_names`) might be unclear
       (especially for `ltg`) as the documentation of the original dataset is
       not explicit. We provide information that seems correct in regard with
       the scientific literature in this field of research.

    Read more in the :ref:`User Guide <diabetes_dataset>`.

    Parameters
    ----------
    return_X_y : bool, default=False
        If True, returns ``(data, target)`` instead of a Bunch object.
        See below for more information about the `data` and `target` object.

        .. versionadded:: 0.18

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric). The target is
        a pandas DataFrame or Series depending on the number of target columns.
        If `return_X_y` is True, then (`data`, `target`) will be pandas
        DataFrames or Series as described below.

        .. versionadded:: 0.23

    scaled : bool, default=True
        If True, the feature variables are mean centered and scaled by the
        standard deviation times the square root of `n_samples`.
        If False, raw data is returned for the feature variables.

        .. versionadded:: 1.1

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : {ndarray, dataframe} of shape (442, 10)
            The data matrix. If `as_frame=True`, `data` will be a pandas
            DataFrame.
        target: {ndarray, Series} of shape (442,)
            The regression target. If `as_frame=True`, `target` will be
            a pandas Series.
        feature_names: list
            The names of the dataset columns.
        frame: DataFrame of shape (442, 11)
            Only present when `as_frame=True`. DataFrame with `data` and
            `target`.

            .. versionadded:: 0.23
        DESCR: str
            The full description of the dataset.
        data_filename: str
            The path to the location of the data.
        target_filename: str
            The path to the location of the target.

    (data, target) : tuple if ``return_X_y`` is True
        Returns a tuple of two ndarray of shape (n_samples, n_features)
        A 2D array with each row representing one sample and each column
        representing the features and/or target of a given sample.

        .. versionadded:: 0.18

    Examples
    --------
    >>> from sklearn.datasets import load_diabetes
    >>> diabetes = load_diabetes()
    >>> diabetes.target[:3]
    array([151.,  75., 141.])
    >>> diabetes.data.shape
    (442, 10)
    """
    data_filename = "diabetes_data_raw.csv.gz"
    target_filename = "diabetes_target.csv.gz"
    data = load_gzip_compressed_csv_data(data_filename)
    target = load_gzip_compressed_csv_data(target_filename)

    if scaled:
        data = scale(data, copy=False)
        data /= data.shape[0] ** 0.5

    fdescr = load_descr("diabetes.rst")

    feature_names = ["age", "sex", "bmi", "bp", "s1", "s2", "s3", "s4", "s5", "s6"]

    frame = None
    target_columns = [
        "target",
    ]
    if as_frame:
        frame, data, target = _convert_data_dataframe(
            "load_diabetes", data, target, feature_names, target_columns
        )

    if return_X_y:
        return data, target

    return Bunch(
        data=data,
        target=target,
        frame=frame,
        DESCR=fdescr,
        feature_names=feature_names,
        data_filename=data_filename,
        target_filename=target_filename,
        data_module=DATA_MODULE,
    )


@validate_params(
    {
        "return_X_y": ["boolean"],
        "as_frame": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def load_linnerud(*, return_X_y=False, as_frame=False):
    """Load and return the physical exercise Linnerud dataset.

    This dataset is suitable for multi-output regression tasks.

    ==============   ============================
    Samples total    20
    Dimensionality   3 (for both data and target)
    Features         integer
    Targets          integer
    ==============   ============================

    Read more in the :ref:`User Guide <linnerrud_dataset>`.

    Parameters
    ----------
    return_X_y : bool, default=False
        If True, returns ``(data, target)`` instead of a Bunch object.
        See below for more information about the `data` and `target` object.

        .. versionadded:: 0.18

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric, string or categorical). The target is
        a pandas DataFrame or Series depending on the number of target columns.
        If `return_X_y` is True, then (`data`, `target`) will be pandas
        DataFrames or Series as described below.

        .. versionadded:: 0.23

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : {ndarray, dataframe} of shape (20, 3)
            The data matrix. If `as_frame=True`, `data` will be a pandas
            DataFrame.
        target: {ndarray, dataframe} of shape (20, 3)
            The regression targets. If `as_frame=True`, `target` will be
            a pandas DataFrame.
        feature_names: list
            The names of the dataset columns.
        target_names: list
            The names of the target columns.
        frame: DataFrame of shape (20, 6)
            Only present when `as_frame=True`. DataFrame with `data` and
            `target`.

            .. versionadded:: 0.23
        DESCR: str
            The full description of the dataset.
        data_filename: str
            The path to the location of the data.
        target_filename: str
            The path to the location of the target.

            .. versionadded:: 0.20

    (data, target) : tuple if ``return_X_y`` is True
        Returns a tuple of two ndarrays or dataframe of shape
        `(20, 3)`. Each row represents one sample and each column represents the
        features in `X` and a target in `y` of a given sample.

        .. versionadded:: 0.18

    Examples
    --------
    >>> from sklearn.datasets import load_linnerud
    >>> linnerud = load_linnerud()
    >>> linnerud.data.shape
    (20, 3)
    >>> linnerud.target.shape
    (20, 3)
    """
    data_filename = "linnerud_exercise.csv"
    target_filename = "linnerud_physiological.csv"

    data_module_path = resources.files(DATA_MODULE)
    # Read header and data
    data_path = data_module_path / data_filename
    with data_path.open("r", encoding="utf-8") as f:
        header_exercise = f.readline().split()
        f.seek(0)  # reset file obj
        data_exercise = np.loadtxt(f, skiprows=1)

    target_path = data_module_path / target_filename
    with target_path.open("r", encoding="utf-8") as f:
        header_physiological = f.readline().split()
        f.seek(0)  # reset file obj
        data_physiological = np.loadtxt(f, skiprows=1)

    fdescr = load_descr("linnerud.rst")

    frame = None
    if as_frame:
        (frame, data_exercise, data_physiological) = _convert_data_dataframe(
            "load_linnerud",
            data_exercise,
            data_physiological,
            header_exercise,
            header_physiological,
        )
    if return_X_y:
        return data_exercise, data_physiological

    return Bunch(
        data=data_exercise,
        feature_names=header_exercise,
        target=data_physiological,
        target_names=header_physiological,
        frame=frame,
        DESCR=fdescr,
        data_filename=data_filename,
        target_filename=target_filename,
        data_module=DATA_MODULE,
    )


def load_sample_images():
    """Load sample images for image manipulation.

    Loads both, ``china`` and ``flower``.

    Read more in the :ref:`User Guide <sample_images>`.

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        images : list of ndarray of shape (427, 640, 3)
            The two sample image.
        filenames : list
            The filenames for the images.
        DESCR : str
            The full description of the dataset.

    Examples
    --------
    To load the data and visualize the images:

    >>> from sklearn.datasets import load_sample_images
    >>> dataset = load_sample_images()     #doctest: +SKIP
    >>> len(dataset.images)                #doctest: +SKIP
    2
    >>> first_img_data = dataset.images[0] #doctest: +SKIP
    >>> first_img_data.shape               #doctest: +SKIP
    (427, 640, 3)
    >>> first_img_data.dtype               #doctest: +SKIP
    dtype('uint8')
    """
    try:
        from PIL import Image
    except ImportError:
        raise ImportError(
            "The Python Imaging Library (PIL) is required to load data "
            "from jpeg files. Please refer to "
            "https://pillow.readthedocs.io/en/stable/installation.html "
            "for installing PIL."
        )

    descr = load_descr("README.txt", descr_module=IMAGES_MODULE)

    filenames, images = [], []

    jpg_paths = sorted(
        resource
        for resource in resources.files(IMAGES_MODULE).iterdir()
        if resource.is_file() and resource.match("*.jpg")
    )

    for path in jpg_paths:
        filenames.append(str(path))
        with path.open("rb") as image_file:
            pil_image = Image.open(image_file)
            image = np.asarray(pil_image)
        images.append(image)

    return Bunch(images=images, filenames=filenames, DESCR=descr)


@validate_params(
    {
        "image_name": [StrOptions({"china.jpg", "flower.jpg"})],
    },
    prefer_skip_nested_validation=True,
)
def load_sample_image(image_name):
    """Load the numpy array of a single sample image.

    Read more in the :ref:`User Guide <sample_images>`.

    Parameters
    ----------
    image_name : {`china.jpg`, `flower.jpg`}
        The name of the sample image loaded.

    Returns
    -------
    img : 3D array
        The image as a numpy array: height x width x color.

    Examples
    --------

    >>> from sklearn.datasets import load_sample_image
    >>> china = load_sample_image('china.jpg')   # doctest: +SKIP
    >>> china.dtype                              # doctest: +SKIP
    dtype('uint8')
    >>> china.shape                              # doctest: +SKIP
    (427, 640, 3)
    >>> flower = load_sample_image('flower.jpg') # doctest: +SKIP
    >>> flower.dtype                             # doctest: +SKIP
    dtype('uint8')
    >>> flower.shape                             # doctest: +SKIP
    (427, 640, 3)
    """
    images = load_sample_images()
    index = None
    for i, filename in enumerate(images.filenames):
        if filename.endswith(image_name):
            index = i
            break
    if index is None:
        raise AttributeError("Cannot find sample image: %s" % image_name)
    return images.images[index]


def _pkl_filepath(*args, **kwargs):
    """Return filename for Python 3 pickles

    args[-1] is expected to be the ".pkl" filename. For compatibility with
    older scikit-learn versions, a suffix is inserted before the extension.

    _pkl_filepath('/path/to/folder', 'filename.pkl') returns
    '/path/to/folder/filename_py3.pkl'

    """
    py3_suffix = kwargs.get("py3_suffix", "_py3")
    basename, ext = splitext(args[-1])
    basename += py3_suffix
    new_args = args[:-1] + (basename + ext,)
    return join(*new_args)


def _sha256(path):
    """Calculate the sha256 hash of the file at path."""
    sha256hash = hashlib.sha256()
    chunk_size = 8192
    with open(path, "rb") as f:
        while True:
            buffer = f.read(chunk_size)
            if not buffer:
                break
            sha256hash.update(buffer)
    return sha256hash.hexdigest()


def _fetch_remote(remote, dirname=None, n_retries=3, delay=1):
    """Helper function to download a remote dataset.

    Fetch a dataset pointed by remote's url, save into path using remote's
    filename and ensure its integrity based on the SHA256 checksum of the
    downloaded file.

    .. versionchanged:: 1.6

        If the file already exists locally and the SHA256 checksums match, the
        path to the local file is returned without re-downloading.

    Parameters
    ----------
    remote : RemoteFileMetadata
        Named tuple containing remote dataset meta information: url, filename
        and checksum.

    dirname : str or Path, default=None
        Directory to save the file to. If None, the current working directory
        is used.

    n_retries : int, default=3
        Number of retries when HTTP errors are encountered.

        .. versionadded:: 1.5

    delay : int, default=1
        Number of seconds between retries.

        .. versionadded:: 1.5

    Returns
    -------
    file_path: Path
        Full path of the created file.
    """
    if dirname is None:
        folder_path = Path(".")
    else:
        folder_path = Path(dirname)

    file_path = folder_path / remote.filename

    if file_path.exists():
        if remote.checksum is None:
            return file_path

        checksum = _sha256(file_path)
        if checksum == remote.checksum:
            return file_path
        else:
            warnings.warn(
                f"SHA256 checksum of existing local file {file_path.name} "
                f"({checksum}) differs from expected ({remote.checksum}): "
                f"re-downloading from {remote.url} ."
            )

    # We create a temporary file dedicated to this particular download to avoid
    # conflicts with parallel downloads. If the download is successful, the
    # temporary file is atomically renamed to the final file path (with
    # `shutil.move`). We therefore pass `delete=False` to `NamedTemporaryFile`.
    # Otherwise, garbage collecting temp_file would raise an error when
    # attempting to delete a file that was already renamed. If the download
    # fails or the result does not match the expected SHA256 digest, the
    # temporary file is removed manually in the except block.
    temp_file = NamedTemporaryFile(
        prefix=remote.filename + ".part_", dir=folder_path, delete=False
    )
    # Note that Python 3.12's `delete_on_close=True` is ignored as we set
    # `delete=False` explicitly. So after this line the empty temporary file still
    # exists on disk to make sure that it's uniquely reserved for this specific call of
    # `_fetch_remote` and therefore it protects against any corruption by parallel
    # calls.
    temp_file.close()
    try:
        temp_file_path = Path(temp_file.name)
        while True:
            try:
                urlretrieve(remote.url, temp_file_path)
                break
            except (URLError, TimeoutError):
                if n_retries == 0:
                    # If no more retries are left, re-raise the caught exception.
                    raise
                warnings.warn(f"Retry downloading from url: {remote.url}")
                n_retries -= 1
                time.sleep(delay)

        checksum = _sha256(temp_file_path)
        if remote.checksum is not None and remote.checksum != checksum:
            raise OSError(
                f"The SHA256 checksum of {remote.filename} ({checksum}) "
                f"differs from expected ({remote.checksum})."
            )
    except (Exception, KeyboardInterrupt):
        os.unlink(temp_file.name)
        raise

    # The following renaming is atomic whenever temp_file_path and
    # file_path are on the same filesystem. This should be the case most of
    # the time, but we still use shutil.move instead of os.rename in case
    # they are not.
    shutil.move(temp_file_path, file_path)

    return file_path


def _filter_filename(value, filter_dots=True):
    """Derive a name that is safe to use as filename from the given string.

    Adapted from the `slugify` function of django:
    https://github.com/django/django/blob/master/django/utils/text.py

    Convert spaces or repeated dashes to single dashes. Replace characters that
    aren't alphanumerics, underscores, hyphens or dots by underscores. Convert
    to lowercase. Also strip leading and trailing whitespace, dashes, and
    underscores.
    """
    value = unicodedata.normalize("NFKD", value).lower()
    if filter_dots:
        value = re.sub(r"[^\w\s-]+", "_", value)
    else:
        value = re.sub(r"[^.\w\s-]+", "_", value)
    value = re.sub(r"[\s-]+", "-", value)
    return value.strip("-_.")


def _derive_folder_and_filename_from_url(url):
    parsed_url = urlparse(url)
    if not parsed_url.hostname:
        raise ValueError(f"Invalid URL: {url}")
    folder_components = [_filter_filename(parsed_url.hostname, filter_dots=False)]
    path = parsed_url.path

    if "/" in path:
        base_folder, raw_filename = path.rsplit("/", 1)

        base_folder = _filter_filename(base_folder)
        if base_folder:
            folder_components.append(base_folder)
    else:
        raw_filename = path

    filename = _filter_filename(raw_filename, filter_dots=False)
    if not filename:
        filename = "downloaded_file"

    return "/".join(folder_components), filename


def fetch_file(
    url, folder=None, local_filename=None, sha256=None, n_retries=3, delay=1
):
    """Fetch a file from the web if not already present in the local folder.

    If the file already exists locally (and the SHA256 checksums match when
    provided), the path to the local file is returned without re-downloading.

    .. versionadded:: 1.6

    Parameters
    ----------
    url : str
        URL of the file to download.

    folder : str or Path, default=None
        Directory to save the file to. If None, the file is downloaded in a
        folder with a name derived from the URL host name and path under
        scikit-learn data home folder.

    local_filename : str, default=None
        Name of the file to save. If None, the filename is inferred from the
        URL.

    sha256 : str, default=None
        SHA256 checksum of the file. If None, no checksum is verified.

    n_retries : int, default=3
        Number of retries when HTTP errors are encountered.

    delay : int, default=1
        Number of seconds between retries.

    Returns
    -------
    file_path : Path
        Full path of the downloaded file.
    """
    folder_from_url, filename_from_url = _derive_folder_and_filename_from_url(url)

    if local_filename is None:
        local_filename = filename_from_url

    if folder is None:
        folder = Path(get_data_home()) / folder_from_url
        makedirs(folder, exist_ok=True)

    remote_metadata = RemoteFileMetadata(
        filename=local_filename, url=url, checksum=sha256
    )
    return _fetch_remote(
        remote_metadata, dirname=folder, n_retries=n_retries, delay=delay
    )