File size: 53,681 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
{{py:

"""
Template file to easily generate loops over samples using Tempita
(https://github.com/cython/cython/blob/master/Cython/Tempita/_tempita.py).

Generated file: _loss.pyx

Each loss class is generated by a cdef functions on single samples.
The keywords between double braces are substituted during the build.
"""

doc_HalfSquaredError = (
    """Half Squared Error with identity link.

    Domain:
    y_true and y_pred all real numbers

    Link:
    y_pred = raw_prediction
    """
)

doc_AbsoluteError = (
    """Absolute Error with identity link.

    Domain:
    y_true and y_pred all real numbers

    Link:
    y_pred = raw_prediction
    """
)

doc_PinballLoss = (
    """Quantile Loss aka Pinball Loss with identity link.

    Domain:
    y_true and y_pred all real numbers
    quantile in (0, 1)

    Link:
    y_pred = raw_prediction

    Note: 2 * cPinballLoss(quantile=0.5) equals cAbsoluteError()
    """
)

doc_HuberLoss = (
    """Huber Loss with identity link.

    Domain:
    y_true and y_pred all real numbers
    delta in positive real numbers

    Link:
    y_pred = raw_prediction
    """
)

doc_HalfPoissonLoss = (
    """Half Poisson deviance loss with log-link.

    Domain:
    y_true in non-negative real numbers
    y_pred in positive real numbers

    Link:
    y_pred = exp(raw_prediction)

    Half Poisson deviance with log-link is
        y_true * log(y_true/y_pred) + y_pred - y_true
        = y_true * log(y_true) - y_true * raw_prediction
          + exp(raw_prediction) - y_true

    Dropping constant terms, this gives:
        exp(raw_prediction) - y_true * raw_prediction
    """
)

doc_HalfGammaLoss = (
    """Half Gamma deviance loss with log-link.

    Domain:
    y_true and y_pred in positive real numbers

    Link:
    y_pred = exp(raw_prediction)

    Half Gamma deviance with log-link is
        log(y_pred/y_true) + y_true/y_pred - 1
        = raw_prediction - log(y_true) + y_true * exp(-raw_prediction) - 1

    Dropping constant terms, this gives:
        raw_prediction + y_true * exp(-raw_prediction)
    """
)

doc_HalfTweedieLoss = (
    """Half Tweedie deviance loss with log-link.

    Domain:
    y_true in real numbers if p <= 0
    y_true in non-negative real numbers if 0 < p < 2
    y_true in positive real numbers if p >= 2
    y_pred and power in positive real numbers

    Link:
    y_pred = exp(raw_prediction)

    Half Tweedie deviance with log-link and p=power is
        max(y_true, 0)**(2-p) / (1-p) / (2-p)
        - y_true * y_pred**(1-p) / (1-p)
        + y_pred**(2-p) / (2-p)
        = max(y_true, 0)**(2-p) / (1-p) / (2-p)
        - y_true * exp((1-p) * raw_prediction) / (1-p)
        + exp((2-p) * raw_prediction) / (2-p)

    Dropping constant terms, this gives:
        exp((2-p) * raw_prediction) / (2-p)
        - y_true * exp((1-p) * raw_prediction) / (1-p)

    Notes:
    - Poisson with p=1 and and Gamma with p=2 have different terms dropped such
      that cHalfTweedieLoss is not continuous in p=power at p=1 and p=2.
    - While the Tweedie distribution only exists for p<=0 or p>=1, the range
      0<p<1 still gives a strictly consistent scoring function for the
      expectation.
    """
)

doc_HalfTweedieLossIdentity = (
    """Half Tweedie deviance loss with identity link.

    Domain:
    y_true in real numbers if p <= 0
    y_true in non-negative real numbers if 0 < p < 2
    y_true in positive real numbers if p >= 2
    y_pred and power in positive real numbers, y_pred may be negative for p=0.

    Link:
    y_pred = raw_prediction

    Half Tweedie deviance with identity link and p=power is
        max(y_true, 0)**(2-p) / (1-p) / (2-p)
        - y_true * y_pred**(1-p) / (1-p)
        + y_pred**(2-p) / (2-p)

    Notes:
    - Here, we do not drop constant terms in contrast to the version with log-link.
    """
)

doc_HalfBinomialLoss = (
    """Half Binomial deviance loss with logit link.

    Domain:
    y_true in [0, 1]
    y_pred in (0, 1), i.e. boundaries excluded

    Link:
    y_pred = expit(raw_prediction)
    """
)

doc_ExponentialLoss = (
    """"Exponential loss with (half) logit link

    Domain:
    y_true in [0, 1]
    y_pred in (0, 1), i.e. boundaries excluded

    Link:
    y_pred = expit(2 * raw_prediction)
    """
)

# loss class name, docstring, param,
# cy_loss, cy_loss_grad,
# cy_grad, cy_grad_hess,
class_list = [
    ("CyHalfSquaredError", doc_HalfSquaredError, None,
     "closs_half_squared_error", None,
     "cgradient_half_squared_error", "cgrad_hess_half_squared_error"),
    ("CyAbsoluteError", doc_AbsoluteError, None,
     "closs_absolute_error", None,
     "cgradient_absolute_error", "cgrad_hess_absolute_error"),
    ("CyPinballLoss", doc_PinballLoss, "quantile",
     "closs_pinball_loss", None,
     "cgradient_pinball_loss", "cgrad_hess_pinball_loss"),
     ("CyHuberLoss", doc_HuberLoss, "delta",
     "closs_huber_loss", None,
     "cgradient_huber_loss", "cgrad_hess_huber_loss"),
    ("CyHalfPoissonLoss", doc_HalfPoissonLoss, None,
     "closs_half_poisson", "closs_grad_half_poisson",
     "cgradient_half_poisson", "cgrad_hess_half_poisson"),
    ("CyHalfGammaLoss", doc_HalfGammaLoss, None,
     "closs_half_gamma", "closs_grad_half_gamma",
     "cgradient_half_gamma", "cgrad_hess_half_gamma"),
    ("CyHalfTweedieLoss", doc_HalfTweedieLoss, "power",
     "closs_half_tweedie", "closs_grad_half_tweedie",
     "cgradient_half_tweedie", "cgrad_hess_half_tweedie"),
    ("CyHalfTweedieLossIdentity", doc_HalfTweedieLossIdentity, "power",
     "closs_half_tweedie_identity", "closs_grad_half_tweedie_identity",
     "cgradient_half_tweedie_identity", "cgrad_hess_half_tweedie_identity"),
    ("CyHalfBinomialLoss", doc_HalfBinomialLoss, None,
     "closs_half_binomial", "closs_grad_half_binomial",
     "cgradient_half_binomial", "cgrad_hess_half_binomial"),
     ("CyExponentialLoss", doc_ExponentialLoss, None,
     "closs_exponential", "closs_grad_exponential",
     "cgradient_exponential", "cgrad_hess_exponential"),
]
}}

# Design:
# See https://github.com/scikit-learn/scikit-learn/issues/15123 for reasons.
# a) Merge link functions into loss functions for speed and numerical
#    stability, i.e. use raw_prediction instead of y_pred in signature.
# b) Pure C functions (nogil) calculate single points (single sample)
# c) Wrap C functions in a loop to get Python functions operating on ndarrays.
#   - Write loops manually---use Tempita for this.
#     Reason: There is still some performance overhead when using a wrapper
#     function "wrap" that carries out the loop and gets as argument a function
#     pointer to one of the C functions from b), e.g.
#     wrap(closs_half_poisson, y_true, ...)
#   - Pass n_threads as argument to prange and propagate option to all callers.
# d) Provide classes (Cython extension types) per loss (names start with Cy) in
#    order to have semantical structured objects.
#    - Member functions for single points just call the C function from b).
#      These are used e.g. in SGD `_plain_sgd`.
#    - Member functions operating on ndarrays, see c), looping over calls to C
#      functions from b).
# e) Provide convenience Python classes that compose from these extension types
#    elsewhere (see loss.py)
#    - Example: loss.gradient calls CyLoss.gradient but does some input
#      checking like None -> np.empty().
#
# Note: We require 1-dim ndarrays to be contiguous.

from cython.parallel import parallel, prange
import numpy as np

from libc.math cimport exp, fabs, log, log1p, pow
from libc.stdlib cimport malloc, free


# -------------------------------------
# Helper functions
# -------------------------------------
# Numerically stable version of log(1 + exp(x)) for double precision, see Eq. (10) of
# https://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-note.pdf
# Note: The only important cutoff is at x = 18. All others are to save computation
# time. Compared to the reference, we add the additional case distinction x <= -2 in
# order to use log instead of log1p for improved performance. As with the other
# cutoffs, this is accurate within machine precision of double.
cdef inline double log1pexp(double x) noexcept nogil:
    if x <= -37:
        return exp(x)
    elif x <= -2:
        return log1p(exp(x))
    elif x <= 18:
        return log(1. + exp(x))
    elif x <= 33.3:
        return x + exp(-x)
    else:
        return x


cdef inline double_pair sum_exp_minus_max(
    const int i,
    const floating_in[:, :] raw_prediction,  # IN
    floating_out *p                           # OUT
) noexcept nogil:
    # Thread local buffers are used to store part of the results via p.
    # The results are stored as follows:
    #     p[k] = exp(raw_prediction_i_k - max_value) for k = 0 to n_classes-1
    #     return.val1 = max_value = max(raw_prediction_i_k, k = 0 to n_classes-1)
    #     return.val2 = sum_exps = sum(p[k], k = 0 to n_classes-1) = sum of exponentials
    # len(p) must be n_classes
    # Notes:
    # - We return the max value and sum of exps (stored in p) as a double_pair.
    # - i needs to be passed (and stays constant) because otherwise Cython does
    #   not generate optimal code, see
    #   https://github.com/scikit-learn/scikit-learn/issues/17299
    # - We do not normalize p by calculating p[k] = p[k] / sum_exps.
    #   This helps to save one loop over k.
    cdef:
        int k
        int n_classes = raw_prediction.shape[1]
        double_pair max_value_and_sum_exps  # val1 = max_value, val2 = sum_exps

    max_value_and_sum_exps.val1 = raw_prediction[i, 0]
    max_value_and_sum_exps.val2 = 0
    for k in range(1, n_classes):
        # Compute max value of array for numerical stability
        if max_value_and_sum_exps.val1 < raw_prediction[i, k]:
            max_value_and_sum_exps.val1 = raw_prediction[i, k]

    for k in range(n_classes):
        p[k] = exp(raw_prediction[i, k] - max_value_and_sum_exps.val1)
        max_value_and_sum_exps.val2 += p[k]

    return max_value_and_sum_exps


# -------------------------------------
# Single point inline C functions
# -------------------------------------
# Half Squared Error
cdef inline double closs_half_squared_error(
    double y_true,
    double raw_prediction
) noexcept nogil:
    return 0.5 * (raw_prediction - y_true) * (raw_prediction - y_true)


cdef inline double cgradient_half_squared_error(
    double y_true,
    double raw_prediction
) noexcept nogil:
    return raw_prediction - y_true


cdef inline double_pair cgrad_hess_half_squared_error(
    double y_true,
    double raw_prediction
) noexcept nogil:
    cdef double_pair gh
    gh.val1 = raw_prediction - y_true  # gradient
    gh.val2 = 1.                       # hessian
    return gh


# Absolute Error
cdef inline double closs_absolute_error(
    double y_true,
    double raw_prediction
) noexcept nogil:
    return fabs(raw_prediction - y_true)


cdef inline double cgradient_absolute_error(
    double y_true,
    double raw_prediction
) noexcept nogil:
    return 1. if raw_prediction > y_true else -1.


cdef inline double_pair cgrad_hess_absolute_error(
    double y_true,
    double raw_prediction
) noexcept nogil:
    cdef double_pair gh
    # Note that exact hessian = 0 almost everywhere. Optimization routines like
    # in HGBT, however, need a hessian > 0. Therefore, we assign 1.
    gh.val1 = 1. if raw_prediction > y_true else -1.  # gradient
    gh.val2 = 1.                                      # hessian
    return gh


# Quantile Loss / Pinball Loss
cdef inline double closs_pinball_loss(
    double y_true,
    double raw_prediction,
    double quantile
) noexcept nogil:
    return (quantile * (y_true - raw_prediction) if y_true >= raw_prediction
            else (1. - quantile) * (raw_prediction - y_true))


cdef inline double cgradient_pinball_loss(
    double y_true,
    double raw_prediction,
    double quantile
) noexcept nogil:
    return -quantile if y_true >=raw_prediction else 1. - quantile


cdef inline double_pair cgrad_hess_pinball_loss(
    double y_true,
    double raw_prediction,
    double quantile
) noexcept nogil:
    cdef double_pair gh
    # Note that exact hessian = 0 almost everywhere. Optimization routines like
    # in HGBT, however, need a hessian > 0. Therefore, we assign 1.
    gh.val1 = -quantile if y_true >=raw_prediction else 1. - quantile  # gradient
    gh.val2 = 1.                                                       # hessian
    return gh


# Huber Loss
cdef inline double closs_huber_loss(
    double y_true,
    double raw_prediction,
    double delta,
) noexcept nogil:
    cdef double abserr = fabs(y_true - raw_prediction)
    if abserr <= delta:
        return 0.5 * abserr**2
    else:
        return delta * (abserr - 0.5 * delta)


cdef inline double cgradient_huber_loss(
    double y_true,
    double raw_prediction,
    double delta,
) noexcept nogil:
    cdef double res = raw_prediction - y_true
    if fabs(res) <= delta:
        return res
    else:
        return delta if res >=0 else -delta


cdef inline double_pair cgrad_hess_huber_loss(
    double y_true,
    double raw_prediction,
    double delta,
) noexcept nogil:
    cdef double_pair gh
    gh.val2 = raw_prediction - y_true               # used as temporary
    if fabs(gh.val2) <= delta:
        gh.val1 = gh.val2                           # gradient
        gh.val2 = 1                                 # hessian
    else:
        gh.val1 = delta if gh.val2 >=0 else -delta  # gradient
        gh.val2 = 0                                 # hessian
    return gh


# Half Poisson Deviance with Log-Link, dropping constant terms
cdef inline double closs_half_poisson(
    double y_true,
    double raw_prediction
) noexcept nogil:
    return exp(raw_prediction) - y_true * raw_prediction


cdef inline double cgradient_half_poisson(
    double y_true,
    double raw_prediction
) noexcept nogil:
    # y_pred - y_true
    return exp(raw_prediction) - y_true


cdef inline double_pair closs_grad_half_poisson(
    double y_true,
    double raw_prediction
) noexcept nogil:
    cdef double_pair lg
    lg.val2 = exp(raw_prediction)                # used as temporary
    lg.val1 = lg.val2 - y_true * raw_prediction  # loss
    lg.val2 -= y_true                            # gradient
    return lg


cdef inline double_pair cgrad_hess_half_poisson(
    double y_true,
    double raw_prediction
) noexcept nogil:
    cdef double_pair gh
    gh.val2 = exp(raw_prediction)  # hessian
    gh.val1 = gh.val2 - y_true     # gradient
    return gh


# Half Gamma Deviance with Log-Link, dropping constant terms
cdef inline double closs_half_gamma(
    double y_true,
    double raw_prediction
) noexcept nogil:
    return raw_prediction + y_true * exp(-raw_prediction)


cdef inline double cgradient_half_gamma(
    double y_true,
    double raw_prediction
) noexcept nogil:
    return 1. - y_true * exp(-raw_prediction)


cdef inline double_pair closs_grad_half_gamma(
    double y_true,
    double raw_prediction
) noexcept nogil:
    cdef double_pair lg
    lg.val2 = exp(-raw_prediction)               # used as temporary
    lg.val1 = raw_prediction + y_true * lg.val2  # loss
    lg.val2 = 1. - y_true * lg.val2              # gradient
    return lg


cdef inline double_pair cgrad_hess_half_gamma(
    double y_true,
    double raw_prediction
) noexcept nogil:
    cdef double_pair gh
    gh.val2 = exp(-raw_prediction)   # used as temporary
    gh.val1 = 1. - y_true * gh.val2  # gradient
    gh.val2 *= y_true                # hessian
    return gh


# Half Tweedie Deviance with Log-Link, dropping constant terms
# Note that by dropping constants this is no longer continuous in parameter power.
cdef inline double closs_half_tweedie(
    double y_true,
    double raw_prediction,
    double power
) noexcept nogil:
    if power == 0.:
        return closs_half_squared_error(y_true, exp(raw_prediction))
    elif power == 1.:
        return closs_half_poisson(y_true, raw_prediction)
    elif power == 2.:
        return closs_half_gamma(y_true, raw_prediction)
    else:
        return (exp((2. - power) * raw_prediction) / (2. - power)
                - y_true * exp((1. - power) * raw_prediction) / (1. - power))


cdef inline double cgradient_half_tweedie(
    double y_true,
    double raw_prediction,
    double power
) noexcept nogil:
    cdef double exp1
    if power == 0.:
        exp1 = exp(raw_prediction)
        return exp1 * (exp1 - y_true)
    elif power == 1.:
        return cgradient_half_poisson(y_true, raw_prediction)
    elif power == 2.:
        return cgradient_half_gamma(y_true, raw_prediction)
    else:
        return (exp((2. - power) * raw_prediction)
                - y_true * exp((1. - power) * raw_prediction))


cdef inline double_pair closs_grad_half_tweedie(
    double y_true,
    double raw_prediction,
    double power
) noexcept nogil:
    cdef double_pair lg
    cdef double exp1, exp2
    if power == 0.:
        exp1 = exp(raw_prediction)
        lg.val1 = closs_half_squared_error(y_true, exp1)  # loss
        lg.val2 = exp1 * (exp1 - y_true)                  # gradient
    elif power == 1.:
        return closs_grad_half_poisson(y_true, raw_prediction)
    elif power == 2.:
        return closs_grad_half_gamma(y_true, raw_prediction)
    else:
        exp1 = exp((1. - power) * raw_prediction)
        exp2 = exp((2. - power) * raw_prediction)
        lg.val1 = exp2 / (2. - power) - y_true * exp1 / (1. - power)  # loss
        lg.val2 = exp2 - y_true * exp1                                # gradient
    return lg


cdef inline double_pair cgrad_hess_half_tweedie(
    double y_true,
    double raw_prediction,
    double power
) noexcept nogil:
    cdef double_pair gh
    cdef double exp1, exp2
    if power == 0.:
        exp1 = exp(raw_prediction)
        gh.val1 = exp1 * (exp1 - y_true)      # gradient
        gh.val2 = exp1 * (2 * exp1 - y_true)  # hessian
    elif power == 1.:
        return cgrad_hess_half_poisson(y_true, raw_prediction)
    elif power == 2.:
        return cgrad_hess_half_gamma(y_true, raw_prediction)
    else:
        exp1 = exp((1. - power) * raw_prediction)
        exp2 = exp((2. - power) * raw_prediction)
        gh.val1 = exp2 - y_true * exp1                                # gradient
        gh.val2 = (2. - power) * exp2 - (1. - power) * y_true * exp1  # hessian
    return gh


# Half Tweedie Deviance with identity link, without dropping constant terms!
# Therefore, best loss value is zero.
cdef inline double closs_half_tweedie_identity(
    double y_true,
    double raw_prediction,
    double power
) noexcept nogil:
    cdef double tmp
    if power == 0.:
        return closs_half_squared_error(y_true, raw_prediction)
    elif power == 1.:
        if y_true == 0:
            return raw_prediction
        else:
            return y_true * log(y_true/raw_prediction) + raw_prediction - y_true
    elif power == 2.:
        return log(raw_prediction/y_true) + y_true/raw_prediction - 1.
    else:
        tmp = pow(raw_prediction, 1. - power)
        tmp = raw_prediction * tmp / (2. - power) - y_true * tmp / (1. - power)
        if y_true > 0:
            tmp += pow(y_true, 2. - power) / ((1. - power) * (2. - power))
        return tmp


cdef inline double cgradient_half_tweedie_identity(
    double y_true,
    double raw_prediction,
    double power
) noexcept nogil:
    if power == 0.:
        return raw_prediction - y_true
    elif power == 1.:
        return 1. - y_true / raw_prediction
    elif power == 2.:
        return (raw_prediction - y_true) / (raw_prediction * raw_prediction)
    else:
        return pow(raw_prediction, -power) * (raw_prediction - y_true)


cdef inline double_pair closs_grad_half_tweedie_identity(
    double y_true,
    double raw_prediction,
    double power
) noexcept nogil:
    cdef double_pair lg
    cdef double tmp
    if power == 0.:
        lg.val2 = raw_prediction - y_true  # gradient
        lg.val1 = 0.5 * lg.val2 * lg.val2  # loss
    elif power == 1.:
        if y_true == 0:
            lg.val1 = raw_prediction
        else:
            lg.val1 = (y_true * log(y_true/raw_prediction)  # loss
                       + raw_prediction - y_true)
        lg.val2 = 1. - y_true / raw_prediction              # gradient
    elif power == 2.:
        lg.val1 = log(raw_prediction/y_true) + y_true/raw_prediction - 1.  # loss
        tmp = raw_prediction * raw_prediction
        lg.val2 = (raw_prediction - y_true) / tmp                          # gradient
    else:
        tmp = pow(raw_prediction, 1. - power)
        lg.val1 = (raw_prediction * tmp / (2. - power)  # loss
                   - y_true * tmp / (1. - power))
        if y_true > 0:
            lg.val1 += (pow(y_true, 2. - power)
                        / ((1. - power) * (2. - power)))
        lg.val2 = tmp * (1. - y_true / raw_prediction)    # gradient
    return lg


cdef inline double_pair cgrad_hess_half_tweedie_identity(
    double y_true,
    double raw_prediction,
    double power
) noexcept nogil:
    cdef double_pair gh
    cdef double tmp
    if power == 0.:
        gh.val1 = raw_prediction - y_true  # gradient
        gh.val2 = 1.                       # hessian
    elif power == 1.:
        gh.val1 = 1. - y_true / raw_prediction                # gradient
        gh.val2 = y_true / (raw_prediction * raw_prediction)  # hessian
    elif power == 2.:
        tmp = raw_prediction * raw_prediction
        gh.val1 = (raw_prediction - y_true) / tmp             # gradient
        gh.val2 = (-1. + 2. * y_true / raw_prediction) / tmp  # hessian
    else:
        tmp = pow(raw_prediction, -power)
        gh.val1 = tmp * (raw_prediction - y_true)                         # gradient
        gh.val2 = tmp * ((1. - power) + power * y_true / raw_prediction)  # hessian
    return gh


# Half Binomial deviance with logit-link, aka log-loss or binary cross entropy
cdef inline double closs_half_binomial(
    double y_true,
    double raw_prediction
) noexcept nogil:
    # log1p(exp(raw_prediction)) - y_true * raw_prediction
    return log1pexp(raw_prediction) - y_true * raw_prediction


cdef inline double cgradient_half_binomial(
    double y_true,
    double raw_prediction
) noexcept nogil:
    # gradient = y_pred - y_true = expit(raw_prediction) - y_true
    # Numerically more stable, see http://fa.bianp.net/blog/2019/evaluate_logistic/
    #     if raw_prediction < 0:
    #         exp_tmp = exp(raw_prediction)
    #         return ((1 - y_true) * exp_tmp - y_true) / (1 + exp_tmp)
    #     else:
    #         exp_tmp = exp(-raw_prediction)
    #         return ((1 - y_true) - y_true * exp_tmp) / (1 + exp_tmp)
    # Note that optimal speed would be achieved, at the cost of precision, by
    #     return expit(raw_prediction) - y_true
    # i.e. no "if else" and an own inline implementation of expit instead of
    #     from scipy.special.cython_special cimport expit
    # The case distinction raw_prediction < 0 in the stable implementation does not
    # provide significant better precision apart from protecting overflow of exp(..).
    # The branch (if else), however, can incur runtime costs of up to 30%.
    # Instead, we help branch prediction by almost always ending in the first if clause
    # and making the second branch (else) a bit simpler. This has the exact same
    # precision but is faster than the stable implementation.
    # As branching criteria, we use the same cutoff as in log1pexp. Note that the
    # maximal value to get gradient = -1 with y_true = 1 is -37.439198610162731
    # (based on mpmath), and scipy.special.logit(np.finfo(float).eps) ~ -36.04365.
    cdef double exp_tmp
    if raw_prediction > -37:
        exp_tmp = exp(-raw_prediction)
        return ((1 - y_true) - y_true * exp_tmp) / (1 + exp_tmp)
    else:
        # expit(raw_prediction) = exp(raw_prediction) for raw_prediction <= -37
        return exp(raw_prediction) - y_true


cdef inline double_pair closs_grad_half_binomial(
    double y_true,
    double raw_prediction
) noexcept nogil:
    cdef double_pair lg
    # Same if else conditions as in log1pexp.
    if raw_prediction <= -37:
        lg.val2 = exp(raw_prediction)  # used as temporary
        lg.val1 = lg.val2 - y_true * raw_prediction                  # loss
        lg.val2 -= y_true                                            # gradient
    elif raw_prediction <= -2:
        lg.val2 = exp(raw_prediction)  # used as temporary
        lg.val1 = log1p(lg.val2) - y_true * raw_prediction           # loss
        lg.val2 = ((1 - y_true) * lg.val2 - y_true) / (1 + lg.val2)  # gradient
    elif raw_prediction <= 18:
        lg.val2 = exp(-raw_prediction)  # used as temporary
        # log1p(exp(x)) = log(1 + exp(x)) = x + log1p(exp(-x))
        lg.val1 = log1p(lg.val2) + (1 - y_true) * raw_prediction     # loss
        lg.val2 = ((1 - y_true) - y_true * lg.val2) / (1 + lg.val2)  # gradient
    else:
        lg.val2 = exp(-raw_prediction)  # used as temporary
        lg.val1 = lg.val2 + (1 - y_true) * raw_prediction            # loss
        lg.val2 = ((1 - y_true) - y_true * lg.val2) / (1 + lg.val2)  # gradient
    return lg


cdef inline double_pair cgrad_hess_half_binomial(
    double y_true,
    double raw_prediction
) noexcept nogil:
    # with y_pred = expit(raw)
    # hessian = y_pred * (1 - y_pred) = exp( raw) / (1 + exp( raw))**2
    #                                 = exp(-raw) / (1 + exp(-raw))**2
    cdef double_pair gh
    # See comment in cgradient_half_binomial.
    if raw_prediction > -37:
        gh.val2 = exp(-raw_prediction)  # used as temporary
        gh.val1 = ((1 - y_true) - y_true * gh.val2) / (1 + gh.val2)  # gradient
        gh.val2 = gh.val2 / (1 + gh.val2)**2                         # hessian
    else:
        gh.val2 = exp(raw_prediction)  # = 1. order Taylor in exp(raw_prediction)
        gh.val1 = gh.val2 - y_true
    return gh


# Exponential loss with (half) logit-link, aka boosting loss
cdef inline double closs_exponential(
    double y_true,
    double raw_prediction
) noexcept nogil:
    cdef double tmp = exp(raw_prediction)
    return y_true / tmp + (1 - y_true) * tmp


cdef inline double cgradient_exponential(
    double y_true,
    double raw_prediction
) noexcept nogil:
    cdef double tmp = exp(raw_prediction)
    return -y_true / tmp + (1 - y_true) * tmp


cdef inline double_pair closs_grad_exponential(
    double y_true,
    double raw_prediction
) noexcept nogil:
    cdef double_pair lg
    lg.val2 = exp(raw_prediction)  # used as temporary

    lg.val1 =  y_true / lg.val2 + (1 - y_true) * lg.val2  # loss
    lg.val2 = -y_true / lg.val2 + (1 - y_true) * lg.val2  # gradient
    return lg


cdef inline double_pair cgrad_hess_exponential(
    double y_true,
    double raw_prediction
) noexcept nogil:
    # Note that hessian = loss
    cdef double_pair gh
    gh.val2 = exp(raw_prediction)  # used as temporary

    gh.val1 = -y_true / gh.val2 + (1 - y_true) * gh.val2  # gradient
    gh.val2 =  y_true / gh.val2 + (1 - y_true) * gh.val2  # hessian
    return gh


# ---------------------------------------------------
# Extension Types for Loss Functions of 1-dim targets
# ---------------------------------------------------
cdef class CyLossFunction:
    """Base class for convex loss functions."""

    def __reduce__(self):
        return (self.__class__, ())

    cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil:
        """Compute the loss for a single sample.

        Parameters
        ----------
        y_true : double
            Observed, true target value.
        raw_prediction : double
            Raw prediction value (in link space).

        Returns
        -------
        double
            The loss evaluated at `y_true` and `raw_prediction`.
        """
        pass

    cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil:
        """Compute gradient of loss w.r.t. raw_prediction for a single sample.

        Parameters
        ----------
        y_true : double
            Observed, true target value.
        raw_prediction : double
            Raw prediction value (in link space).

        Returns
        -------
        double
            The derivative of the loss function w.r.t. `raw_prediction`.
        """
        pass

    cdef double_pair cy_grad_hess(
        self, double y_true, double raw_prediction
    ) noexcept nogil:
        """Compute gradient and hessian.

        Gradient and hessian of loss w.r.t. raw_prediction for a single sample.

        This is usually diagonal in raw_prediction_i and raw_prediction_j.
        Therefore, we return the diagonal element i=j.

        For a loss with a non-canonical link, this might implement the diagonal
        of the Fisher matrix (=expected hessian) instead of the hessian.

        Parameters
        ----------
        y_true : double
            Observed, true target value.
        raw_prediction : double
            Raw prediction value (in link space).

        Returns
        -------
        double_pair
            Gradient and hessian of the loss function w.r.t. `raw_prediction`.
        """
        pass

    def loss(
        self,
        const floating_in[::1] y_true,          # IN
        const floating_in[::1] raw_prediction,  # IN
        const floating_in[::1] sample_weight,   # IN
        floating_out[::1] loss_out,             # OUT
        int n_threads=1
    ):
        """Compute the point-wise loss value for each input.

        The point-wise loss is written to `loss_out` and no array is returned.

        Parameters
        ----------
        y_true : array of shape (n_samples,)
            Observed, true target values.
        raw_prediction : array of shape (n_samples,)
            Raw prediction values (in link space).
        sample_weight : array of shape (n_samples,) or None
            Sample weights.
        loss_out : array of shape (n_samples,)
            A location into which the result is stored.
        n_threads : int
            Number of threads used by OpenMP (if any).
        """
        pass

    def gradient(
        self,
        const floating_in[::1] y_true,          # IN
        const floating_in[::1] raw_prediction,  # IN
        const floating_in[::1] sample_weight,   # IN
        floating_out[::1] gradient_out,         # OUT
        int n_threads=1
    ):
        """Compute gradient of loss w.r.t raw_prediction for each input.

        The gradient is written to `gradient_out` and no array is returned.

        Parameters
        ----------
        y_true : array of shape (n_samples,)
            Observed, true target values.
        raw_prediction : array of shape (n_samples,)
            Raw prediction values (in link space).
        sample_weight : array of shape (n_samples,) or None
            Sample weights.
        gradient_out : array of shape (n_samples,)
            A location into which the result is stored.
        n_threads : int
            Number of threads used by OpenMP (if any).
        """
        pass

    def loss_gradient(
        self,
        const floating_in[::1] y_true,          # IN
        const floating_in[::1] raw_prediction,  # IN
        const floating_in[::1] sample_weight,   # IN
        floating_out[::1] loss_out,             # OUT
        floating_out[::1] gradient_out,         # OUT
        int n_threads=1
    ):
        """Compute loss and gradient of loss w.r.t raw_prediction.

        The loss and gradient are written to `loss_out` and `gradient_out` and no arrays
        are returned.

        Parameters
        ----------
        y_true : array of shape (n_samples,)
            Observed, true target values.
        raw_prediction : array of shape (n_samples,)
            Raw prediction values (in link space).
        sample_weight : array of shape (n_samples,) or None
            Sample weights.
        loss_out : array of shape (n_samples,) or None
            A location into which the element-wise loss is stored.
        gradient_out : array of shape (n_samples,)
            A location into which the gradient is stored.
        n_threads : int
            Number of threads used by OpenMP (if any).
        """
        self.loss(y_true, raw_prediction, sample_weight, loss_out, n_threads)
        self.gradient(y_true, raw_prediction, sample_weight, gradient_out, n_threads)

    def gradient_hessian(
        self,
        const floating_in[::1] y_true,          # IN
        const floating_in[::1] raw_prediction,  # IN
        const floating_in[::1] sample_weight,   # IN
        floating_out[::1] gradient_out,         # OUT
        floating_out[::1] hessian_out,          # OUT
        int n_threads=1
    ):
        """Compute gradient and hessian of loss w.r.t raw_prediction.

        The gradient and hessian are written to `gradient_out` and `hessian_out` and no
        arrays are returned.

        Parameters
        ----------
        y_true : array of shape (n_samples,)
            Observed, true target values.
        raw_prediction : array of shape (n_samples,)
            Raw prediction values (in link space).
        sample_weight : array of shape (n_samples,) or None
            Sample weights.
        gradient_out : array of shape (n_samples,)
            A location into which the gradient is stored.
        hessian_out : array of shape (n_samples,)
            A location into which the hessian is stored.
        n_threads : int
            Number of threads used by OpenMP (if any).
        """
        pass


{{for name, docstring, param, closs, closs_grad, cgrad, cgrad_hess, in class_list}}
{{py:
if param is None:
    with_param = ""
else:
    with_param = ", self." + param
}}

cdef class {{name}}(CyLossFunction):
    """{{docstring}}"""

    {{if param is not None}}
    def __init__(self, {{param}}):
        self.{{param}} = {{param}}
    {{endif}}

    {{if param is not None}}
    def __reduce__(self):
        return (self.__class__, (self.{{param}},))
    {{endif}}

    cdef inline double cy_loss(self, double y_true, double raw_prediction) noexcept nogil:
        return {{closs}}(y_true, raw_prediction{{with_param}})

    cdef inline double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil:
        return {{cgrad}}(y_true, raw_prediction{{with_param}})

    cdef inline double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil:
        return {{cgrad_hess}}(y_true, raw_prediction{{with_param}})

    def loss(
        self,
        const floating_in[::1] y_true,          # IN
        const floating_in[::1] raw_prediction,  # IN
        const floating_in[::1] sample_weight,   # IN
        floating_out[::1] loss_out,             # OUT
        int n_threads=1
    ):
        cdef:
            int i
            int n_samples = y_true.shape[0]

        if sample_weight is None:
            for i in prange(
                n_samples, schedule='static', nogil=True, num_threads=n_threads
            ):
                loss_out[i] = {{closs}}(y_true[i], raw_prediction[i]{{with_param}})
        else:
            for i in prange(
                n_samples, schedule='static', nogil=True, num_threads=n_threads
            ):
                loss_out[i] = sample_weight[i] * {{closs}}(y_true[i], raw_prediction[i]{{with_param}})

    {{if closs_grad is not None}}
    def loss_gradient(
        self,
        const floating_in[::1] y_true,          # IN
        const floating_in[::1] raw_prediction,  # IN
        const floating_in[::1] sample_weight,   # IN
        floating_out[::1] loss_out,             # OUT
        floating_out[::1] gradient_out,         # OUT
        int n_threads=1
    ):
        cdef:
            int i
            int n_samples = y_true.shape[0]
            double_pair dbl2

        if sample_weight is None:
            for i in prange(
                n_samples, schedule='static', nogil=True, num_threads=n_threads
            ):
                dbl2 = {{closs_grad}}(y_true[i], raw_prediction[i]{{with_param}})
                loss_out[i] = dbl2.val1
                gradient_out[i] = dbl2.val2
        else:
            for i in prange(
                n_samples, schedule='static', nogil=True, num_threads=n_threads
            ):
                dbl2 = {{closs_grad}}(y_true[i], raw_prediction[i]{{with_param}})
                loss_out[i] = sample_weight[i] * dbl2.val1
                gradient_out[i] = sample_weight[i] * dbl2.val2

    {{endif}}

    def gradient(
        self,
        const floating_in[::1] y_true,          # IN
        const floating_in[::1] raw_prediction,  # IN
        const floating_in[::1] sample_weight,   # IN
        floating_out[::1] gradient_out,         # OUT
        int n_threads=1
    ):
        cdef:
            int i
            int n_samples = y_true.shape[0]

        if sample_weight is None:
            for i in prange(
                n_samples, schedule='static', nogil=True, num_threads=n_threads
            ):
                gradient_out[i] = {{cgrad}}(y_true[i], raw_prediction[i]{{with_param}})
        else:
            for i in prange(
                n_samples, schedule='static', nogil=True, num_threads=n_threads
            ):
                gradient_out[i] = sample_weight[i] * {{cgrad}}(y_true[i], raw_prediction[i]{{with_param}})

    def gradient_hessian(
        self,
        const floating_in[::1] y_true,          # IN
        const floating_in[::1] raw_prediction,  # IN
        const floating_in[::1] sample_weight,   # IN
        floating_out[::1] gradient_out,         # OUT
        floating_out[::1] hessian_out,          # OUT
        int n_threads=1
    ):
        cdef:
            int i
            int n_samples = y_true.shape[0]
            double_pair dbl2

        if sample_weight is None:
            for i in prange(
                n_samples, schedule='static', nogil=True, num_threads=n_threads
            ):
                dbl2 = {{cgrad_hess}}(y_true[i], raw_prediction[i]{{with_param}})
                gradient_out[i] = dbl2.val1
                hessian_out[i] = dbl2.val2
        else:
            for i in prange(
                n_samples, schedule='static', nogil=True, num_threads=n_threads
            ):
                dbl2 = {{cgrad_hess}}(y_true[i], raw_prediction[i]{{with_param}})
                gradient_out[i] = sample_weight[i] * dbl2.val1
                hessian_out[i] = sample_weight[i] * dbl2.val2

{{endfor}}


# The multinomial deviance loss is also known as categorical cross-entropy or
# multinomial log-likelihood.
# Here, we do not inherit from CyLossFunction as its cy_gradient method deviates
# from the API.
cdef class CyHalfMultinomialLoss():
    """Half Multinomial deviance loss with multinomial logit link.

    Domain:
    y_true in {0, 1, 2, 3, .., n_classes - 1}
    y_pred in (0, 1)**n_classes, i.e. interval with boundaries excluded

    Link:
    y_pred = softmax(raw_prediction)

    Note: Label encoding is built-in, i.e. {0, 1, 2, 3, .., n_classes - 1} is
    mapped to (y_true == k) for k = 0 .. n_classes - 1 which is either 0 or 1.
    """

    # Here we deviate from the CyLossFunction API. SAG/SAGA needs direct access to
    # sample-wise gradients which we provide here.
    cdef inline void cy_gradient(
        self,
        const floating_in y_true,
        const floating_in[::1] raw_prediction,  # IN
        const floating_in sample_weight,
        floating_out[::1] gradient_out,         # OUT
    ) noexcept nogil:
        """Compute gradient of loss w.r.t. `raw_prediction` for a single sample.

        The gradient of the multinomial logistic loss with respect to a class k,
        and for one sample is:
        grad_k = - sw * (p[k] - (y==k))

        where:
            p[k] = proba[k] = exp(raw_prediction[k] - logsumexp(raw_prediction))
            sw = sample_weight

        Parameters
        ----------
        y_true : double
            Observed, true target value.
        raw_prediction : array of shape (n_classes,)
            Raw prediction values (in link space).
        sample_weight : double
            Sample weight.
        gradient_out : array of shape (n_classs,)
            A location into which the gradient is stored.

        Returns
        -------
        gradient : double
            The derivative of the loss function w.r.t. `raw_prediction`.
        """
        cdef:
            int k
            int n_classes = raw_prediction.shape[0]
            double_pair max_value_and_sum_exps
            const floating_in[:, :] raw = raw_prediction[None, :]

        max_value_and_sum_exps = sum_exp_minus_max(0, raw, &gradient_out[0])
        for k in range(n_classes):
            # gradient_out[k] = p_k = y_pred_k = prob of class k
            gradient_out[k] /= max_value_and_sum_exps.val2
            # gradient_k = (p_k - (y_true == k)) * sw
            gradient_out[k] = (gradient_out[k] - (y_true == k)) * sample_weight

    def _test_cy_gradient(
        self,
        const floating_in[::1] y_true,             # IN
        const floating_in[:, ::1] raw_prediction,  # IN
        const floating_in[::1] sample_weight,      # IN
    ):
        """For testing only."""
        cdef:
            int i, k
            int n_samples = y_true.shape[0]
            int n_classes = raw_prediction.shape[1]
            floating_in [:, ::1] gradient_out
        gradient = np.empty((n_samples, n_classes), dtype=np.float64)
        gradient_out = gradient

        for i in range(n_samples):
            self.cy_gradient(
                y_true=y_true[i],
                raw_prediction=raw_prediction[i, :],
                sample_weight=1.0 if sample_weight is None else sample_weight[i],
                gradient_out=gradient_out[i, :],
            )
        return gradient

    # Note that we do not assume memory alignment/contiguity of 2d arrays.
    # There seems to be little benefit in doing so. Benchmarks proofing the
    # opposite are welcome.
    def loss(
        self,
        const floating_in[::1] y_true,           # IN
        const floating_in[:, :] raw_prediction,  # IN
        const floating_in[::1] sample_weight,    # IN
        floating_out[::1] loss_out,              # OUT
        int n_threads=1
    ):
        cdef:
            int i, k
            int n_samples = y_true.shape[0]
            int n_classes = raw_prediction.shape[1]
            floating_in max_value, sum_exps
            floating_in*  p  # temporary buffer
            double_pair max_value_and_sum_exps

        # We assume n_samples > n_classes. In this case having the inner loop
        # over n_classes is a good default.
        # TODO: If every memoryview is contiguous and raw_prediction is
        #       f-contiguous, can we write a better algo (loops) to improve
        #       performance?
        if sample_weight is None:
            # inner loop over n_classes
            with nogil, parallel(num_threads=n_threads):
                # Define private buffer variables as each thread might use its
                # own.
                p = <floating_in *> malloc(sizeof(floating_in) * (n_classes))

                for i in prange(n_samples, schedule='static'):
                    max_value_and_sum_exps = sum_exp_minus_max(i, raw_prediction, p)
                    max_value = max_value_and_sum_exps.val1
                    sum_exps = max_value_and_sum_exps.val2
                    loss_out[i] = log(sum_exps) + max_value

                    # label encoded y_true
                    k = int(y_true[i])
                    loss_out[i] -= raw_prediction[i, k]

                free(p)
        else:
            with nogil, parallel(num_threads=n_threads):
                p = <floating_in *> malloc(sizeof(floating_in) * (n_classes))

                for i in prange(n_samples, schedule='static'):
                    max_value_and_sum_exps = sum_exp_minus_max(i, raw_prediction, p)
                    max_value = max_value_and_sum_exps.val1
                    sum_exps = max_value_and_sum_exps.val2
                    loss_out[i] = log(sum_exps) + max_value

                    # label encoded y_true
                    k = int(y_true[i])
                    loss_out[i] -= raw_prediction[i, k]

                    loss_out[i] *= sample_weight[i]

                free(p)

    def loss_gradient(
        self,
        const floating_in[::1] y_true,           # IN
        const floating_in[:, :] raw_prediction,  # IN
        const floating_in[::1] sample_weight,    # IN
        floating_out[::1] loss_out,              # OUT
        floating_out[:, :] gradient_out,         # OUT
        int n_threads=1
    ):
        cdef:
            int i, k
            int n_samples = y_true.shape[0]
            int n_classes = raw_prediction.shape[1]
            floating_in max_value, sum_exps
            floating_in*  p  # temporary buffer
            double_pair max_value_and_sum_exps

        if sample_weight is None:
            # inner loop over n_classes
            with nogil, parallel(num_threads=n_threads):
                # Define private buffer variables as each thread might use its
                # own.
                p = <floating_in *> malloc(sizeof(floating_in) * (n_classes))

                for i in prange(n_samples, schedule='static'):
                    max_value_and_sum_exps = sum_exp_minus_max(i, raw_prediction, p)
                    max_value = max_value_and_sum_exps.val1
                    sum_exps = max_value_and_sum_exps.val2
                    loss_out[i] = log(sum_exps) + max_value

                    for k in range(n_classes):
                        # label decode y_true
                        if y_true[i] == k:
                            loss_out[i] -= raw_prediction[i, k]
                        p[k] /= sum_exps  # p_k = y_pred_k = prob of class k
                        # gradient_k = p_k - (y_true == k)
                        gradient_out[i, k] = p[k] - (y_true[i] == k)

                free(p)
        else:
            with nogil, parallel(num_threads=n_threads):
                p = <floating_in *> malloc(sizeof(floating_in) * (n_classes))

                for i in prange(n_samples, schedule='static'):
                    max_value_and_sum_exps = sum_exp_minus_max(i, raw_prediction, p)
                    max_value = max_value_and_sum_exps.val1
                    sum_exps = max_value_and_sum_exps.val2
                    loss_out[i] = log(sum_exps) + max_value

                    for k in range(n_classes):
                        # label decode y_true
                        if y_true[i] == k:
                            loss_out[i] -= raw_prediction[i, k]
                        p[k] /= sum_exps  # p_k = y_pred_k = prob of class k
                        # gradient_k = (p_k - (y_true == k)) * sw
                        gradient_out[i, k] = (p[k] - (y_true[i] == k)) * sample_weight[i]

                    loss_out[i] *= sample_weight[i]

                free(p)

    def gradient(
        self,
        const floating_in[::1] y_true,           # IN
        const floating_in[:, :] raw_prediction,  # IN
        const floating_in[::1] sample_weight,    # IN
        floating_out[:, :] gradient_out,         # OUT
        int n_threads=1
    ):
        cdef:
            int i, k
            int n_samples = y_true.shape[0]
            int n_classes = raw_prediction.shape[1]
            floating_in sum_exps
            floating_in*  p  # temporary buffer
            double_pair max_value_and_sum_exps

        if sample_weight is None:
            # inner loop over n_classes
            with nogil, parallel(num_threads=n_threads):
                # Define private buffer variables as each thread might use its
                # own.
                p = <floating_in *> malloc(sizeof(floating_in) * (n_classes))

                for i in prange(n_samples, schedule='static'):
                    max_value_and_sum_exps = sum_exp_minus_max(i, raw_prediction, p)
                    sum_exps = max_value_and_sum_exps.val2

                    for k in range(n_classes):
                        p[k] /= sum_exps  # p_k = y_pred_k = prob of class k
                        # gradient_k = y_pred_k - (y_true == k)
                        gradient_out[i, k] = p[k] - (y_true[i] == k)

                free(p)
        else:
            with nogil, parallel(num_threads=n_threads):
                p = <floating_in *> malloc(sizeof(floating_in) * (n_classes))

                for i in prange(n_samples, schedule='static'):
                    max_value_and_sum_exps = sum_exp_minus_max(i, raw_prediction, p)
                    sum_exps = max_value_and_sum_exps.val2

                    for k in range(n_classes):
                        p[k] /= sum_exps  # p_k = y_pred_k = prob of class k
                        # gradient_k = (p_k - (y_true == k)) * sw
                        gradient_out[i, k] = (p[k] - (y_true[i] == k)) * sample_weight[i]

                free(p)

    def gradient_hessian(
        self,
        const floating_in[::1] y_true,           # IN
        const floating_in[:, :] raw_prediction,  # IN
        const floating_in[::1] sample_weight,    # IN
        floating_out[:, :] gradient_out,         # OUT
        floating_out[:, :] hessian_out,          # OUT
        int n_threads=1
    ):
        cdef:
            int i, k
            int n_samples = y_true.shape[0]
            int n_classes = raw_prediction.shape[1]
            floating_in sum_exps
            floating_in* p  # temporary buffer
            double_pair max_value_and_sum_exps

        if sample_weight is None:
            # inner loop over n_classes
            with nogil, parallel(num_threads=n_threads):
                # Define private buffer variables as each thread might use its
                # own.
                p = <floating_in *> malloc(sizeof(floating_in) * (n_classes))

                for i in prange(n_samples, schedule='static'):
                    max_value_and_sum_exps = sum_exp_minus_max(i, raw_prediction, p)
                    sum_exps = max_value_and_sum_exps.val2

                    for k in range(n_classes):
                        p[k] /= sum_exps  # p_k = y_pred_k = prob of class k
                        # hessian_k = p_k * (1 - p_k)
                        # gradient_k = p_k - (y_true == k)
                        gradient_out[i, k] = p[k] - (y_true[i] == k)
                        hessian_out[i, k] = p[k] * (1. - p[k])

                free(p)
        else:
            with nogil, parallel(num_threads=n_threads):
                p = <floating_in *> malloc(sizeof(floating_in) * (n_classes))

                for i in prange(n_samples, schedule='static'):
                    max_value_and_sum_exps = sum_exp_minus_max(i, raw_prediction, p)
                    sum_exps = max_value_and_sum_exps.val2

                    for k in range(n_classes):
                        p[k] /= sum_exps  # p_k = y_pred_k = prob of class k
                        # gradient_k = (p_k - (y_true == k)) * sw
                        # hessian_k = p_k * (1 - p_k) * sw
                        gradient_out[i, k] = (p[k] - (y_true[i] == k)) * sample_weight[i]
                        hessian_out[i, k] = (p[k] * (1. - p[k])) * sample_weight[i]

                free(p)

    # This method simplifies the implementation of hessp in linear models,
    # i.e. the matrix-vector product of the full hessian, not only of the
    # diagonal (in the classes) approximation as implemented above.
    def gradient_proba(
        self,
        const floating_in[::1] y_true,           # IN
        const floating_in[:, :] raw_prediction,  # IN
        const floating_in[::1] sample_weight,    # IN
        floating_out[:, :] gradient_out,         # OUT
        floating_out[:, :] proba_out,            # OUT
        int n_threads=1
    ):
        cdef:
            int i, k
            int n_samples = y_true.shape[0]
            int n_classes = raw_prediction.shape[1]
            floating_in sum_exps
            floating_in*  p  # temporary buffer
            double_pair max_value_and_sum_exps

        if sample_weight is None:
            # inner loop over n_classes
            with nogil, parallel(num_threads=n_threads):
                # Define private buffer variables as each thread might use its
                # own.
                p = <floating_in *> malloc(sizeof(floating_in) * (n_classes))

                for i in prange(n_samples, schedule='static'):
                    max_value_and_sum_exps = sum_exp_minus_max(i, raw_prediction, p)
                    sum_exps = max_value_and_sum_exps.val2

                    for k in range(n_classes):
                        proba_out[i, k] = p[k] / sum_exps  # y_pred_k = prob of class k
                        # gradient_k = y_pred_k - (y_true == k)
                        gradient_out[i, k] = proba_out[i, k] - (y_true[i] == k)

                free(p)
        else:
            with nogil, parallel(num_threads=n_threads):
                p = <floating_in *> malloc(sizeof(floating_in) * (n_classes))

                for i in prange(n_samples, schedule='static'):
                    max_value_and_sum_exps = sum_exp_minus_max(i, raw_prediction, p)
                    sum_exps = max_value_and_sum_exps.val2

                    for k in range(n_classes):
                        proba_out[i, k] = p[k] / sum_exps  # y_pred_k = prob of class k
                        # gradient_k = (p_k - (y_true == k)) * sw
                        gradient_out[i, k] = (proba_out[i, k] - (y_true[i] == k)) * sample_weight[i]

                free(p)