File size: 4,577 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
# Fused types for input like y_true, raw_prediction, sample_weights.
ctypedef fused floating_in:
double
float
# Fused types for output like gradient and hessian
# We use a different fused types for input (floating_in) and output (floating_out), such
# that input and output can have different dtypes in the same function call. A single
# fused type can only take on one single value (type) for all arguments in one function
# call.
ctypedef fused floating_out:
double
float
# Struct to return 2 doubles
ctypedef struct double_pair:
double val1
double val2
# C base class for loss functions
cdef class CyLossFunction:
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
cdef class CyHalfSquaredError(CyLossFunction):
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
cdef class CyAbsoluteError(CyLossFunction):
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
cdef class CyPinballLoss(CyLossFunction):
cdef readonly double quantile # readonly makes it accessible from Python
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
cdef class CyHuberLoss(CyLossFunction):
cdef public double delta # public makes it accessible from Python
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
cdef class CyHalfPoissonLoss(CyLossFunction):
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
cdef class CyHalfGammaLoss(CyLossFunction):
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
cdef class CyHalfTweedieLoss(CyLossFunction):
cdef readonly double power # readonly makes it accessible from Python
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
cdef class CyHalfTweedieLossIdentity(CyLossFunction):
cdef readonly double power # readonly makes it accessible from Python
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
cdef class CyHalfBinomialLoss(CyLossFunction):
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
cdef class CyExponentialLoss(CyLossFunction):
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
cdef class CyHalfMultinomialLoss():
cdef void cy_gradient(
self,
const floating_in y_true,
const floating_in[::1] raw_prediction,
const floating_in sample_weight,
floating_out[::1] gradient_out,
) noexcept nogil
|