File size: 61,504 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
# Temporary file separated from _distribution_infrastructure.py
# to simplify the diff during PR review.
from abc import ABC, abstractmethod

class _ProbabilityDistribution(ABC):
    @abstractmethod
    def support(self):
        r"""Support of the random variable

        The support of a random variable is set of all possible outcomes;
        i.e., the subset of the domain of argument :math:`x` for which
        the probability density function :math:`f(x)` is nonzero.

        This function returns lower and upper bounds of the support.

        Returns
        -------
        out : tuple of Array
            The lower and upper bounds of the support.

        See Also
        --------
        pdf

        References
        ----------
        .. [1] Support (mathematics), *Wikipedia*,
               https://en.wikipedia.org/wiki/Support_(mathematics)

        Notes
        -----
        Suppose a continuous probability distribution has support ``(l, r)``.
        The following table summarizes the value returned by methods
        of ``ContinuousDistribution`` for arguments outside the support.

        +----------------+---------------------+---------------------+
        | Method         | Value for ``x < l`` | Value for ``x > r`` |
        +================+=====================+=====================+
        | ``pdf(x)``     | 0                   | 0                   |
        +----------------+---------------------+---------------------+
        | ``logpdf(x)``  | -inf                | -inf                |
        +----------------+---------------------+---------------------+
        | ``cdf(x)``     | 0                   | 1                   |
        +----------------+---------------------+---------------------+
        | ``logcdf(x)``  | -inf                | 0                   |
        +----------------+---------------------+---------------------+
        | ``ccdf(x)``    | 1                   | 0                   |
        +----------------+---------------------+---------------------+
        | ``logccdf(x)`` | 0                   | -inf                |
        +----------------+---------------------+---------------------+

        For the ``cdf`` and related methods, the inequality need not be
        strict; i.e. the tabulated value is returned when the method is
        evaluated *at* the corresponding boundary.

        The following table summarizes the value returned by the inverse
        methods of ``ContinuousDistribution`` for arguments at the boundaries
        of the domain ``0`` to ``1``.

        +-------------+-----------+-----------+
        | Method      | ``x = 0`` | ``x = 1`` |
        +=============+===========+===========+
        | ``icdf(x)`` | ``l``     | ``r``     |
        +-------------+-----------+-----------+
        | ``icdf(x)`` | ``r``     | ``l``     |
        +-------------+-----------+-----------+

        For the inverse log-functions, the same values are returned for
        for ``x = log(0)`` and ``x = log(1)``. All inverse functions return
        ``nan`` when evaluated at an argument outside the domain ``0`` to ``1``.

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> from scipy import stats
        >>> X = stats.Uniform(a=-0.5, b=0.5)

        Retrieve the support of the distribution:

        >>> X.support()
        (-0.5, 0.5)

        For a distribution with infinite support,

        >>> X = stats.Normal()
        >>> X.support()
        (-inf, inf)

        Due to underflow, the numerical value returned by the PDF may be zero
        even for arguments within the support, even if the true value is
        nonzero. In such cases, the log-PDF may be useful.

        >>> X.pdf([-100., 100.])
        array([0., 0.])
        >>> X.logpdf([-100., 100.])
        array([-5000.91893853, -5000.91893853])

        Use cases for the log-CDF and related methods are analogous.

        """
        raise NotImplementedError()

    @abstractmethod
    def sample(self, shape, *, method, rng):
        r"""Random sample from the distribution.

        Parameters
        ----------
        shape : tuple of ints, default: ()
            The shape of the sample to draw. If the parameters of the distribution
            underlying the random variable are arrays of shape ``param_shape``,
            the output array will be of shape ``shape + param_shape``.
        method : {None, 'formula', 'inverse_transform'}
            The strategy used to produce the sample. By default (``None``),
            the infrastructure chooses between the following options,
            listed in order of precedence.

            - ``'formula'``: an implementation specific to the distribution
            - ``'inverse_transform'``: generate a uniformly distributed sample and
              return the inverse CDF at these arguments.

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a `NotImplementedError``
            will be raised.
        rng : `numpy.random.Generator` or `scipy.stats.QMCEngine`, optional
            Pseudo- or quasi-random number generator state. When `rng` is None,
            a new `numpy.random.Generator` is created using entropy from the
            operating system. Types other than `numpy.random.Generator` and
            `scipy.stats.QMCEngine` are passed to `numpy.random.default_rng`
            to instantiate a ``Generator``.

            If `rng` is an instance of `scipy.stats.QMCEngine` configured to use
            scrambling and `shape` is not empty, then each slice along the zeroth
            axis of the result is a "quasi-independent", low-discrepancy sequence;
            that is, they are distinct sequences that can be treated as statistically
            independent for most practical purposes. Separate calls to `sample`
            produce new quasi-independent, low-discrepancy sequences.

        References
        ----------
        .. [1] Sampling (statistics), *Wikipedia*,
               https://en.wikipedia.org/wiki/Sampling_(statistics)

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> import numpy as np
        >>> from scipy import stats
        >>> X = stats.Uniform(a=0., b=1.)

        Generate a pseudorandom sample:

        >>> x = X.sample((1000, 1))
        >>> octiles = (np.arange(8) + 1) / 8
        >>> np.count_nonzero(x <= octiles, axis=0)
        array([ 148,  263,  387,  516,  636,  751,  865, 1000])  # may vary

        >>> X = stats.Uniform(a=np.zeros((3, 1)), b=np.ones(2))
        >>> X.a.shape,
        (3, 2)
        >>> x = X.sample(shape=(5, 4))
        >>> x.shape
        (5, 4, 3, 2)

        """
        raise NotImplementedError()

    @abstractmethod
    def moment(self, order, kind, *, method):
        r"""Raw, central, or standard moment of positive integer order.

        In terms of probability density function :math:`f(x)` and support
        :math:`\chi`, the "raw" moment (about the origin) of order :math:`n` of
        a random variable :math:`X` is:

        .. math::

            \mu'_n(X) = \int_{\chi} x^n f(x) dx

        The "central" moment is the raw moment taken about the mean,
        :math:`\mu = \mu'_1`:

        .. math::

            \mu_n(X) = \int_{\chi} (x - \mu) ^n f(x) dx

        The "standardized" moment is the central moment normalized by the
        :math:`n^\text{th}` power of the standard deviation
        :math:`\sigma = \sqrt{\mu_2}` to produce a scale invariant quantity:

        .. math::

            \tilde{\mu}_n(X) = \frac{\mu_n(X)}
                                    {\sigma^n}

        Parameters
        ----------
        order : int
            The integer order of the moment; i.e. :math:`n` in the formulae above.
        kind : {'raw', 'central', 'standardized'}
            Whether to return the raw (default), central, or standardized moment
            defined above.
        method : {None, 'formula', 'general', 'transform', 'normalize', 'quadrature', 'cache'}
            The strategy used to evaluate the moment. By default (``None``),
            the infrastructure chooses between the following options,
            listed in order of precedence.

            - ``'cache'``: use the value of the moment most recently calculated
              via another method
            - ``'formula'``: use a formula for the moment itself
            - ``'general'``: use a general result that is true for all distributions
              with finite moments; for instance, the zeroth raw moment is
              identically 1
            - ``'transform'``: transform a raw moment to a central moment or
              vice versa (see Notes)
            - ``'normalize'``: normalize a central moment to get a standardized
              or vice versa
            - ``'quadrature'``: numerically integrate according to the definition

            Not all `method` options are available for all orders, kinds, and
            distributions. If the selected `method` is not available, a
            ``NotImplementedError`` will be raised.

        Returns
        -------
        out : array
            The moment of the random variable of the specified order and kind.

        See Also
        --------
        pdf
        mean
        variance
        standard_deviation
        skewness
        kurtosis

        Notes
        -----
        Not all distributions have finite moments of all orders; moments of some
        orders may be undefined or infinite. If a formula for the moment is not
        specifically implemented for the chosen distribution, SciPy will attempt
        to compute the moment via a generic method, which may yield a finite
        result where none exists. This is not a critical bug, but an opportunity
        for an enhancement.

        The definition of a raw moment in the summary is specific to the raw moment
        about the origin. The raw moment about any point :math:`a` is:

        .. math::

            E[(X-a)^n] = \int_{\chi} (x-a)^n f(x) dx

        In this notation, a raw moment about the origin is :math:`\mu'_n = E[x^n]`,
        and a central moment is :math:`\mu_n = E[(x-\mu)^n]`, where :math:`\mu`
        is the first raw moment; i.e. the mean.

        The ``'transform'`` method takes advantage of the following relationships
        between moments taken about different points :math:`a` and :math:`b`.

        .. math::

            E[(X-b)^n] =  \sum_{i=0}^n E[(X-a)^i] {n \choose i} (a - b)^{n-i}

        For instance, to transform the raw moment to the central moment, we let
        :math:`b = \mu` and :math:`a = 0`.

        The distribution infrastructure provides flexibility for distribution
        authors to implement separate formulas for raw moments, central moments,
        and standardized moments of any order. By default, the moment of the
        desired order and kind is evaluated from the formula if such a formula
        is available; if not, the infrastructure uses any formulas that are
        available rather than resorting directly to numerical integration.
        For instance, if formulas for the first three raw moments are
        available and the third standardized moments is desired, the
        infrastructure will evaluate the raw moments and perform the transforms
        and standardization required. The decision tree is somewhat complex,
        but the strategy for obtaining a moment of a given order and kind
        (possibly as an intermediate step due to the recursive nature of the
        transform formula above) roughly follows this order of priority:

        #. Use cache (if order of same moment and kind has been calculated)
        #. Use formula (if available)
        #. Transform between raw and central moment and/or normalize to convert
           between central and standardized moments (if efficient)
        #. Use a generic result true for most distributions (if available)
        #. Use quadrature

        References
        ----------
        .. [1] Moment, *Wikipedia*,
               https://en.wikipedia.org/wiki/Moment_(mathematics)

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> from scipy import stats
        >>> X = stats.Normal(mu=1., sigma=2.)

        Evaluate the first raw moment:

        >>> X.moment(order=1, kind='raw')
        1.0
        >>> X.moment(order=1, kind='raw') == X.mean() == X.mu
        True

        Evaluate the second central moment:

        >>> X.moment(order=2, kind='central')
        4.0
        >>> X.moment(order=2, kind='central') == X.variance() == X.sigma**2
        True

        Evaluate the fourth standardized moment:

        >>> X.moment(order=4, kind='standardized')
        3.0
        >>> X.moment(order=4, kind='standardized') == X.kurtosis(convention='non-excess')
        True

        """  # noqa:E501
        raise NotImplementedError()

    @abstractmethod
    def mean(self, *, method):
        r"""Mean (raw first moment about the origin)

        Parameters
        ----------
        method : {None, 'formula', 'transform', 'quadrature', 'cache'}
            Method used to calculate the raw first moment. Not
            all methods are available for all distributions. See
            `moment` for details.

        See Also
        --------
        moment
        median
        mode

        References
        ----------
        .. [1] Mean, *Wikipedia*,
               https://en.wikipedia.org/wiki/Mean#Mean_of_a_probability_distribution

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> from scipy import stats
        >>> X = stats.Normal(mu=1., sigma=2.)

        Evaluate the variance:

        >>> X.mean()
        1.0
        >>> X.mean() == X.moment(order=1, kind='raw') == X.mu
        True

        """
        raise NotImplementedError()

    @abstractmethod
    def median(self, *, method):
        r"""Median (50th percentil)

        If a continuous random variable :math:`X` has probability :math:`0.5` of
        taking on a value less than :math:`m`, then :math:`m` is the median.
        That is, the median is the value :math:`m` for which:

        .. math::

            P(X ≤ m) = 0.5 = P(X ≥ m)

        Parameters
        ----------
        method : {None, 'formula', 'icdf'}
            The strategy used to evaluate the median.
            By default (``None``), the infrastructure chooses between the
            following options, listed in order of precedence.

            - ``'formula'``: use a formula for the median
            - ``'icdf'``: evaluate the inverse CDF of 0.5

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The median

        See Also
        --------
        mean
        mode
        icdf

        References
        ----------
        .. [1] Median, *Wikipedia*,
               https://en.wikipedia.org/wiki/Median#Probability_distributions

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> from scipy import stats
        >>> X = stats.Uniform(a=0., b=10.)

        Compute the median:

        >>> X.median()
        np.float64(5.0)
        >>> X.median() == X.icdf(0.5) == X.iccdf(0.5)
        True

        """
        raise NotImplementedError()

    @abstractmethod
    def mode(self, *, method):
        r"""Mode (most likely value)

        Informally, the mode is a value that a random variable has the highest
        probability (density) of assuming. That is, the mode is the element of
        the support :math:`\chi` that maximizes the probability density
        function :math:`f(x)`:

        .. math::

            \text{mode} = \arg\max_{x \in \chi} f(x)

        Parameters
        ----------
        method : {None, 'formula', 'optimization'}
            The strategy used to evaluate the mode.
            By default (``None``), the infrastructure chooses between the
            following options, listed in order of precedence.

            - ``'formula'``: use a formula for the median
            - ``'optimization'``: numerically maximize the PDF

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The mode

        See Also
        --------
        mean
        median
        pdf

        Notes
        -----
        For some distributions

        #. the mode is not unique (e.g. the uniform distribution);
        #. the PDF has one or more singularities, and it is debateable whether
           a singularity is considered to be in the domain and called the mode
           (e.g. the gamma distribution with shape parameter less than 1); and/or
        #. the probability density function may have one or more local maxima
           that are not a global maximum (e.g. mixture distributions).

        In such cases, `mode` will

        #. return a single value,
        #. consider the mode to occur at a singularity, and/or
        #. return a local maximum which may or may not be a global maximum.

        If a formula for the mode is not specifically implemented for the
        chosen distribution, SciPy will attempt to compute the mode
        numerically, which may not meet the user's preferred definition of a
        mode. In such cases, the user is encouraged to subclass the
        distribution and override ``mode``.

        References
        ----------
        .. [1] Mode (statistics), *Wikipedia*,
               https://en.wikipedia.org/wiki/Mode_(statistics)

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> from scipy import stats
        >>> X = stats.Normal(mu=1., sigma=2.)

        Evaluate the mode:

        >>> X.mode()
        1.0

        If the mode is not uniquely defined, ``mode`` nonetheless returns a
        single value.

        >>> X = stats.Uniform(a=0., b=1.)
        >>> X.mode()
        0.5

        If this choice does not satisfy your requirements, subclass the
        distribution and override ``mode``:

        >>> class BetterUniform(stats.Uniform):
        ...     def mode(self):
        ...         return self.b
        >>> X = BetterUniform(a=0., b=1.)
        >>> X.mode()
        1.0

        """
        raise NotImplementedError()

    @abstractmethod
    def variance(self, *, method):
        r"""Variance (central second moment)

        Parameters
        ----------
        method : {None, 'formula', 'transform', 'normalize', 'quadrature', 'cache'}
            Method used to calculate the central second moment. Not
            all methods are available for all distributions. See
            `moment` for details.

        See Also
        --------
        moment
        standard_deviation
        mean

        References
        ----------
        .. [1] Variance, *Wikipedia*,
               https://en.wikipedia.org/wiki/Variance#Absolutely_continuous_random_variable

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> from scipy import stats
        >>> X = stats.Normal(mu=1., sigma=2.)

        Evaluate the variance:

        >>> X.variance()
        4.0
        >>> X.variance() == X.moment(order=2, kind='central') == X.sigma**2
        True

        """
        raise NotImplementedError()

    @abstractmethod
    def standard_deviation(self, *, method):
        r"""Standard deviation (square root of the second central moment)

        Parameters
        ----------
        method : {None, 'formula', 'transform', 'normalize', 'quadrature', 'cache'}
            Method used to calculate the central second moment. Not
            all methods are available for all distributions. See
            `moment` for details.

        See Also
        --------
        variance
        mean
        moment

        References
        ----------
        .. [1] Standard deviation, *Wikipedia*,
               https://en.wikipedia.org/wiki/Standard_deviation#Definition_of_population_values

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> from scipy import stats
        >>> X = stats.Normal(mu=1., sigma=2.)

        Evaluate the standard deviation:

        >>> X.standard_deviation()
        2.0
        >>> X.standard_deviation() == X.moment(order=2, kind='central')**0.5 == X.sigma
        True

        """
        raise NotImplementedError()

    @abstractmethod
    def skewness(self, *, method):
        r"""Skewness (standardized third moment)

        Parameters
        ----------
        method : {None, 'formula', 'general', 'transform', 'normalize', 'cache'}
            Method used to calculate the standardized third moment. Not
            all methods are available for all distributions. See
            `moment` for details.

        See Also
        --------
        moment
        mean
        variance

        References
        ----------
        .. [1] Skewness, *Wikipedia*,
               https://en.wikipedia.org/wiki/Skewness

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> from scipy import stats
        >>> X = stats.Normal(mu=1., sigma=2.)

        Evaluate the skewness:

        >>> X.skewness()
        0.0
        >>> X.skewness() == X.moment(order=3, kind='standardized')
        True

        """
        raise NotImplementedError()

    @abstractmethod
    def kurtosis(self, *, method):
        r"""Kurtosis (standardized fourth moment)

        By default, this is the standardized fourth moment, also known as the
        "non-excess" or "Pearson" kurtosis (e.g. the kurtosis of the normal
        distribution is 3). The "excess" or "Fisher" kurtosis (the standardized
        fourth moment minus 3) is available via the `convention` parameter.

        Parameters
        ----------
        method : {None, 'formula', 'general', 'transform', 'normalize', 'cache'}
            Method used to calculate the standardized fourth moment. Not
            all methods are available for all distributions. See
            `moment` for details.
        convention : {'non-excess', 'excess'}
            Two distinct conventions are available:

            - ``'non-excess'``: the standardized fourth moment (Pearson's kurtosis)
            - ``'excess'``: the standardized fourth moment minus 3 (Fisher's kurtosis)

            The default is ``'non-excess'``.

        See Also
        --------
        moment
        mean
        variance

        References
        ----------
        .. [1] Kurtosis, *Wikipedia*,
               https://en.wikipedia.org/wiki/Kurtosis

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> from scipy import stats
        >>> X = stats.Normal(mu=1., sigma=2.)

        Evaluate the kurtosis:

        >>> X.kurtosis()
        3.0
        >>> (X.kurtosis()
        ...  == X.kurtosis(convention='excess') + 3.
        ...  == X.moment(order=4, kind='standardized'))
        True

        """
        raise NotImplementedError()

    @abstractmethod
    def pdf(self, x, /, *, method):
        r"""Probability density function

        The probability density function ("PDF"), denoted :math:`f(x)`, is the
        probability *per unit length* that the random variable will assume the
        value :math:`x`. Mathematically, it can be defined as the derivative
        of the cumulative distribution function :math:`F(x)`:

        .. math::

            f(x) = \frac{d}{dx} F(x)

        `pdf` accepts `x` for :math:`x`.

        Parameters
        ----------
        x : array_like
            The argument of the PDF.
        method : {None, 'formula', 'logexp'}
            The strategy used to evaluate the PDF. By default (``None``), the
            infrastructure chooses between the following options, listed in
            order of precedence.

            - ``'formula'``: use a formula for the PDF itself
            - ``'logexp'``: evaluate the log-PDF and exponentiate

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The PDF evaluated at the argument `x`.

        See Also
        --------
        cdf
        logpdf

        Notes
        -----
        Suppose a continuous probability distribution has support :math:`[l, r]`.
        By definition of the support, the PDF evaluates to its minimum value
        of :math:`0` outside the support; i.e. for :math:`x < l` or
        :math:`x > r`. The maximum of the PDF may be less than or greater than
        :math:`1`; since the valus is a probability *density*, only its integral
        over the support must equal :math:`1`.

        References
        ----------
        .. [1] Probability density function, *Wikipedia*,
               https://en.wikipedia.org/wiki/Probability_density_function

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> from scipy import stats
        >>> X = stats.Uniform(a=-1., b=1.)

        Evaluate the PDF at the desired argument:

        >>> X.pdf(0.25)
        0.5

        """
        raise NotImplementedError()

    @abstractmethod
    def logpdf(self, x, /, *, method):
        r"""Log of the probability density function

        The probability density function ("PDF"), denoted :math:`f(x)`, is the
        probability *per unit length* that the random variable will assume the
        value :math:`x`. Mathematically, it can be defined as the derivative
        of the cumulative distribution function :math:`F(x)`:

        .. math::

            f(x) = \frac{d}{dx} F(x)

        `logpdf` computes the logarithm of the probability density function
        ("log-PDF"), :math:`\log(f(x))`, but it may be numerically favorable
        compared to the naive implementation (computing :math:`f(x)` and
        taking the logarithm).

        `logpdf` accepts `x` for :math:`x`.

        Parameters
        ----------
        x : array_like
            The argument of the log-PDF.
        method : {None, 'formula', 'logexp'}
            The strategy used to evaluate the log-PDF. By default (``None``), the
            infrastructure chooses between the following options, listed in order
            of precedence.

            - ``'formula'``: use a formula for the log-PDF itself
            - ``'logexp'``: evaluate the PDF and takes its logarithm

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The log-PDF evaluated at the argument `x`.

        See Also
        --------
        pdf
        logcdf

        Notes
        -----
        Suppose a continuous probability distribution has support :math:`[l, r]`.
        By definition of the support, the log-PDF evaluates to its minimum value
        of :math:`-\infty` (i.e. :math:`\log(0)`) outside the support; i.e. for
        :math:`x < l` or :math:`x > r`. The maximum of the log-PDF may be less
        than or greater than :math:`\log(1) = 0` because the maximum of the PDF
        can be any positive real.

        For distributions with infinite support, it is common for `pdf` to return
        a value of ``0`` when the argument is theoretically within the support;
        this can occur because the true value of the PDF is too small to be
        represented by the chosen dtype. The log-PDF, however, will often be finite
        (not ``-inf``) over a much larger domain. Consequently, it may be preferred
        to work with the logarithms of probabilities and probability densities to
        avoid underflow.

        References
        ----------
        .. [1] Probability density function, *Wikipedia*,
               https://en.wikipedia.org/wiki/Probability_density_function

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> import numpy as np
        >>> from scipy import stats
        >>> X = stats.Uniform(a=-1.0, b=1.0)

        Evaluate the log-PDF at the desired argument:

        >>> X.logpdf(0.5)
        -0.6931471805599453
        >>> np.allclose(X.logpdf(0.5), np.log(X.pdf(0.5)))
        True

        """
        raise NotImplementedError()

    @abstractmethod
    def cdf(self, x, y, /, *, method):
        r"""Cumulative distribution function

        The cumulative distribution function ("CDF"), denoted :math:`F(x)`, is
        the probability the random variable :math:`X` will assume a value
        less than or equal to :math:`x`:

        .. math::

            F(x) = P(X ≤ x)

        A two-argument variant of this function is also defined as the
        probability the random variable :math:`X` will assume a value between
        :math:`x` and :math:`y`.

        .. math::

            F(x, y) = P(x ≤ X ≤ y)

        `cdf` accepts `x` for :math:`x` and `y` for :math:`y`.

        Parameters
        ----------
        x, y : array_like
            The arguments of the CDF. `x` is required; `y` is optional.
        method : {None, 'formula', 'logexp', 'complement', 'quadrature', 'subtraction'}
            The strategy used to evaluate the CDF.
            By default (``None``), the one-argument form of the function
            chooses between the following options, listed in order of precedence.

            - ``'formula'``: use a formula for the CDF itself
            - ``'logexp'``: evaluate the log-CDF and exponentiate
            - ``'complement'``: evaluate the CCDF and take the complement
            - ``'quadrature'``: numerically integrate the PDF

            In place of ``'complement'``, the two-argument form accepts:

            - ``'subtraction'``: compute the CDF at each argument and take
              the difference.

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The CDF evaluated at the provided argument(s).

        See Also
        --------
        logcdf
        ccdf

        Notes
        -----
        Suppose a continuous probability distribution has support :math:`[l, r]`.
        The CDF :math:`F(x)` is related to the probability density function
        :math:`f(x)` by:

        .. math::

            F(x) = \int_l^x f(u) du

        The two argument version is:

        .. math::

            F(x, y) = \int_x^y f(u) du = F(y) - F(x)

        The CDF evaluates to its minimum value of :math:`0` for :math:`x ≤ l`
        and its maximum value of :math:`1` for :math:`x ≥ r`.

        The CDF is also known simply as the "distribution function".

        References
        ----------
        .. [1] Cumulative distribution function, *Wikipedia*,
               https://en.wikipedia.org/wiki/Cumulative_distribution_function

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> from scipy import stats
        >>> X = stats.Uniform(a=-0.5, b=0.5)

        Evaluate the CDF at the desired argument:

        >>> X.cdf(0.25)
        0.75

        Evaluate the cumulative probability between two arguments:

        >>> X.cdf(-0.25, 0.25) == X.cdf(0.25) - X.cdf(-0.25)
        True

        """  # noqa: E501
        raise NotImplementedError()

    @abstractmethod
    def icdf(self, p, /, *, method):
        r"""Inverse of the cumulative distribution function.

        The inverse of the cumulative distribution function ("inverse CDF"),
        denoted :math:`F^{-1}(p)`, is the argument :math:`x` for which the
        cumulative distribution function :math:`F(x)` evaluates to :math:`p`.

        .. math::

            F^{-1}(p) = x \quad \text{s.t.} \quad F(x) = p

        `icdf` accepts `p` for :math:`p \in [0, 1]`.

        Parameters
        ----------
        p : array_like
            The argument of the inverse CDF.
        method : {None, 'formula', 'complement', 'inversion'}
            The strategy used to evaluate the inverse CDF.
            By default (``None``), the infrastructure chooses between the
            following options, listed in order of precedence.

            - ``'formula'``: use a formula for the inverse CDF itself
            - ``'complement'``: evaluate the inverse CCDF at the
              complement of `p`
            - ``'inversion'``: solve numerically for the argument at which the
              CDF is equal to `p`

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The inverse CDF evaluated at the provided argument.

        See Also
        --------
        cdf
        ilogcdf

        Notes
        -----
        Suppose a continuous probability distribution has support :math:`[l, r]`. The
        inverse CDF returns its minimum value of :math:`l` at :math:`p = 0`
        and its maximum value of :math:`r` at :math:`p = 1`. Because the CDF
        has range :math:`[0, 1]`, the inverse CDF is only defined on the
        domain :math:`[0, 1]`; for :math:`p < 0` and :math:`p > 1`, `icdf`
        returns ``nan``.

        The inverse CDF is also known as the quantile function, percentile function,
        and percent-point function.

        References
        ----------
        .. [1] Quantile function, *Wikipedia*,
               https://en.wikipedia.org/wiki/Quantile_function

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> import numpy as np
        >>> from scipy import stats
        >>> X = stats.Uniform(a=-0.5, b=0.5)

        Evaluate the inverse CDF at the desired argument:

        >>> X.icdf(0.25)
        -0.25
        >>> np.allclose(X.cdf(X.icdf(0.25)), 0.25)
        True

        This function returns NaN when the argument is outside the domain.

        >>> X.icdf([-0.1, 0, 1, 1.1])
        array([ nan, -0.5,  0.5,  nan])

        """
        raise NotImplementedError()

    @abstractmethod
    def ccdf(self, x, y, /, *, method):
        r"""Complementary cumulative distribution function

        The complementary cumulative distribution function ("CCDF"), denoted
        :math:`G(x)`, is the complement of the cumulative distribution function
        :math:`F(x)`; i.e., probability the random variable :math:`X` will
        assume a value greater than :math:`x`:

        .. math::

            G(x) = 1 - F(x) = P(X > x)

        A two-argument variant of this function is:

        .. math::

            G(x, y) = 1 - F(x, y) = P(X < x \text{ or } X > y)

        `ccdf` accepts `x` for :math:`x` and `y` for :math:`y`.

        Parameters
        ----------
        x, y : array_like
            The arguments of the CCDF. `x` is required; `y` is optional.
        method : {None, 'formula', 'logexp', 'complement', 'quadrature', 'addition'}
            The strategy used to evaluate the CCDF.
            By default (``None``), the infrastructure chooses between the
            following options, listed in order of precedence.

            - ``'formula'``: use a formula for the CCDF itself
            - ``'logexp'``: evaluate the log-CCDF and exponentiate
            - ``'complement'``: evaluate the CDF and take the complement
            - ``'quadrature'``: numerically integrate the PDF

            The two-argument form chooses between:

            - ``'formula'``: use a formula for the CCDF itself
            - ``'addition'``: compute the CDF at `x` and the CCDF at `y`, then add

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The CCDF evaluated at the provided argument(s).

        See Also
        --------
        cdf
        logccdf

        Notes
        -----
        Suppose a continuous probability distribution has support :math:`[l, r]`.
        The CCDF :math:`G(x)` is related to the probability density function
        :math:`f(x)` by:

        .. math::

            G(x) = \int_x^r f(u) du

        The two argument version is:

        .. math::

            G(x, y) = \int_l^x f(u) du + \int_y^r f(u) du

        The CCDF returns its minimum value of :math:`0` for :math:`x ≥ r`
        and its maximum value of :math:`1` for :math:`x ≤ l`.

        The CCDF is also known as the "survival function".

        References
        ----------
        .. [1] Cumulative distribution function, *Wikipedia*,
               https://en.wikipedia.org/wiki/Cumulative_distribution_function#Derived_functions

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> import numpy as np
        >>> from scipy import stats
        >>> X = stats.Uniform(a=-0.5, b=0.5)

        Evaluate the CCDF at the desired argument:

        >>> X.ccdf(0.25)
        0.25
        >>> np.allclose(X.ccdf(0.25), 1-X.cdf(0.25))
        True

        Evaluate the complement of the cumulative probability between two arguments:

        >>> X.ccdf(-0.25, 0.25) == X.cdf(-0.25) + X.ccdf(0.25)
        True

        """  # noqa: E501
        raise NotImplementedError()

    @abstractmethod
    def iccdf(self, p, /, *, method):
        r"""Inverse complementary cumulative distribution function.

        The inverse complementary cumulative distribution function ("inverse CCDF"),
        denoted :math:`G^{-1}(p)`, is the argument :math:`x` for which the
        complementary cumulative distribution function :math:`G(x)` evaluates to
        :math:`p`.

        .. math::

            G^{-1}(p) = x \quad \text{s.t.} \quad G(x) = p

        `iccdf` accepts `p` for :math:`p \in [0, 1]`.

        Parameters
        ----------
        p : array_like
            The argument of the inverse CCDF.
        method : {None, 'formula', 'complement', 'inversion'}
            The strategy used to evaluate the inverse CCDF.
            By default (``None``), the infrastructure chooses between the
            following options, listed in order of precedence.

            - ``'formula'``: use a formula for the inverse CCDF itself
            - ``'complement'``: evaluate the inverse CDF at the
              complement of `p`
            - ``'inversion'``: solve numerically for the argument at which the
              CCDF is equal to `p`

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The inverse CCDF evaluated at the provided argument.

        Notes
        -----
        Suppose a continuous probability distribution has support :math:`[l, r]`. The
        inverse CCDF returns its minimum value of :math:`l` at :math:`p = 1`
        and its maximum value of :math:`r` at :math:`p = 0`. Because the CCDF
        has range :math:`[0, 1]`, the inverse CCDF is only defined on the
        domain :math:`[0, 1]`; for :math:`p < 0` and :math:`p > 1`, ``iccdf``
        returns ``nan``.

        See Also
        --------
        icdf
        ilogccdf

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> import numpy as np
        >>> from scipy import stats
        >>> X = stats.Uniform(a=-0.5, b=0.5)

        Evaluate the inverse CCDF at the desired argument:

        >>> X.iccdf(0.25)
        0.25
        >>> np.allclose(X.iccdf(0.25), X.icdf(1-0.25))
        True

        This function returns NaN when the argument is outside the domain.

        >>> X.iccdf([-0.1, 0, 1, 1.1])
        array([ nan,  0.5, -0.5,  nan])

        """
        raise NotImplementedError()

    @abstractmethod
    def logcdf(self, x, y, /, *, method):
        r"""Log of the cumulative distribution function

        The cumulative distribution function ("CDF"), denoted :math:`F(x)`, is
        the probability the random variable :math:`X` will assume a value
        less than or equal to :math:`x`:

        .. math::

            F(x) = P(X ≤ x)

        A two-argument variant of this function is also defined as the
        probability the random variable :math:`X` will assume a value between
        :math:`x` and :math:`y`.

        .. math::

            F(x, y) = P(x ≤ X ≤ y)

        `logcdf` computes the logarithm of the cumulative distribution function
        ("log-CDF"), :math:`\log(F(x))`/:math:`\log(F(x, y))`, but it may be
        numerically favorable compared to the naive implementation (computing
        the CDF and taking the logarithm).

        `logcdf` accepts `x` for :math:`x` and `y` for :math:`y`.

        Parameters
        ----------
        x, y : array_like
            The arguments of the log-CDF. `x` is required; `y` is optional.
        method : {None, 'formula', 'logexp', 'complement', 'quadrature', 'subtraction'}
            The strategy used to evaluate the log-CDF.
            By default (``None``), the one-argument form of the function
            chooses between the following options, listed in order of precedence.

            - ``'formula'``: use a formula for the log-CDF itself
            - ``'logexp'``: evaluate the CDF and take the logarithm
            - ``'complement'``: evaluate the log-CCDF and take the
              logarithmic complement (see Notes)
            - ``'quadrature'``: numerically log-integrate the log-PDF

            In place of ``'complement'``, the two-argument form accepts:

            - ``'subtraction'``: compute the log-CDF at each argument and take
              the logarithmic difference (see Notes)

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The log-CDF evaluated at the provided argument(s).

        See Also
        --------
        cdf
        logccdf

        Notes
        -----
        Suppose a continuous probability distribution has support :math:`[l, r]`.
        The log-CDF evaluates to its minimum value of :math:`\log(0) = -\infty`
        for :math:`x ≤ l` and its maximum value of :math:`\log(1) = 0` for
        :math:`x ≥ r`.

        For distributions with infinite support, it is common for
        `cdf` to return a value of ``0`` when the argument
        is theoretically within the support; this can occur because the true value
        of the CDF is too small to be represented by the chosen dtype. `logcdf`,
        however, will often return a finite (not ``-inf``) result over a much larger
        domain. Similarly, `logcdf` may provided a strictly negative result with
        arguments for which `cdf` would return ``1.0``. Consequently, it may be
        preferred to work with the logarithms of probabilities to avoid underflow
        and related limitations of floating point numbers.

        The "logarithmic complement" of a number :math:`z` is mathematically
        equivalent to :math:`\log(1-\exp(z))`, but it is computed to avoid loss
        of precision when :math:`\exp(z)` is nearly :math:`0` or :math:`1`.
        Similarly, the term "logarithmic difference" of :math:`w` and :math:`z`
        is used here to mean :math:`\log(\exp(w)-\exp(z))`.

        If ``y < x``, the CDF is negative, and therefore the log-CCDF
        is complex with imaginary part :math:`\pi`. For
        consistency, the result of this function always has complex dtype
        when `y` is provided, regardless of the value of the imaginary part.

        References
        ----------
        .. [1] Cumulative distribution function, *Wikipedia*,
               https://en.wikipedia.org/wiki/Cumulative_distribution_function

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> import numpy as np
        >>> from scipy import stats
        >>> X = stats.Uniform(a=-0.5, b=0.5)

        Evaluate the log-CDF at the desired argument:

        >>> X.logcdf(0.25)
        -0.287682072451781
        >>> np.allclose(X.logcdf(0.), np.log(X.cdf(0.)))
        True

        """  # noqa: E501
        raise NotImplementedError()

    @abstractmethod
    def ilogcdf(self, logp, /, *, method):
        r"""Inverse of the logarithm of the cumulative distribution function.

        The inverse of the logarithm of the cumulative distribution function
        ("inverse log-CDF") is the argument :math:`x` for which the logarithm
        of the cumulative distribution function :math:`\log(F(x))` evaluates
        to :math:`\log(p)`.

        Mathematically, it is equivalent to :math:`F^{-1}(\exp(y))`, where
        :math:`y = \log(p)`, but it may be numerically favorable compared to
        the naive implementation (computing :math:`p = \exp(y)`, then
        :math:`F^{-1}(p)`).

        `ilogcdf` accepts `logp` for :math:`\log(p) ≤ 0`.

        Parameters
        ----------
        logp : array_like
            The argument of the inverse log-CDF.
        method : {None, 'formula', 'complement', 'inversion'}
            The strategy used to evaluate the inverse log-CDF.
            By default (``None``), the infrastructure chooses between the
            following options, listed in order of precedence.

            - ``'formula'``: use a formula for the inverse log-CDF itself
            - ``'complement'``: evaluate the inverse log-CCDF at the
              logarithmic complement of `logp` (see Notes)
            - ``'inversion'``: solve numerically for the argument at which the
              log-CDF is equal to `logp`

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The inverse log-CDF evaluated at the provided argument.

        See Also
        --------
        icdf
        logcdf

        Notes
        -----
        Suppose a continuous probability distribution has support :math:`[l, r]`.
        The inverse log-CDF returns its minimum value of :math:`l` at
        :math:`\log(p) = \log(0) = -\infty` and its maximum value of :math:`r` at
        :math:`\log(p) = \log(1) = 0`. Because the log-CDF has range
        :math:`[-\infty, 0]`, the inverse log-CDF is only defined on the
        negative reals; for :math:`\log(p) > 0`, `ilogcdf` returns ``nan``.

        Occasionally, it is needed to find the argument of the CDF for which
        the resulting probability is very close to ``0`` or ``1`` - too close to
        represent accurately with floating point arithmetic. In many cases,
        however, the *logarithm* of this resulting probability may be
        represented in floating point arithmetic, in which case this function
        may be used to find the argument of the CDF for which the *logarithm*
        of the resulting probability is :math:`y = \log(p)`.

        The "logarithmic complement" of a number :math:`z` is mathematically
        equivalent to :math:`\log(1-\exp(z))`, but it is computed to avoid loss
        of precision when :math:`\exp(z)` is nearly :math:`0` or :math:`1`.

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> import numpy as np
        >>> from scipy import stats
        >>> X = stats.Uniform(a=-0.5, b=0.5)

        Evaluate the inverse log-CDF at the desired argument:

        >>> X.ilogcdf(-0.25)
        0.2788007830714034
        >>> np.allclose(X.ilogcdf(-0.25), X.icdf(np.exp(-0.25)))
        True

        """
        raise NotImplementedError()

    @abstractmethod
    def logccdf(self, x, y, /, *, method):
        r"""Log of the complementary cumulative distribution function

        The complementary cumulative distribution function ("CCDF"), denoted
        :math:`G(x)` is the complement of the cumulative distribution function
        :math:`F(x)`; i.e., probability the random variable :math:`X` will
        assume a value greater than :math:`x`:

        .. math::

            G(x) = 1 - F(x) = P(X > x)

        A two-argument variant of this function is:

        .. math::

            G(x, y) = 1 - F(x, y) = P(X < x \quad \text{or} \quad X > y)

        `logccdf` computes the logarithm of the complementary cumulative
        distribution function ("log-CCDF"), :math:`\log(G(x))`/:math:`\log(G(x, y))`,
        but it may be numerically favorable compared to the naive implementation
        (computing the CDF and taking the logarithm).

        `logccdf` accepts `x` for :math:`x` and `y` for :math:`y`.

        Parameters
        ----------
        x, y : array_like
            The arguments of the log-CCDF. `x` is required; `y` is optional.
        method : {None, 'formula', 'logexp', 'complement', 'quadrature', 'addition'}
            The strategy used to evaluate the log-CCDF.
            By default (``None``), the one-argument form of the function
            chooses between the following options, listed in order of precedence.

            - ``'formula'``: use a formula for the log CCDF itself
            - ``'logexp'``: evaluate the CCDF and take the logarithm
            - ``'complement'``: evaluate the log-CDF and take the
              logarithmic complement (see Notes)
            - ``'quadrature'``: numerically log-integrate the log-PDF

            The two-argument form chooses between:

            - ``'formula'``: use a formula for the log CCDF itself
            - ``'addition'``: compute the log-CDF at `x` and the log-CCDF at `y`,
              then take the logarithmic sum (see Notes)

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The log-CCDF evaluated at the provided argument(s).

        See Also
        --------
        ccdf
        logcdf

        Notes
        -----
        Suppose a continuous probability distribution has support :math:`[l, r]`.
        The log-CCDF returns its minimum value of :math:`\log(0)=-\infty` for
        :math:`x ≥ r` and its maximum value of :math:`\log(1) = 0` for
        :math:`x ≤ l`.

        For distributions with infinite support, it is common for
        `ccdf` to return a value of ``0`` when the argument
        is theoretically within the support; this can occur because the true value
        of the CCDF is too small to be represented by the chosen dtype. The log
        of the CCDF, however, will often be finite (not ``-inf``) over a much larger
        domain. Similarly, `logccdf` may provided a strictly negative result with
        arguments for which `ccdf` would return ``1.0``. Consequently, it may be
        preferred to work with the logarithms of probabilities to avoid underflow
        and related limitations of floating point numbers.

        The "logarithmic complement" of a number :math:`z` is mathematically
        equivalent to :math:`\log(1-\exp(z))`, but it is computed to avoid loss
        of precision when :math:`\exp(z)` is nearly :math:`0` or :math:`1`.
        Similarly, the term "logarithmic sum" of :math:`w` and :math:`z`
        is used here to mean the :math:`\log(\exp(w)+\exp(z))`, AKA
        :math:`\text{LogSumExp}(w, z)`.

        References
        ----------
        .. [1] Cumulative distribution function, *Wikipedia*,
               https://en.wikipedia.org/wiki/Cumulative_distribution_function#Derived_functions

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> import numpy as np
        >>> from scipy import stats
        >>> X = stats.Uniform(a=-0.5, b=0.5)

        Evaluate the log-CCDF at the desired argument:

        >>> X.logccdf(0.25)
        -1.3862943611198906
        >>> np.allclose(X.logccdf(0.), np.log(X.ccdf(0.)))
        True

        """  # noqa: E501
        raise NotImplementedError()

    @abstractmethod
    def ilogccdf(self, logp, /, *, method):
        r"""Inverse of the log of the complementary cumulative distribution function.

        The inverse of the logarithm of the complementary cumulative distribution
        function ("inverse log-CCDF") is the argument :math:`x` for which the logarithm
        of the complementary cumulative distribution function :math:`\log(G(x))`
        evaluates to :math:`\log(p)`.

        Mathematically, it is equivalent to :math:`G^{-1}(\exp(y))`, where
        :math:`y = \log(p)`, but it may be numerically favorable compared to the naive
        implementation (computing :math:`p = \exp(y)`, then :math:`G^{-1}(p)`).

        `ilogccdf` accepts `logp` for :math:`\log(p) ≤ 0`.

        Parameters
        ----------
        x : array_like
            The argument of the inverse log-CCDF.
        method : {None, 'formula', 'complement', 'inversion'}
            The strategy used to evaluate the inverse log-CCDF.
            By default (``None``), the infrastructure chooses between the
            following options, listed in order of precedence.

            - ``'formula'``: use a formula for the inverse log-CCDF itself
            - ``'complement'``: evaluate the inverse log-CDF at the
              logarithmic complement of `x` (see Notes)
            - ``'inversion'``: solve numerically for the argument at which the
              log-CCDF is equal to `x`

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The inverse log-CCDF evaluated at the provided argument.

        Notes
        -----
        Suppose a continuous probability distribution has support :math:`[l, r]`. The
        inverse log-CCDF returns its minimum value of :math:`l` at
        :math:`\log(p) = \log(1) = 0` and its maximum value of :math:`r` at
        :math:`\log(p) = \log(0) = -\infty`. Because the log-CCDF has range
        :math:`[-\infty, 0]`, the inverse log-CDF is only defined on the
        negative reals; for :math:`\log(p) > 0`, `ilogccdf` returns ``nan``.

        Occasionally, it is needed to find the argument of the CCDF for which
        the resulting probability is very close to ``0`` or ``1`` - too close to
        represent accurately with floating point arithmetic. In many cases,
        however, the *logarithm* of this resulting probability may be
        represented in floating point arithmetic, in which case this function
        may be used to find the argument of the CCDF for which the *logarithm*
        of the resulting probability is `y = \log(p)`.

        The "logarithmic complement" of a number :math:`z` is mathematically
        equivalent to :math:`\log(1-\exp(z))`, but it is computed to avoid loss
        of precision when :math:`\exp(z)` is nearly :math:`0` or :math:`1`.

        See Also
        --------
        iccdf
        ilogccdf

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> import numpy as np
        >>> from scipy import stats
        >>> X = stats.Uniform(a=-0.5, b=0.5)

        Evaluate the inverse log-CCDF at the desired argument:

        >>> X.ilogccdf(-0.25)
        -0.2788007830714034
        >>> np.allclose(X.ilogccdf(-0.25), X.iccdf(np.exp(-0.25)))
        True

        """
        raise NotImplementedError()

    @abstractmethod
    def logentropy(self, *, method):
        r"""Logarithm of the differential entropy

        In terms of probability density function :math:`f(x)` and support
        :math:`\chi`, the differential entropy (or simply "entropy") of a random
        variable :math:`X` is:

        .. math::

            h(X) = - \int_{\chi} f(x) \log f(x) dx

        `logentropy` computes the logarithm of the differential entropy
        ("log-entropy"), :math:`log(h(X))`, but it may be numerically favorable
        compared to the naive implementation (computing :math:`h(X)` then
        taking the logarithm).

        Parameters
        ----------
        method : {None, 'formula', 'logexp', 'quadrature}
            The strategy used to evaluate the log-entropy. By default
            (``None``), the infrastructure chooses between the following options,
            listed in order of precedence.

            - ``'formula'``: use a formula for the log-entropy itself
            - ``'logexp'``: evaluate the entropy and take the logarithm
            - ``'quadrature'``: numerically log-integrate the logarithm of the
              entropy integrand

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The log-entropy.

        See Also
        --------
        entropy
        logpdf

        Notes
        -----
        If the entropy of a distribution is negative, then the log-entropy
        is complex with imaginary part :math:`\pi`. For
        consistency, the result of this function always has complex dtype,
        regardless of the value of the imaginary part.

        References
        ----------
        .. [1] Differential entropy, *Wikipedia*,
               https://en.wikipedia.org/wiki/Differential_entropy

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> import numpy as np
        >>> from scipy import stats
        >>> X = stats.Uniform(a=-1., b=1.)

        Evaluate the log-entropy:

        >>> X.logentropy()
        (-0.3665129205816642+0j)
        >>> np.allclose(np.exp(X.logentropy()), X.entropy())
        True

        For a random variable with negative entropy, the log-entropy has an
        imaginary part equal to `np.pi`.

        >>> X = stats.Uniform(a=-.1, b=.1)
        >>> X.entropy(), X.logentropy()
        (-1.6094379124341007, (0.4758849953271105+3.141592653589793j))

        """
        raise NotImplementedError()
        
    @abstractmethod
    def entropy(self, *, method):
        r"""Differential entropy

        In terms of probability density function :math:`f(x)` and support
        :math:`\chi`, the differential entropy (or simply "entropy") of a
        continuous random variable :math:`X` is:

        .. math::

            h(X) = - \int_{\chi} f(x) \log f(x) dx

        Parameters
        ----------
        method : {None, 'formula', 'logexp', 'quadrature'}
            The strategy used to evaluate the entropy. By default (``None``),
            the infrastructure chooses between the following options, listed
            in order of precedence.

            - ``'formula'``: use a formula for the entropy itself
            - ``'logexp'``: evaluate the log-entropy and exponentiate
            - ``'quadrature'``: use numerical integration

            Not all `method` options are available for all distributions.
            If the selected `method` is not available, a ``NotImplementedError``
            will be raised.

        Returns
        -------
        out : array
            The entropy of the random variable.

        See Also
        --------
        logentropy
        pdf

        Notes
        -----
        This function calculates the entropy using the natural logarithm; i.e.
        the logarithm with base :math:`e`. Consequently, the value is expressed
        in (dimensionless) "units" of nats. To convert the entropy to different
        units (i.e. corresponding with a different base), divide the result by
        the natural logarithm of the desired base.

        References
        ----------
        .. [1] Differential entropy, *Wikipedia*,
               https://en.wikipedia.org/wiki/Differential_entropy

        Examples
        --------
        Instantiate a distribution with the desired parameters:

        >>> from scipy import stats
        >>> X = stats.Uniform(a=-1., b=1.)

        Evaluate the entropy:

        >>> X.entropy()
        0.6931471805599454

        """
        raise NotImplementedError()