File size: 151,588 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
#
# Author:  Travis Oliphant  2002-2011 with contributions from
#          SciPy Developers 2004-2011
#
from scipy._lib._util import getfullargspec_no_self as _getfullargspec

import sys
import keyword
import re
import types
import warnings
from itertools import zip_longest

from scipy._lib import doccer
from ._distr_params import distcont, distdiscrete
from scipy._lib._util import check_random_state, _lazywhere

from scipy.special import comb, entr


# for root finding for continuous distribution ppf, and maximum likelihood
# estimation
from scipy import optimize

# for functions of continuous distributions (e.g. moments, entropy, cdf)
from scipy import integrate

# to approximate the pdf of a continuous distribution given its cdf
from scipy._lib._finite_differences import _derivative

# for scipy.stats.entropy. Attempts to import just that function or file
# have cause import problems
from scipy import stats

from numpy import (arange, putmask, ones, shape, ndarray, zeros, floor,
                   logical_and, log, sqrt, place, argmax, vectorize, asarray,
                   nan, inf, isinf, empty)

import numpy as np
from ._constants import _XMAX, _LOGXMAX
from ._censored_data import CensoredData
from scipy.stats._warnings_errors import FitError

# These are the docstring parts used for substitution in specific
# distribution docstrings

docheaders = {'methods': """\nMethods\n-------\n""",
              'notes': """\nNotes\n-----\n""",
              'examples': """\nExamples\n--------\n"""}

_doc_rvs = """\
rvs(%(shapes)s, loc=0, scale=1, size=1, random_state=None)
    Random variates.
"""
_doc_pdf = """\
pdf(x, %(shapes)s, loc=0, scale=1)
    Probability density function.
"""
_doc_logpdf = """\
logpdf(x, %(shapes)s, loc=0, scale=1)
    Log of the probability density function.
"""
_doc_pmf = """\
pmf(k, %(shapes)s, loc=0, scale=1)
    Probability mass function.
"""
_doc_logpmf = """\
logpmf(k, %(shapes)s, loc=0, scale=1)
    Log of the probability mass function.
"""
_doc_cdf = """\
cdf(x, %(shapes)s, loc=0, scale=1)
    Cumulative distribution function.
"""
_doc_logcdf = """\
logcdf(x, %(shapes)s, loc=0, scale=1)
    Log of the cumulative distribution function.
"""
_doc_sf = """\
sf(x, %(shapes)s, loc=0, scale=1)
    Survival function  (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
"""  # noqa: E501
_doc_logsf = """\
logsf(x, %(shapes)s, loc=0, scale=1)
    Log of the survival function.
"""
_doc_ppf = """\
ppf(q, %(shapes)s, loc=0, scale=1)
    Percent point function (inverse of ``cdf`` --- percentiles).
"""
_doc_isf = """\
isf(q, %(shapes)s, loc=0, scale=1)
    Inverse survival function (inverse of ``sf``).
"""
_doc_moment = """\
moment(order, %(shapes)s, loc=0, scale=1)
    Non-central moment of the specified order.
"""
_doc_stats = """\
stats(%(shapes)s, loc=0, scale=1, moments='mv')
    Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
"""
_doc_entropy = """\
entropy(%(shapes)s, loc=0, scale=1)
    (Differential) entropy of the RV.
"""
_doc_fit = """\
fit(data)
    Parameter estimates for generic data.
    See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
    keyword arguments.
"""  # noqa: E501
_doc_expect = """\
expect(func, args=(%(shapes_)s), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
    Expected value of a function (of one argument) with respect to the distribution.
"""  # noqa: E501
_doc_expect_discrete = """\
expect(func, args=(%(shapes_)s), loc=0, lb=None, ub=None, conditional=False)
    Expected value of a function (of one argument) with respect to the distribution.
"""
_doc_median = """\
median(%(shapes)s, loc=0, scale=1)
    Median of the distribution.
"""
_doc_mean = """\
mean(%(shapes)s, loc=0, scale=1)
    Mean of the distribution.
"""
_doc_var = """\
var(%(shapes)s, loc=0, scale=1)
    Variance of the distribution.
"""
_doc_std = """\
std(%(shapes)s, loc=0, scale=1)
    Standard deviation of the distribution.
"""
_doc_interval = """\
interval(confidence, %(shapes)s, loc=0, scale=1)
    Confidence interval with equal areas around the median.
"""
_doc_allmethods = ''.join([docheaders['methods'], _doc_rvs, _doc_pdf,
                           _doc_logpdf, _doc_cdf, _doc_logcdf, _doc_sf,
                           _doc_logsf, _doc_ppf, _doc_isf, _doc_moment,
                           _doc_stats, _doc_entropy, _doc_fit,
                           _doc_expect, _doc_median,
                           _doc_mean, _doc_var, _doc_std, _doc_interval])

_doc_default_longsummary = """\
As an instance of the `rv_continuous` class, `%(name)s` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
"""

_doc_default_frozen_note = """
Alternatively, the object may be called (as a function) to fix the shape,
location, and scale parameters returning a "frozen" continuous RV object:

rv = %(name)s(%(shapes)s, loc=0, scale=1)
    - Frozen RV object with the same methods but holding the given shape,
      location, and scale fixed.
"""
_doc_default_example = """\
Examples
--------
>>> import numpy as np
>>> from scipy.stats import %(name)s
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

%(set_vals_stmt)s
>>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk')

Display the probability density function (``pdf``):

>>> x = np.linspace(%(name)s.ppf(0.01, %(shapes)s),
...                 %(name)s.ppf(0.99, %(shapes)s), 100)
>>> ax.plot(x, %(name)s.pdf(x, %(shapes)s),
...        'r-', lw=5, alpha=0.6, label='%(name)s pdf')

Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.

Freeze the distribution and display the frozen ``pdf``:

>>> rv = %(name)s(%(shapes)s)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of ``cdf`` and ``ppf``:

>>> vals = %(name)s.ppf([0.001, 0.5, 0.999], %(shapes)s)
>>> np.allclose([0.001, 0.5, 0.999], %(name)s.cdf(vals, %(shapes)s))
True

Generate random numbers:

>>> r = %(name)s.rvs(%(shapes)s, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2)
>>> ax.set_xlim([x[0], x[-1]])
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

"""

_doc_default_locscale = """\
The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the ``loc`` and ``scale`` parameters.
Specifically, ``%(name)s.pdf(x, %(shapes)s, loc, scale)`` is identically
equivalent to ``%(name)s.pdf(y, %(shapes)s) / scale`` with
``y = (x - loc) / scale``. Note that shifting the location of a distribution
does not make it a "noncentral" distribution; noncentral generalizations of
some distributions are available in separate classes.
"""

_doc_default = ''.join([_doc_default_longsummary,
                        _doc_allmethods,
                        '\n',
                        _doc_default_example])

_doc_default_before_notes = ''.join([_doc_default_longsummary,
                                     _doc_allmethods])

docdict = {
    'rvs': _doc_rvs,
    'pdf': _doc_pdf,
    'logpdf': _doc_logpdf,
    'cdf': _doc_cdf,
    'logcdf': _doc_logcdf,
    'sf': _doc_sf,
    'logsf': _doc_logsf,
    'ppf': _doc_ppf,
    'isf': _doc_isf,
    'stats': _doc_stats,
    'entropy': _doc_entropy,
    'fit': _doc_fit,
    'moment': _doc_moment,
    'expect': _doc_expect,
    'interval': _doc_interval,
    'mean': _doc_mean,
    'std': _doc_std,
    'var': _doc_var,
    'median': _doc_median,
    'allmethods': _doc_allmethods,
    'longsummary': _doc_default_longsummary,
    'frozennote': _doc_default_frozen_note,
    'example': _doc_default_example,
    'default': _doc_default,
    'before_notes': _doc_default_before_notes,
    'after_notes': _doc_default_locscale
}

# Reuse common content between continuous and discrete docs, change some
# minor bits.
docdict_discrete = docdict.copy()

docdict_discrete['pmf'] = _doc_pmf
docdict_discrete['logpmf'] = _doc_logpmf
docdict_discrete['expect'] = _doc_expect_discrete
_doc_disc_methods = ['rvs', 'pmf', 'logpmf', 'cdf', 'logcdf', 'sf', 'logsf',
                     'ppf', 'isf', 'stats', 'entropy', 'expect', 'median',
                     'mean', 'var', 'std', 'interval']
for obj in _doc_disc_methods:
    docdict_discrete[obj] = docdict_discrete[obj].replace(', scale=1', '')

_doc_disc_methods_err_varname = ['cdf', 'logcdf', 'sf', 'logsf']
for obj in _doc_disc_methods_err_varname:
    docdict_discrete[obj] = docdict_discrete[obj].replace('(x, ', '(k, ')

docdict_discrete.pop('pdf')
docdict_discrete.pop('logpdf')

_doc_allmethods = ''.join([docdict_discrete[obj] for obj in _doc_disc_methods])
docdict_discrete['allmethods'] = docheaders['methods'] + _doc_allmethods

docdict_discrete['longsummary'] = _doc_default_longsummary.replace(
    'rv_continuous', 'rv_discrete')

_doc_default_frozen_note = """
Alternatively, the object may be called (as a function) to fix the shape and
location parameters returning a "frozen" discrete RV object:

rv = %(name)s(%(shapes)s, loc=0)
    - Frozen RV object with the same methods but holding the given shape and
      location fixed.
"""
docdict_discrete['frozennote'] = _doc_default_frozen_note

_doc_default_discrete_example = """\
Examples
--------
>>> import numpy as np
>>> from scipy.stats import %(name)s
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

%(set_vals_stmt)s
>>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk')

Display the probability mass function (``pmf``):

>>> x = np.arange(%(name)s.ppf(0.01, %(shapes)s),
...               %(name)s.ppf(0.99, %(shapes)s))
>>> ax.plot(x, %(name)s.pmf(x, %(shapes)s), 'bo', ms=8, label='%(name)s pmf')
>>> ax.vlines(x, 0, %(name)s.pmf(x, %(shapes)s), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function)
to fix the shape and location. This returns a "frozen" RV object holding
the given parameters fixed.

Freeze the distribution and display the frozen ``pmf``:

>>> rv = %(name)s(%(shapes)s)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
...         label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

Check accuracy of ``cdf`` and ``ppf``:

>>> prob = %(name)s.cdf(x, %(shapes)s)
>>> np.allclose(x, %(name)s.ppf(prob, %(shapes)s))
True

Generate random numbers:

>>> r = %(name)s.rvs(%(shapes)s, size=1000)
"""


_doc_default_discrete_locscale = """\
The probability mass function above is defined in the "standardized" form.
To shift distribution use the ``loc`` parameter.
Specifically, ``%(name)s.pmf(k, %(shapes)s, loc)`` is identically
equivalent to ``%(name)s.pmf(k - loc, %(shapes)s)``.
"""

docdict_discrete['example'] = _doc_default_discrete_example
docdict_discrete['after_notes'] = _doc_default_discrete_locscale

_doc_default_before_notes = ''.join([docdict_discrete['longsummary'],
                                     docdict_discrete['allmethods']])
docdict_discrete['before_notes'] = _doc_default_before_notes

_doc_default_disc = ''.join([docdict_discrete['longsummary'],
                             docdict_discrete['allmethods'],
                             docdict_discrete['frozennote'],
                             docdict_discrete['example']])
docdict_discrete['default'] = _doc_default_disc

# clean up all the separate docstring elements, we do not need them anymore
for obj in [s for s in dir() if s.startswith('_doc_')]:
    exec('del ' + obj)
del obj


def _moment(data, n, mu=None):
    if mu is None:
        mu = data.mean()
    return ((data - mu)**n).mean()


def _moment_from_stats(n, mu, mu2, g1, g2, moment_func, args):
    if (n == 0):
        return 1.0
    elif (n == 1):
        if mu is None:
            val = moment_func(1, *args)
        else:
            val = mu
    elif (n == 2):
        if mu2 is None or mu is None:
            val = moment_func(2, *args)
        else:
            val = mu2 + mu*mu
    elif (n == 3):
        if g1 is None or mu2 is None or mu is None:
            val = moment_func(3, *args)
        else:
            mu3 = g1 * np.power(mu2, 1.5)  # 3rd central moment
            val = mu3+3*mu*mu2+mu*mu*mu  # 3rd non-central moment
    elif (n == 4):
        if g1 is None or g2 is None or mu2 is None or mu is None:
            val = moment_func(4, *args)
        else:
            mu4 = (g2+3.0)*(mu2**2.0)  # 4th central moment
            mu3 = g1*np.power(mu2, 1.5)  # 3rd central moment
            val = mu4+4*mu*mu3+6*mu*mu*mu2+mu*mu*mu*mu
    else:
        val = moment_func(n, *args)

    return val


def _skew(data):
    """
    skew is third central moment / variance**(1.5)
    """
    data = np.ravel(data)
    mu = data.mean()
    m2 = ((data - mu)**2).mean()
    m3 = ((data - mu)**3).mean()
    return m3 / np.power(m2, 1.5)


def _kurtosis(data):
    """Fisher's excess kurtosis is fourth central moment / variance**2 - 3."""
    data = np.ravel(data)
    mu = data.mean()
    m2 = ((data - mu)**2).mean()
    m4 = ((data - mu)**4).mean()
    return m4 / m2**2 - 3

def _vectorize_rvs_over_shapes(_rvs1):
    """Decorator that vectorizes _rvs method to work on ndarray shapes"""
    # _rvs1 must be a _function_ that accepts _scalar_ args as positional
    # arguments, `size` and `random_state` as keyword arguments.
    # _rvs1 must return a random variate array with shape `size`. If `size` is
    # None, _rvs1 must return a scalar.
    # When applied to _rvs1, this decorator broadcasts ndarray args
    # and loops over them, calling _rvs1 for each set of scalar args.
    # For usage example, see _nchypergeom_gen
    def _rvs(*args, size, random_state):
        _rvs1_size, _rvs1_indices = _check_shape(args[0].shape, size)

        size = np.array(size)
        _rvs1_size = np.array(_rvs1_size)
        _rvs1_indices = np.array(_rvs1_indices)

        if np.all(_rvs1_indices):  # all args are scalars
            return _rvs1(*args, size, random_state)

        out = np.empty(size)

        # out.shape can mix dimensions associated with arg_shape and _rvs1_size
        # Sort them to arg_shape + _rvs1_size for easy indexing of dimensions
        # corresponding with the different sets of scalar args
        j0 = np.arange(out.ndim)
        j1 = np.hstack((j0[~_rvs1_indices], j0[_rvs1_indices]))
        out = np.moveaxis(out, j1, j0)

        for i in np.ndindex(*size[~_rvs1_indices]):
            # arg can be squeezed because singleton dimensions will be
            # associated with _rvs1_size, not arg_shape per _check_shape
            out[i] = _rvs1(*[np.squeeze(arg)[i] for arg in args],
                           _rvs1_size, random_state)

        return np.moveaxis(out, j0, j1)  # move axes back before returning
    return _rvs


def _fit_determine_optimizer(optimizer):
    if not callable(optimizer) and isinstance(optimizer, str):
        if not optimizer.startswith('fmin_'):
            optimizer = "fmin_"+optimizer
        if optimizer == 'fmin_':
            optimizer = 'fmin'
        try:
            optimizer = getattr(optimize, optimizer)
        except AttributeError as e:
            raise ValueError(f"{optimizer} is not a valid optimizer") from e
    return optimizer

def _isintegral(x):
    return x == np.round(x)

def _sum_finite(x):
    """
    For a 1D array x, return a tuple containing the sum of the
    finite values of x and the number of nonfinite values.

    This is a utility function used when evaluating the negative
    loglikelihood for a distribution and an array of samples.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats._distn_infrastructure import _sum_finite
    >>> tot, nbad = _sum_finite(np.array([-2, -np.inf, 5, 1]))
    >>> tot
    4.0
    >>> nbad
    1
    """
    finite_x = np.isfinite(x)
    bad_count = finite_x.size - np.count_nonzero(finite_x)
    return np.sum(x[finite_x]), bad_count


# Frozen RV class
class rv_frozen:

    def __init__(self, dist, *args, **kwds):
        self.args = args
        self.kwds = kwds

        # create a new instance
        self.dist = dist.__class__(**dist._updated_ctor_param())

        shapes, _, _ = self.dist._parse_args(*args, **kwds)
        self.a, self.b = self.dist._get_support(*shapes)

    @property
    def random_state(self):
        return self.dist._random_state

    @random_state.setter
    def random_state(self, seed):
        self.dist._random_state = check_random_state(seed)

    def cdf(self, x):
        return self.dist.cdf(x, *self.args, **self.kwds)

    def logcdf(self, x):
        return self.dist.logcdf(x, *self.args, **self.kwds)

    def ppf(self, q):
        return self.dist.ppf(q, *self.args, **self.kwds)

    def isf(self, q):
        return self.dist.isf(q, *self.args, **self.kwds)

    def rvs(self, size=None, random_state=None):
        kwds = self.kwds.copy()
        kwds.update({'size': size, 'random_state': random_state})
        return self.dist.rvs(*self.args, **kwds)

    def sf(self, x):
        return self.dist.sf(x, *self.args, **self.kwds)

    def logsf(self, x):
        return self.dist.logsf(x, *self.args, **self.kwds)

    def stats(self, moments='mv'):
        kwds = self.kwds.copy()
        kwds.update({'moments': moments})
        return self.dist.stats(*self.args, **kwds)

    def median(self):
        return self.dist.median(*self.args, **self.kwds)

    def mean(self):
        return self.dist.mean(*self.args, **self.kwds)

    def var(self):
        return self.dist.var(*self.args, **self.kwds)

    def std(self):
        return self.dist.std(*self.args, **self.kwds)

    def moment(self, order=None):
        return self.dist.moment(order, *self.args, **self.kwds)

    def entropy(self):
        return self.dist.entropy(*self.args, **self.kwds)

    def interval(self, confidence=None):
        return self.dist.interval(confidence, *self.args, **self.kwds)

    def expect(self, func=None, lb=None, ub=None, conditional=False, **kwds):
        # expect method only accepts shape parameters as positional args
        # hence convert self.args, self.kwds, also loc/scale
        # See the .expect method docstrings for the meaning of
        # other parameters.
        a, loc, scale = self.dist._parse_args(*self.args, **self.kwds)
        if isinstance(self.dist, rv_discrete):
            return self.dist.expect(func, a, loc, lb, ub, conditional, **kwds)
        else:
            return self.dist.expect(func, a, loc, scale, lb, ub,
                                    conditional, **kwds)

    def support(self):
        return self.dist.support(*self.args, **self.kwds)


class rv_discrete_frozen(rv_frozen):

    def pmf(self, k):
        return self.dist.pmf(k, *self.args, **self.kwds)

    def logpmf(self, k):  # No error
        return self.dist.logpmf(k, *self.args, **self.kwds)


class rv_continuous_frozen(rv_frozen):

    def pdf(self, x):
        return self.dist.pdf(x, *self.args, **self.kwds)

    def logpdf(self, x):
        return self.dist.logpdf(x, *self.args, **self.kwds)


def argsreduce(cond, *args):
    """Clean arguments to:

    1. Ensure all arguments are iterable (arrays of dimension at least one
    2. If cond != True and size > 1, ravel(args[i]) where ravel(condition) is
       True, in 1D.

    Return list of processed arguments.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats._distn_infrastructure import argsreduce
    >>> rng = np.random.default_rng()
    >>> A = rng.random((4, 5))
    >>> B = 2
    >>> C = rng.random((1, 5))
    >>> cond = np.ones(A.shape)
    >>> [A1, B1, C1] = argsreduce(cond, A, B, C)
    >>> A1.shape
    (4, 5)
    >>> B1.shape
    (1,)
    >>> C1.shape
    (1, 5)
    >>> cond[2,:] = 0
    >>> [A1, B1, C1] = argsreduce(cond, A, B, C)
    >>> A1.shape
    (15,)
    >>> B1.shape
    (1,)
    >>> C1.shape
    (15,)

    """
    # some distributions assume arguments are iterable.
    newargs = np.atleast_1d(*args)

    # np.atleast_1d returns an array if only one argument, or a list of arrays
    # if more than one argument.
    if not isinstance(newargs, (list | tuple)):
        newargs = (newargs,)

    if np.all(cond):
        # broadcast arrays with cond
        *newargs, cond = np.broadcast_arrays(*newargs, cond)
        return [arg.ravel() for arg in newargs]

    s = cond.shape
    # np.extract returns flattened arrays, which are not broadcastable together
    # unless they are either the same size or size == 1.
    return [(arg if np.size(arg) == 1
            else np.extract(cond, np.broadcast_to(arg, s)))
            for arg in newargs]


parse_arg_template = """
def _parse_args(self, %(shape_arg_str)s %(locscale_in)s):
    return (%(shape_arg_str)s), %(locscale_out)s

def _parse_args_rvs(self, %(shape_arg_str)s %(locscale_in)s, size=None):
    return self._argcheck_rvs(%(shape_arg_str)s %(locscale_out)s, size=size)

def _parse_args_stats(self, %(shape_arg_str)s %(locscale_in)s, moments='mv'):
    return (%(shape_arg_str)s), %(locscale_out)s, moments
"""


class rv_generic:
    """Class which encapsulates common functionality between rv_discrete
    and rv_continuous.

    """

    def __init__(self, seed=None):
        super().__init__()

        # figure out if _stats signature has 'moments' keyword
        sig = _getfullargspec(self._stats)
        self._stats_has_moments = ((sig.varkw is not None) or
                                   ('moments' in sig.args) or
                                   ('moments' in sig.kwonlyargs))
        self._random_state = check_random_state(seed)

    @property
    def random_state(self):
        """Get or set the generator object for generating random variates.

        If `random_state` is None (or `np.random`), the
        `numpy.random.RandomState` singleton is used.
        If `random_state` is an int, a new ``RandomState`` instance is used,
        seeded with `random_state`.
        If `random_state` is already a ``Generator`` or ``RandomState``
        instance, that instance is used.

        """
        return self._random_state

    @random_state.setter
    def random_state(self, seed):
        self._random_state = check_random_state(seed)

    def __setstate__(self, state):
        try:
            self.__dict__.update(state)
            # attaches the dynamically created methods on each instance.
            # if a subclass overrides rv_generic.__setstate__, or implements
            # it's own _attach_methods, then it must make sure that
            # _attach_argparser_methods is called.
            self._attach_methods()
        except ValueError:
            # reconstitute an old pickle scipy<1.6, that contains
            # (_ctor_param, random_state) as state
            self._ctor_param = state[0]
            self._random_state = state[1]
            self.__init__()

    def _attach_methods(self):
        """Attaches dynamically created methods to the rv_* instance.

        This method must be overridden by subclasses, and must itself call
         _attach_argparser_methods. This method is called in __init__ in
         subclasses, and in __setstate__
        """
        raise NotImplementedError

    def _attach_argparser_methods(self):
        """
        Generates the argument-parsing functions dynamically and attaches
        them to the instance.

        Should be called from `_attach_methods`, typically in __init__ and
        during unpickling (__setstate__)
        """
        ns = {}
        exec(self._parse_arg_template, ns)
        # NB: attach to the instance, not class
        for name in ['_parse_args', '_parse_args_stats', '_parse_args_rvs']:
            setattr(self, name, types.MethodType(ns[name], self))

    def _construct_argparser(
            self, meths_to_inspect, locscale_in, locscale_out):
        """Construct the parser string for the shape arguments.

        This method should be called in __init__ of a class for each
        distribution. It creates the `_parse_arg_template` attribute that is
        then used by `_attach_argparser_methods` to dynamically create and
        attach the `_parse_args`, `_parse_args_stats`, `_parse_args_rvs`
        methods to the instance.

        If self.shapes is a non-empty string, interprets it as a
        comma-separated list of shape parameters.

        Otherwise inspects the call signatures of `meths_to_inspect`
        and constructs the argument-parsing functions from these.
        In this case also sets `shapes` and `numargs`.
        """

        if self.shapes:
            # sanitize the user-supplied shapes
            if not isinstance(self.shapes, str):
                raise TypeError('shapes must be a string.')

            shapes = self.shapes.replace(',', ' ').split()

            for field in shapes:
                if keyword.iskeyword(field):
                    raise SyntaxError('keywords cannot be used as shapes.')
                if not re.match('^[_a-zA-Z][_a-zA-Z0-9]*$', field):
                    raise SyntaxError(
                        'shapes must be valid python identifiers')
        else:
            # find out the call signatures (_pdf, _cdf etc), deduce shape
            # arguments. Generic methods only have 'self, x', any further args
            # are shapes.
            shapes_list = []
            for meth in meths_to_inspect:
                shapes_args = _getfullargspec(meth)  # NB does not contain self
                args = shapes_args.args[1:]       # peel off 'x', too

                if args:
                    shapes_list.append(args)

                    # *args or **kwargs are not allowed w/automatic shapes
                    if shapes_args.varargs is not None:
                        raise TypeError(
                            '*args are not allowed w/out explicit shapes')
                    if shapes_args.varkw is not None:
                        raise TypeError(
                            '**kwds are not allowed w/out explicit shapes')
                    if shapes_args.kwonlyargs:
                        raise TypeError(
                            'kwonly args are not allowed w/out explicit shapes')
                    if shapes_args.defaults is not None:
                        raise TypeError('defaults are not allowed for shapes')

            if shapes_list:
                shapes = shapes_list[0]

                # make sure the signatures are consistent
                for item in shapes_list:
                    if item != shapes:
                        raise TypeError('Shape arguments are inconsistent.')
            else:
                shapes = []

        # have the arguments, construct the method from template
        shapes_str = ', '.join(shapes) + ', ' if shapes else ''  # NB: not None
        dct = dict(shape_arg_str=shapes_str,
                   locscale_in=locscale_in,
                   locscale_out=locscale_out,
                   )

        # this string is used by _attach_argparser_methods
        self._parse_arg_template = parse_arg_template % dct

        self.shapes = ', '.join(shapes) if shapes else None
        if not hasattr(self, 'numargs'):
            # allows more general subclassing with *args
            self.numargs = len(shapes)

    def _construct_doc(self, docdict, shapes_vals=None):
        """Construct the instance docstring with string substitutions."""
        tempdict = docdict.copy()
        tempdict['name'] = self.name or 'distname'
        tempdict['shapes'] = self.shapes or ''

        if shapes_vals is None:
            shapes_vals = ()
        try:
            vals = ', '.join(f'{val:.3g}' for val in shapes_vals)
        except TypeError:
            vals = ', '.join(f'{val}' for val in shapes_vals)
        tempdict['vals'] = vals

        tempdict['shapes_'] = self.shapes or ''
        if self.shapes and self.numargs == 1:
            tempdict['shapes_'] += ','

        if self.shapes:
            tempdict['set_vals_stmt'] = f'>>> {self.shapes} = {vals}'
        else:
            tempdict['set_vals_stmt'] = ''

        if self.shapes is None:
            # remove shapes from call parameters if there are none
            for item in ['default', 'before_notes']:
                tempdict[item] = tempdict[item].replace(
                    "\n%(shapes)s : array_like\n    shape parameters", "")
        for i in range(2):
            if self.shapes is None:
                # necessary because we use %(shapes)s in two forms (w w/o ", ")
                self.__doc__ = self.__doc__.replace("%(shapes)s, ", "")
            try:
                self.__doc__ = doccer.docformat(self.__doc__, tempdict)
            except TypeError as e:
                raise Exception("Unable to construct docstring for "
                                f"distribution \"{self.name}\": {repr(e)}") from e

        # correct for empty shapes
        self.__doc__ = self.__doc__.replace('(, ', '(').replace(', )', ')')

    def _construct_default_doc(self, longname=None,
                               docdict=None, discrete='continuous'):
        """Construct instance docstring from the default template."""
        if longname is None:
            longname = 'A'
        self.__doc__ = ''.join([f'{longname} {discrete} random variable.',
                                '\n\n%(before_notes)s\n', docheaders['notes'],
                                '\n%(example)s'])
        self._construct_doc(docdict)

    def freeze(self, *args, **kwds):
        """Freeze the distribution for the given arguments.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution.  Should include all
            the non-optional arguments, may include ``loc`` and ``scale``.

        Returns
        -------
        rv_frozen : rv_frozen instance
            The frozen distribution.

        """
        if isinstance(self, rv_continuous):
            return rv_continuous_frozen(self, *args, **kwds)
        else:
            return rv_discrete_frozen(self, *args, **kwds)

    def __call__(self, *args, **kwds):
        return self.freeze(*args, **kwds)
    __call__.__doc__ = freeze.__doc__

    # The actual calculation functions (no basic checking need be done)
    # If these are defined, the others won't be looked at.
    # Otherwise, the other set can be defined.
    def _stats(self, *args, **kwds):
        return None, None, None, None

    # Noncentral moments (also known as the moment about the origin).
    # Expressed in LaTeX, munp would be $\mu'_{n}$, i.e. "mu-sub-n-prime".
    # The primed mu is a widely used notation for the noncentral moment.
    def _munp(self, n, *args):
        # Silence floating point warnings from integration.
        with np.errstate(all='ignore'):
            vals = self.generic_moment(n, *args)
        return vals

    def _argcheck_rvs(self, *args, **kwargs):
        # Handle broadcasting and size validation of the rvs method.
        # Subclasses should not have to override this method.
        # The rule is that if `size` is not None, then `size` gives the
        # shape of the result (integer values of `size` are treated as
        # tuples with length 1; i.e. `size=3` is the same as `size=(3,)`.)
        #
        # `args` is expected to contain the shape parameters (if any), the
        # location and the scale in a flat tuple (e.g. if there are two
        # shape parameters `a` and `b`, `args` will be `(a, b, loc, scale)`).
        # The only keyword argument expected is 'size'.
        size = kwargs.get('size', None)
        all_bcast = np.broadcast_arrays(*args)

        def squeeze_left(a):
            while a.ndim > 0 and a.shape[0] == 1:
                a = a[0]
            return a

        # Eliminate trivial leading dimensions.  In the convention
        # used by numpy's random variate generators, trivial leading
        # dimensions are effectively ignored.  In other words, when `size`
        # is given, trivial leading dimensions of the broadcast parameters
        # in excess of the number of dimensions  in size are ignored, e.g.
        #   >>> np.random.normal([[1, 3, 5]], [[[[0.01]]]], size=3)
        #   array([ 1.00104267,  3.00422496,  4.99799278])
        # If `size` is not given, the exact broadcast shape is preserved:
        #   >>> np.random.normal([[1, 3, 5]], [[[[0.01]]]])
        #   array([[[[ 1.00862899,  3.00061431,  4.99867122]]]])
        #
        all_bcast = [squeeze_left(a) for a in all_bcast]
        bcast_shape = all_bcast[0].shape
        bcast_ndim = all_bcast[0].ndim

        if size is None:
            size_ = bcast_shape
        else:
            size_ = tuple(np.atleast_1d(size))

        # Check compatibility of size_ with the broadcast shape of all
        # the parameters.  This check is intended to be consistent with
        # how the numpy random variate generators (e.g. np.random.normal,
        # np.random.beta) handle their arguments.   The rule is that, if size
        # is given, it determines the shape of the output.  Broadcasting
        # can't change the output size.

        # This is the standard broadcasting convention of extending the
        # shape with fewer dimensions with enough dimensions of length 1
        # so that the two shapes have the same number of dimensions.
        ndiff = bcast_ndim - len(size_)
        if ndiff < 0:
            bcast_shape = (1,)*(-ndiff) + bcast_shape
        elif ndiff > 0:
            size_ = (1,)*ndiff + size_

        # This compatibility test is not standard.  In "regular" broadcasting,
        # two shapes are compatible if for each dimension, the lengths are the
        # same or one of the lengths is 1.  Here, the length of a dimension in
        # size_ must not be less than the corresponding length in bcast_shape.
        ok = all([bcdim == 1 or bcdim == szdim
                  for (bcdim, szdim) in zip(bcast_shape, size_)])
        if not ok:
            raise ValueError("size does not match the broadcast shape of "
                             f"the parameters. {size}, {size_}, {bcast_shape}")

        param_bcast = all_bcast[:-2]
        loc_bcast = all_bcast[-2]
        scale_bcast = all_bcast[-1]

        return param_bcast, loc_bcast, scale_bcast, size_

    # These are the methods you must define (standard form functions)
    # NB: generic _pdf, _logpdf, _cdf are different for
    # rv_continuous and rv_discrete hence are defined in there
    def _argcheck(self, *args):
        """Default check for correct values on args and keywords.

        Returns condition array of 1's where arguments are correct and
         0's where they are not.

        """
        cond = 1
        for arg in args:
            cond = logical_and(cond, (asarray(arg) > 0))
        return cond

    def _get_support(self, *args, **kwargs):
        """Return the support of the (unscaled, unshifted) distribution.

        *Must* be overridden by distributions which have support dependent
        upon the shape parameters of the distribution.  Any such override
        *must not* set or change any of the class members, as these members
        are shared amongst all instances of the distribution.

        Parameters
        ----------
        arg1, arg2, ... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).

        Returns
        -------
        a, b : numeric (float, or int or +/-np.inf)
            end-points of the distribution's support for the specified
            shape parameters.
        """
        return self.a, self.b

    def _support_mask(self, x, *args):
        a, b = self._get_support(*args)
        with np.errstate(invalid='ignore'):
            return (a <= x) & (x <= b)

    def _open_support_mask(self, x, *args):
        a, b = self._get_support(*args)
        with np.errstate(invalid='ignore'):
            return (a < x) & (x < b)

    def _rvs(self, *args, size=None, random_state=None):
        # This method must handle size being a tuple, and it must
        # properly broadcast *args and size.  size might be
        # an empty tuple, which means a scalar random variate is to be
        # generated.

        # Use basic inverse cdf algorithm for RV generation as default.
        U = random_state.uniform(size=size)
        Y = self._ppf(U, *args)
        return Y

    def _logcdf(self, x, *args):
        with np.errstate(divide='ignore'):
            return log(self._cdf(x, *args))

    def _sf(self, x, *args):
        return 1.0-self._cdf(x, *args)

    def _logsf(self, x, *args):
        with np.errstate(divide='ignore'):
            return log(self._sf(x, *args))

    def _ppf(self, q, *args):
        return self._ppfvec(q, *args)

    def _isf(self, q, *args):
        return self._ppf(1.0-q, *args)  # use correct _ppf for subclasses

    # These are actually called, and should not be overwritten if you
    # want to keep error checking.
    def rvs(self, *args, **kwds):
        """Random variates of given type.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).
        scale : array_like, optional
            Scale parameter (default=1).
        size : int or tuple of ints, optional
            Defining number of random variates (default is 1).
        random_state : {None, int, `numpy.random.Generator`,
                        `numpy.random.RandomState`}, optional

            If `random_state` is None (or `np.random`), the
            `numpy.random.RandomState` singleton is used.
            If `random_state` is an int, a new ``RandomState`` instance is
            used, seeded with `random_state`.
            If `random_state` is already a ``Generator`` or ``RandomState``
            instance, that instance is used.

        Returns
        -------
        rvs : ndarray or scalar
            Random variates of given `size`.

        """
        discrete = kwds.pop('discrete', None)
        rndm = kwds.pop('random_state', None)
        args, loc, scale, size = self._parse_args_rvs(*args, **kwds)
        cond = logical_and(self._argcheck(*args), (scale >= 0))
        if not np.all(cond):
            message = ("Domain error in arguments. The `scale` parameter must "
                       "be positive for all distributions, and many "
                       "distributions have restrictions on shape parameters. "
                       f"Please see the `scipy.stats.{self.name}` "
                       "documentation for details.")
            raise ValueError(message)

        if np.all(scale == 0):
            return loc*ones(size, 'd')

        # extra gymnastics needed for a custom random_state
        if rndm is not None:
            random_state_saved = self._random_state
            random_state = check_random_state(rndm)
        else:
            random_state = self._random_state

        vals = self._rvs(*args, size=size, random_state=random_state)

        vals = vals * scale + loc

        # do not forget to restore the _random_state
        if rndm is not None:
            self._random_state = random_state_saved

        # Cast to int if discrete
        if discrete and not isinstance(self, rv_sample):
            if size == ():
                vals = int(vals)
            else:
                vals = vals.astype(np.int64)

        return vals

    def stats(self, *args, **kwds):
        """Some statistics of the given RV.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional (continuous RVs only)
            scale parameter (default=1)
        moments : str, optional
            composed of letters ['mvsk'] defining which moments to compute:
            'm' = mean,
            'v' = variance,
            's' = (Fisher's) skew,
            'k' = (Fisher's) kurtosis.
            (default is 'mv')

        Returns
        -------
        stats : sequence
            of requested moments.

        """
        args, loc, scale, moments = self._parse_args_stats(*args, **kwds)
        # scale = 1 by construction for discrete RVs
        loc, scale = map(asarray, (loc, scale))
        args = tuple(map(asarray, args))
        cond = self._argcheck(*args) & (scale > 0) & (loc == loc)
        output = []
        default = np.full(shape(cond), fill_value=self.badvalue)

        # Use only entries that are valid in calculation
        if np.any(cond):
            goodargs = argsreduce(cond, *(args+(scale, loc)))
            scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2]

            if self._stats_has_moments:
                mu, mu2, g1, g2 = self._stats(*goodargs,
                                              **{'moments': moments})
            else:
                mu, mu2, g1, g2 = self._stats(*goodargs)

            if 'm' in moments:
                if mu is None:
                    mu = self._munp(1, *goodargs)
                out0 = default.copy()
                place(out0, cond, mu * scale + loc)
                output.append(out0)

            if 'v' in moments:
                if mu2 is None:
                    mu2p = self._munp(2, *goodargs)
                    if mu is None:
                        mu = self._munp(1, *goodargs)
                    # if mean is inf then var is also inf
                    with np.errstate(invalid='ignore'):
                        mu2 = np.where(~np.isinf(mu), mu2p - mu**2, np.inf)
                out0 = default.copy()
                place(out0, cond, mu2 * scale * scale)
                output.append(out0)

            if 's' in moments:
                if g1 is None:
                    mu3p = self._munp(3, *goodargs)
                    if mu is None:
                        mu = self._munp(1, *goodargs)
                    if mu2 is None:
                        mu2p = self._munp(2, *goodargs)
                        with np.errstate(invalid='ignore'):
                            mu2 = mu2p - mu * mu
                    with np.errstate(invalid='ignore'):
                        mu3 = (-mu*mu - 3*mu2)*mu + mu3p
                        g1 = mu3 / np.power(mu2, 1.5)
                out0 = default.copy()
                place(out0, cond, g1)
                output.append(out0)

            if 'k' in moments:
                if g2 is None:
                    mu4p = self._munp(4, *goodargs)
                    if mu is None:
                        mu = self._munp(1, *goodargs)
                    if mu2 is None:
                        mu2p = self._munp(2, *goodargs)
                        with np.errstate(invalid='ignore'):
                            mu2 = mu2p - mu * mu
                    if g1 is None:
                        mu3 = None
                    else:
                        # (mu2**1.5) breaks down for nan and inf
                        mu3 = g1 * np.power(mu2, 1.5)
                    if mu3 is None:
                        mu3p = self._munp(3, *goodargs)
                        with np.errstate(invalid='ignore'):
                            mu3 = (-mu * mu - 3 * mu2) * mu + mu3p
                    with np.errstate(invalid='ignore'):
                        mu4 = ((-mu**2 - 6*mu2) * mu - 4*mu3)*mu + mu4p
                        g2 = mu4 / mu2**2.0 - 3.0
                out0 = default.copy()
                place(out0, cond, g2)
                output.append(out0)
        else:  # no valid args
            output = [default.copy() for _ in moments]

        output = [out[()] for out in output]
        if len(output) == 1:
            return output[0]
        else:
            return tuple(output)

    def entropy(self, *args, **kwds):
        """Differential entropy of the RV.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).
        scale : array_like, optional  (continuous distributions only).
            Scale parameter (default=1).

        Notes
        -----
        Entropy is defined base `e`:

        >>> import numpy as np
        >>> from scipy.stats._distn_infrastructure import rv_discrete
        >>> drv = rv_discrete(values=((0, 1), (0.5, 0.5)))
        >>> np.allclose(drv.entropy(), np.log(2.0))
        True

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        # NB: for discrete distributions scale=1 by construction in _parse_args
        loc, scale = map(asarray, (loc, scale))
        args = tuple(map(asarray, args))
        cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
        output = zeros(shape(cond0), 'd')
        place(output, (1-cond0), self.badvalue)
        goodargs = argsreduce(cond0, scale, *args)
        goodscale = goodargs[0]
        goodargs = goodargs[1:]
        place(output, cond0, self.vecentropy(*goodargs) + log(goodscale))
        return output[()]

    def moment(self, order, *args, **kwds):
        """non-central moment of distribution of specified order.

        Parameters
        ----------
        order : int, order >= 1
            Order of moment.
        arg1, arg2, arg3,... : float
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        """
        n = order
        shapes, loc, scale = self._parse_args(*args, **kwds)
        args = np.broadcast_arrays(*(*shapes, loc, scale))
        *shapes, loc, scale = args

        i0 = np.logical_and(self._argcheck(*shapes), scale > 0)
        i1 = np.logical_and(i0, loc == 0)
        i2 = np.logical_and(i0, loc != 0)

        args = argsreduce(i0, *shapes, loc, scale)
        *shapes, loc, scale = args

        if (floor(n) != n):
            raise ValueError("Moment must be an integer.")
        if (n < 0):
            raise ValueError("Moment must be positive.")
        mu, mu2, g1, g2 = None, None, None, None
        if (n > 0) and (n < 5):
            if self._stats_has_moments:
                mdict = {'moments': {1: 'm', 2: 'v', 3: 'vs', 4: 'mvsk'}[n]}
            else:
                mdict = {}
            mu, mu2, g1, g2 = self._stats(*shapes, **mdict)
        val = np.empty(loc.shape)  # val needs to be indexed by loc
        val[...] = _moment_from_stats(n, mu, mu2, g1, g2, self._munp, shapes)

        # Convert to transformed  X = L + S*Y
        # E[X^n] = E[(L+S*Y)^n] = L^n sum(comb(n, k)*(S/L)^k E[Y^k], k=0...n)
        result = zeros(i0.shape)
        place(result, ~i0, self.badvalue)

        if i1.any():
            res1 = scale[loc == 0]**n * val[loc == 0]
            place(result, i1, res1)

        if i2.any():
            mom = [mu, mu2, g1, g2]
            arrs = [i for i in mom if i is not None]
            idx = [i for i in range(4) if mom[i] is not None]
            if any(idx):
                arrs = argsreduce(loc != 0, *arrs)
                j = 0
                for i in idx:
                    mom[i] = arrs[j]
                    j += 1
            mu, mu2, g1, g2 = mom
            args = argsreduce(loc != 0, *shapes, loc, scale, val)
            *shapes, loc, scale, val = args

            res2 = zeros(loc.shape, dtype='d')
            fac = scale / loc
            for k in range(n):
                valk = _moment_from_stats(k, mu, mu2, g1, g2, self._munp,
                                          shapes)
                res2 += comb(n, k, exact=True)*fac**k * valk
            res2 += fac**n * val
            res2 *= loc**n
            place(result, i2, res2)

        return result[()]

    def median(self, *args, **kwds):
        """Median of the distribution.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            Location parameter, Default is 0.
        scale : array_like, optional
            Scale parameter, Default is 1.

        Returns
        -------
        median : float
            The median of the distribution.

        See Also
        --------
        rv_discrete.ppf
            Inverse of the CDF

        """
        return self.ppf(0.5, *args, **kwds)

    def mean(self, *args, **kwds):
        """Mean of the distribution.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        mean : float
            the mean of the distribution

        """
        kwds['moments'] = 'm'
        res = self.stats(*args, **kwds)
        if isinstance(res, ndarray) and res.ndim == 0:
            return res[()]
        return res

    def var(self, *args, **kwds):
        """Variance of the distribution.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        var : float
            the variance of the distribution

        """
        kwds['moments'] = 'v'
        res = self.stats(*args, **kwds)
        if isinstance(res, ndarray) and res.ndim == 0:
            return res[()]
        return res

    def std(self, *args, **kwds):
        """Standard deviation of the distribution.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        std : float
            standard deviation of the distribution

        """
        kwds['moments'] = 'v'
        res = sqrt(self.stats(*args, **kwds))
        return res

    def interval(self, confidence, *args, **kwds):
        """Confidence interval with equal areas around the median.

        Parameters
        ----------
        confidence : array_like of float
            Probability that an rv will be drawn from the returned range.
            Each value should be in the range [0, 1].
        arg1, arg2, ... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            location parameter, Default is 0.
        scale : array_like, optional
            scale parameter, Default is 1.

        Returns
        -------
        a, b : ndarray of float
            end-points of range that contain ``100 * alpha %`` of the rv's
            possible values.

        Notes
        -----
        This is implemented as ``ppf([p_tail, 1-p_tail])``, where
        ``ppf`` is the inverse cumulative distribution function and
        ``p_tail = (1-confidence)/2``. Suppose ``[c, d]`` is the support of a
        discrete distribution; then ``ppf([0, 1]) == (c-1, d)``. Therefore,
        when ``confidence=1`` and the distribution is discrete, the left end
        of the interval will be beyond the support of the distribution.
        For discrete distributions, the interval will limit the probability
        in each tail to be less than or equal to ``p_tail`` (usually
        strictly less).

        """
        alpha = confidence

        alpha = asarray(alpha)
        if np.any((alpha > 1) | (alpha < 0)):
            raise ValueError("alpha must be between 0 and 1 inclusive")
        q1 = (1.0-alpha)/2
        q2 = (1.0+alpha)/2
        a = self.ppf(q1, *args, **kwds)
        b = self.ppf(q2, *args, **kwds)
        return a, b

    def support(self, *args, **kwargs):
        """Support of the distribution.

        Parameters
        ----------
        arg1, arg2, ... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            location parameter, Default is 0.
        scale : array_like, optional
            scale parameter, Default is 1.

        Returns
        -------
        a, b : array_like
            end-points of the distribution's support.

        """
        args, loc, scale = self._parse_args(*args, **kwargs)
        arrs = np.broadcast_arrays(*args, loc, scale)
        args, loc, scale = arrs[:-2], arrs[-2], arrs[-1]
        cond = self._argcheck(*args) & (scale > 0)
        _a, _b = self._get_support(*args)
        if cond.all():
            return _a * scale + loc, _b * scale + loc
        elif cond.ndim == 0:
            return self.badvalue, self.badvalue
        # promote bounds to at least float to fill in the badvalue
        _a, _b = np.asarray(_a).astype('d'), np.asarray(_b).astype('d')
        out_a, out_b = _a * scale + loc, _b * scale + loc
        place(out_a, 1-cond, self.badvalue)
        place(out_b, 1-cond, self.badvalue)
        return out_a, out_b

    def nnlf(self, theta, x):
        """Negative loglikelihood function.
        Notes
        -----
        This is ``-sum(log pdf(x, theta), axis=0)`` where `theta` are the
        parameters (including loc and scale).
        """
        loc, scale, args = self._unpack_loc_scale(theta)
        if not self._argcheck(*args) or scale <= 0:
            return inf
        x = (asarray(x)-loc) / scale
        n_log_scale = len(x) * log(scale)
        if np.any(~self._support_mask(x, *args)):
            return inf
        return self._nnlf(x, *args) + n_log_scale

    def _nnlf(self, x, *args):
        return -np.sum(self._logpxf(x, *args), axis=0)

    def _nlff_and_penalty(self, x, args, log_fitfun):
        # negative log fit function
        cond0 = ~self._support_mask(x, *args)
        n_bad = np.count_nonzero(cond0, axis=0)
        if n_bad > 0:
            x = argsreduce(~cond0, x)[0]
        logff = log_fitfun(x, *args)
        finite_logff = np.isfinite(logff)
        n_bad += np.sum(~finite_logff, axis=0)
        if n_bad > 0:
            penalty = n_bad * log(_XMAX) * 100
            return -np.sum(logff[finite_logff], axis=0) + penalty
        return -np.sum(logff, axis=0)

    def _penalized_nnlf(self, theta, x):
        """Penalized negative loglikelihood function.
        i.e., - sum (log pdf(x, theta), axis=0) + penalty
        where theta are the parameters (including loc and scale)
        """
        loc, scale, args = self._unpack_loc_scale(theta)
        if not self._argcheck(*args) or scale <= 0:
            return inf
        x = asarray((x-loc) / scale)
        n_log_scale = len(x) * log(scale)
        return self._nlff_and_penalty(x, args, self._logpxf) + n_log_scale

    def _penalized_nlpsf(self, theta, x):
        """Penalized negative log product spacing function.
        i.e., - sum (log (diff (cdf (x, theta))), axis=0) + penalty
        where theta are the parameters (including loc and scale)
        Follows reference [1] of scipy.stats.fit
        """
        loc, scale, args = self._unpack_loc_scale(theta)
        if not self._argcheck(*args) or scale <= 0:
            return inf
        x = (np.sort(x) - loc)/scale

        def log_psf(x, *args):
            x, lj = np.unique(x, return_counts=True)  # fast for sorted x
            cdf_data = self._cdf(x, *args) if x.size else []
            if not (x.size and 1 - cdf_data[-1] <= 0):
                cdf = np.concatenate(([0], cdf_data, [1]))
                lj = np.concatenate((lj, [1]))
            else:
                cdf = np.concatenate(([0], cdf_data))
            # here we could use logcdf w/ logsumexp trick to take differences,
            # but in the context of the method, it seems unlikely to matter
            return lj * np.log(np.diff(cdf) / lj)

        return self._nlff_and_penalty(x, args, log_psf)


class _ShapeInfo:
    def __init__(self, name, integrality=False, domain=(-np.inf, np.inf),
                 inclusive=(True, True)):
        self.name = name
        self.integrality = integrality
        self.endpoints = domain
        self.inclusive = inclusive

        domain = list(domain)
        if np.isfinite(domain[0]) and not inclusive[0]:
            domain[0] = np.nextafter(domain[0], np.inf)
        if np.isfinite(domain[1]) and not inclusive[1]:
            domain[1] = np.nextafter(domain[1], -np.inf)
        self.domain = domain


def _get_fixed_fit_value(kwds, names):
    """
    Given names such as ``['f0', 'fa', 'fix_a']``, check that there is
    at most one non-None value in `kwds` associated with those names.
    Return that value, or None if none of the names occur in `kwds`.
    As a side effect, all occurrences of those names in `kwds` are
    removed.
    """
    vals = [(name, kwds.pop(name)) for name in names if name in kwds]
    if len(vals) > 1:
        repeated = [name for name, val in vals]
        raise ValueError("fit method got multiple keyword arguments to "
                         "specify the same fixed parameter: " +
                         ', '.join(repeated))
    return vals[0][1] if vals else None


#  continuous random variables: implement maybe later
#
#  hf  --- Hazard Function (PDF / SF)
#  chf  --- Cumulative hazard function (-log(SF))
#  psf --- Probability sparsity function (reciprocal of the pdf) in
#                units of percent-point-function (as a function of q).
#                Also, the derivative of the percent-point function.


class rv_continuous(rv_generic):
    """A generic continuous random variable class meant for subclassing.

    `rv_continuous` is a base class to construct specific distribution classes
    and instances for continuous random variables. It cannot be used
    directly as a distribution.

    Parameters
    ----------
    momtype : int, optional
        The type of generic moment calculation to use: 0 for pdf, 1 (default)
        for ppf.
    a : float, optional
        Lower bound of the support of the distribution, default is minus
        infinity.
    b : float, optional
        Upper bound of the support of the distribution, default is plus
        infinity.
    xtol : float, optional
        The tolerance for fixed point calculation for generic ppf.
    badvalue : float, optional
        The value in a result arrays that indicates a value that for which
        some argument restriction is violated, default is np.nan.
    name : str, optional
        The name of the instance. This string is used to construct the default
        example for distributions.
    longname : str, optional
        This string is used as part of the first line of the docstring returned
        when a subclass has no docstring of its own. Note: `longname` exists
        for backwards compatibility, do not use for new subclasses.
    shapes : str, optional
        The shape of the distribution. For example ``"m, n"`` for a
        distribution that takes two integers as the two shape arguments for all
        its methods. If not provided, shape parameters will be inferred from
        the signature of the private methods, ``_pdf`` and ``_cdf`` of the
        instance.
    seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
        If `seed` is None (or `np.random`), the `numpy.random.RandomState`
        singleton is used.
        If `seed` is an int, a new ``RandomState`` instance is used,
        seeded with `seed`.
        If `seed` is already a ``Generator`` or ``RandomState`` instance then
        that instance is used.

    Methods
    -------
    rvs
    pdf
    logpdf
    cdf
    logcdf
    sf
    logsf
    ppf
    isf
    moment
    stats
    entropy
    expect
    median
    mean
    std
    var
    interval
    __call__
    fit
    fit_loc_scale
    nnlf
    support

    Notes
    -----
    Public methods of an instance of a distribution class (e.g., ``pdf``,
    ``cdf``) check their arguments and pass valid arguments to private,
    computational methods (``_pdf``, ``_cdf``). For ``pdf(x)``, ``x`` is valid
    if it is within the support of the distribution.
    Whether a shape parameter is valid is decided by an ``_argcheck`` method
    (which defaults to checking that its arguments are strictly positive.)

    **Subclassing**

    New random variables can be defined by subclassing the `rv_continuous` class
    and re-defining at least the ``_pdf`` or the ``_cdf`` method (normalized
    to location 0 and scale 1).

    If positive argument checking is not correct for your RV
    then you will also need to re-define the ``_argcheck`` method.

    For most of the scipy.stats distributions, the support interval doesn't
    depend on the shape parameters. ``x`` being in the support interval is
    equivalent to ``self.a <= x <= self.b``.  If either of the endpoints of
    the support do depend on the shape parameters, then
    i) the distribution must implement the ``_get_support`` method; and
    ii) those dependent endpoints must be omitted from the distribution's
    call to the ``rv_continuous`` initializer.

    Correct, but potentially slow defaults exist for the remaining
    methods but for speed and/or accuracy you can over-ride::

      _logpdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf

    The default method ``_rvs`` relies on the inverse of the cdf, ``_ppf``,
    applied to a uniform random variate. In order to generate random variates
    efficiently, either the default ``_ppf`` needs to be overwritten (e.g.
    if the inverse cdf can expressed in an explicit form) or a sampling
    method needs to be implemented in a custom ``_rvs`` method.

    If possible, you should override ``_isf``, ``_sf`` or ``_logsf``.
    The main reason would be to improve numerical accuracy: for example,
    the survival function ``_sf`` is computed as ``1 - _cdf`` which can
    result in loss of precision if ``_cdf(x)`` is close to one.

    **Methods that can be overwritten by subclasses**
    ::

      _rvs
      _pdf
      _cdf
      _sf
      _ppf
      _isf
      _stats
      _munp
      _entropy
      _argcheck
      _get_support

    There are additional (internal and private) generic methods that can
    be useful for cross-checking and for debugging, but might work in all
    cases when directly called.

    A note on ``shapes``: subclasses need not specify them explicitly. In this
    case, `shapes` will be automatically deduced from the signatures of the
    overridden methods (`pdf`, `cdf` etc).
    If, for some reason, you prefer to avoid relying on introspection, you can
    specify ``shapes`` explicitly as an argument to the instance constructor.


    **Frozen Distributions**

    Normally, you must provide shape parameters (and, optionally, location and
    scale parameters to each call of a method of a distribution.

    Alternatively, the object may be called (as a function) to fix the shape,
    location, and scale parameters returning a "frozen" continuous RV object:

    rv = generic(<shape(s)>, loc=0, scale=1)
        `rv_frozen` object with the same methods but holding the given shape,
        location, and scale fixed

    **Statistics**

    Statistics are computed using numerical integration by default.
    For speed you can redefine this using ``_stats``:

     - take shape parameters and return mu, mu2, g1, g2
     - If you can't compute one of these, return it as None
     - Can also be defined with a keyword argument ``moments``, which is a
       string composed of "m", "v", "s", and/or "k".
       Only the components appearing in string should be computed and
       returned in the order "m", "v", "s", or "k"  with missing values
       returned as None.

    Alternatively, you can override ``_munp``, which takes ``n`` and shape
    parameters and returns the n-th non-central moment of the distribution.

    **Deepcopying / Pickling**

    If a distribution or frozen distribution is deepcopied (pickled/unpickled,
    etc.), any underlying random number generator is deepcopied with it. An
    implication is that if a distribution relies on the singleton RandomState
    before copying, it will rely on a copy of that random state after copying,
    and ``np.random.seed`` will no longer control the state.

    Examples
    --------
    To create a new Gaussian distribution, we would do the following:

    >>> from scipy.stats import rv_continuous
    >>> class gaussian_gen(rv_continuous):
    ...     "Gaussian distribution"
    ...     def _pdf(self, x):
    ...         return np.exp(-x**2 / 2.) / np.sqrt(2.0 * np.pi)
    >>> gaussian = gaussian_gen(name='gaussian')

    ``scipy.stats`` distributions are *instances*, so here we subclass
    `rv_continuous` and create an instance. With this, we now have
    a fully functional distribution with all relevant methods automagically
    generated by the framework.

    Note that above we defined a standard normal distribution, with zero mean
    and unit variance. Shifting and scaling of the distribution can be done
    by using ``loc`` and ``scale`` parameters: ``gaussian.pdf(x, loc, scale)``
    essentially computes ``y = (x - loc) / scale`` and
    ``gaussian._pdf(y) / scale``.

    """

    def __init__(self, momtype=1, a=None, b=None, xtol=1e-14,
                 badvalue=None, name=None, longname=None,
                 shapes=None, seed=None):

        super().__init__(seed)

        # save the ctor parameters, cf generic freeze
        self._ctor_param = dict(
            momtype=momtype, a=a, b=b, xtol=xtol,
            badvalue=badvalue, name=name, longname=longname,
            shapes=shapes, seed=seed)

        if badvalue is None:
            badvalue = nan
        if name is None:
            name = 'Distribution'
        self.badvalue = badvalue
        self.name = name
        self.a = a
        self.b = b
        if a is None:
            self.a = -inf
        if b is None:
            self.b = inf
        self.xtol = xtol
        self.moment_type = momtype
        self.shapes = shapes

        self._construct_argparser(meths_to_inspect=[self._pdf, self._cdf],
                                  locscale_in='loc=0, scale=1',
                                  locscale_out='loc, scale')
        self._attach_methods()

        if longname is None:
            if name[0] in ['aeiouAEIOU']:
                hstr = "An "
            else:
                hstr = "A "
            longname = hstr + name

        if sys.flags.optimize < 2:
            # Skip adding docstrings if interpreter is run with -OO
            if self.__doc__ is None:
                self._construct_default_doc(longname=longname,
                                            docdict=docdict,
                                            discrete='continuous')
            else:
                dct = dict(distcont)
                self._construct_doc(docdict, dct.get(self.name))

    def __getstate__(self):
        dct = self.__dict__.copy()

        # these methods will be remade in __setstate__
        # _random_state attribute is taken care of by rv_generic
        attrs = ["_parse_args", "_parse_args_stats", "_parse_args_rvs",
                 "_cdfvec", "_ppfvec", "vecentropy", "generic_moment"]
        [dct.pop(attr, None) for attr in attrs]
        return dct

    def _attach_methods(self):
        """
        Attaches dynamically created methods to the rv_continuous instance.
        """
        # _attach_methods is responsible for calling _attach_argparser_methods
        self._attach_argparser_methods()

        # nin correction
        self._ppfvec = vectorize(self._ppf_single, otypes='d')
        self._ppfvec.nin = self.numargs + 1
        self.vecentropy = vectorize(self._entropy, otypes='d')
        self._cdfvec = vectorize(self._cdf_single, otypes='d')
        self._cdfvec.nin = self.numargs + 1

        if self.moment_type == 0:
            self.generic_moment = vectorize(self._mom0_sc, otypes='d')
        else:
            self.generic_moment = vectorize(self._mom1_sc, otypes='d')
        # Because of the *args argument of _mom0_sc, vectorize cannot count the
        # number of arguments correctly.
        self.generic_moment.nin = self.numargs + 1

    def _updated_ctor_param(self):
        """Return the current version of _ctor_param, possibly updated by user.

        Used by freezing.
        Keep this in sync with the signature of __init__.
        """
        dct = self._ctor_param.copy()
        dct['a'] = self.a
        dct['b'] = self.b
        dct['xtol'] = self.xtol
        dct['badvalue'] = self.badvalue
        dct['name'] = self.name
        dct['shapes'] = self.shapes
        return dct

    def _ppf_to_solve(self, x, q, *args):
        return self.cdf(*(x, )+args)-q

    def _ppf_single(self, q, *args):
        factor = 10.
        left, right = self._get_support(*args)

        if np.isinf(left):
            left = min(-factor, right)
            while self._ppf_to_solve(left, q, *args) > 0.:
                left, right = left * factor, left
            # left is now such that cdf(left) <= q
            # if right has changed, then cdf(right) > q

        if np.isinf(right):
            right = max(factor, left)
            while self._ppf_to_solve(right, q, *args) < 0.:
                left, right = right, right * factor
            # right is now such that cdf(right) >= q

        return optimize.brentq(self._ppf_to_solve,
                               left, right, args=(q,)+args, xtol=self.xtol)

    # moment from definition
    def _mom_integ0(self, x, m, *args):
        return x**m * self.pdf(x, *args)

    def _mom0_sc(self, m, *args):
        _a, _b = self._get_support(*args)
        return integrate.quad(self._mom_integ0, _a, _b,
                              args=(m,)+args)[0]

    # moment calculated using ppf
    def _mom_integ1(self, q, m, *args):
        return (self.ppf(q, *args))**m

    def _mom1_sc(self, m, *args):
        return integrate.quad(self._mom_integ1, 0, 1, args=(m,)+args)[0]

    def _pdf(self, x, *args):
        return _derivative(self._cdf, x, dx=1e-5, args=args, order=5)

    # Could also define any of these
    def _logpdf(self, x, *args):
        p = self._pdf(x, *args)
        with np.errstate(divide='ignore'):
            return log(p)

    def _logpxf(self, x, *args):
        # continuous distributions have PDF, discrete have PMF, but sometimes
        # the distinction doesn't matter. This lets us use `_logpxf` for both
        # discrete and continuous distributions.
        return self._logpdf(x, *args)

    def _cdf_single(self, x, *args):
        _a, _b = self._get_support(*args)
        return integrate.quad(self._pdf, _a, x, args=args)[0]

    def _cdf(self, x, *args):
        return self._cdfvec(x, *args)

    def _logcdf(self, x, *args):
        median = self._ppf(0.5, *args)
        with np.errstate(divide='ignore'):
            return _lazywhere(x < median, (x,) + args,
                              f=lambda x, *args: np.log(self._cdf(x, *args)),
                              f2=lambda x, *args: np.log1p(-self._sf(x, *args)))

    def _logsf(self, x, *args):
        median = self._ppf(0.5, *args)
        with np.errstate(divide='ignore'):
            return _lazywhere(x > median, (x,) + args,
                              f=lambda x, *args: np.log(self._sf(x, *args)),
                              f2=lambda x, *args: np.log1p(-self._cdf(x, *args)))

    # generic _argcheck, _sf, _ppf, _isf, _rvs are defined
    # in rv_generic

    def pdf(self, x, *args, **kwds):
        """Probability density function at x of the given RV.

        Parameters
        ----------
        x : array_like
            quantiles
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        pdf : ndarray
            Probability density function evaluated at x

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        x, loc, scale = map(asarray, (x, loc, scale))
        args = tuple(map(asarray, args))
        dtyp = np.promote_types(x.dtype, np.float64)
        x = np.asarray((x - loc)/scale, dtype=dtyp)
        cond0 = self._argcheck(*args) & (scale > 0)
        cond1 = self._support_mask(x, *args) & (scale > 0)
        cond = cond0 & cond1
        output = zeros(shape(cond), dtyp)
        putmask(output, (1-cond0)+np.isnan(x), self.badvalue)
        if np.any(cond):
            goodargs = argsreduce(cond, *((x,)+args+(scale,)))
            scale, goodargs = goodargs[-1], goodargs[:-1]
            place(output, cond, self._pdf(*goodargs) / scale)
        if output.ndim == 0:
            return output[()]
        return output

    def logpdf(self, x, *args, **kwds):
        """Log of the probability density function at x of the given RV.

        This uses a more numerically accurate calculation if available.

        Parameters
        ----------
        x : array_like
            quantiles
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        logpdf : array_like
            Log of the probability density function evaluated at x

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        x, loc, scale = map(asarray, (x, loc, scale))
        args = tuple(map(asarray, args))
        dtyp = np.promote_types(x.dtype, np.float64)
        x = np.asarray((x - loc)/scale, dtype=dtyp)
        cond0 = self._argcheck(*args) & (scale > 0)
        cond1 = self._support_mask(x, *args) & (scale > 0)
        cond = cond0 & cond1
        output = empty(shape(cond), dtyp)
        output.fill(-inf)
        putmask(output, (1-cond0)+np.isnan(x), self.badvalue)
        if np.any(cond):
            goodargs = argsreduce(cond, *((x,)+args+(scale,)))
            scale, goodargs = goodargs[-1], goodargs[:-1]
            place(output, cond, self._logpdf(*goodargs) - log(scale))
        if output.ndim == 0:
            return output[()]
        return output

    def cdf(self, x, *args, **kwds):
        """
        Cumulative distribution function of the given RV.

        Parameters
        ----------
        x : array_like
            quantiles
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        cdf : ndarray
            Cumulative distribution function evaluated at `x`

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        x, loc, scale = map(asarray, (x, loc, scale))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        dtyp = np.promote_types(x.dtype, np.float64)
        x = np.asarray((x - loc)/scale, dtype=dtyp)
        cond0 = self._argcheck(*args) & (scale > 0)
        cond1 = self._open_support_mask(x, *args) & (scale > 0)
        cond2 = (x >= np.asarray(_b)) & cond0
        cond = cond0 & cond1
        output = zeros(shape(cond), dtyp)
        place(output, (1-cond0)+np.isnan(x), self.badvalue)
        place(output, cond2, 1.0)
        if np.any(cond):  # call only if at least 1 entry
            goodargs = argsreduce(cond, *((x,)+args))
            place(output, cond, self._cdf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def logcdf(self, x, *args, **kwds):
        """Log of the cumulative distribution function at x of the given RV.

        Parameters
        ----------
        x : array_like
            quantiles
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        logcdf : array_like
            Log of the cumulative distribution function evaluated at x

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        x, loc, scale = map(asarray, (x, loc, scale))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        dtyp = np.promote_types(x.dtype, np.float64)
        x = np.asarray((x - loc)/scale, dtype=dtyp)
        cond0 = self._argcheck(*args) & (scale > 0)
        cond1 = self._open_support_mask(x, *args) & (scale > 0)
        cond2 = (x >= _b) & cond0
        cond = cond0 & cond1
        output = empty(shape(cond), dtyp)
        output.fill(-inf)
        place(output, (1-cond0)*(cond1 == cond1)+np.isnan(x), self.badvalue)
        place(output, cond2, 0.0)
        if np.any(cond):  # call only if at least 1 entry
            goodargs = argsreduce(cond, *((x,)+args))
            place(output, cond, self._logcdf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def sf(self, x, *args, **kwds):
        """Survival function (1 - `cdf`) at x of the given RV.

        Parameters
        ----------
        x : array_like
            quantiles
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        sf : array_like
            Survival function evaluated at x

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        x, loc, scale = map(asarray, (x, loc, scale))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        dtyp = np.promote_types(x.dtype, np.float64)
        x = np.asarray((x - loc)/scale, dtype=dtyp)
        cond0 = self._argcheck(*args) & (scale > 0)
        cond1 = self._open_support_mask(x, *args) & (scale > 0)
        cond2 = cond0 & (x <= _a)
        cond = cond0 & cond1
        output = zeros(shape(cond), dtyp)
        place(output, (1-cond0)+np.isnan(x), self.badvalue)
        place(output, cond2, 1.0)
        if np.any(cond):
            goodargs = argsreduce(cond, *((x,)+args))
            place(output, cond, self._sf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def logsf(self, x, *args, **kwds):
        """Log of the survival function of the given RV.

        Returns the log of the "survival function," defined as (1 - `cdf`),
        evaluated at `x`.

        Parameters
        ----------
        x : array_like
            quantiles
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        logsf : ndarray
            Log of the survival function evaluated at `x`.

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        x, loc, scale = map(asarray, (x, loc, scale))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        dtyp = np.promote_types(x.dtype, np.float64)
        x = np.asarray((x - loc)/scale, dtype=dtyp)
        cond0 = self._argcheck(*args) & (scale > 0)
        cond1 = self._open_support_mask(x, *args) & (scale > 0)
        cond2 = cond0 & (x <= _a)
        cond = cond0 & cond1
        output = empty(shape(cond), dtyp)
        output.fill(-inf)
        place(output, (1-cond0)+np.isnan(x), self.badvalue)
        place(output, cond2, 0.0)
        if np.any(cond):
            goodargs = argsreduce(cond, *((x,)+args))
            place(output, cond, self._logsf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def ppf(self, q, *args, **kwds):
        """Percent point function (inverse of `cdf`) at q of the given RV.

        Parameters
        ----------
        q : array_like
            lower tail probability
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        x : array_like
            quantile corresponding to the lower tail probability q.

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        q, loc, scale = map(asarray, (q, loc, scale))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
        cond1 = (0 < q) & (q < 1)
        cond2 = cond0 & (q == 0)
        cond3 = cond0 & (q == 1)
        cond = cond0 & cond1
        output = np.full(shape(cond), fill_value=self.badvalue)

        lower_bound = _a * scale + loc
        upper_bound = _b * scale + loc
        place(output, cond2, argsreduce(cond2, lower_bound)[0])
        place(output, cond3, argsreduce(cond3, upper_bound)[0])

        if np.any(cond):  # call only if at least 1 entry
            goodargs = argsreduce(cond, *((q,)+args+(scale, loc)))
            scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2]
            place(output, cond, self._ppf(*goodargs) * scale + loc)
        if output.ndim == 0:
            return output[()]
        return output

    def isf(self, q, *args, **kwds):
        """Inverse survival function (inverse of `sf`) at q of the given RV.

        Parameters
        ----------
        q : array_like
            upper tail probability
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        x : ndarray or scalar
            Quantile corresponding to the upper tail probability q.

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        q, loc, scale = map(asarray, (q, loc, scale))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
        cond1 = (0 < q) & (q < 1)
        cond2 = cond0 & (q == 1)
        cond3 = cond0 & (q == 0)
        cond = cond0 & cond1
        output = np.full(shape(cond), fill_value=self.badvalue)

        lower_bound = _a * scale + loc
        upper_bound = _b * scale + loc
        place(output, cond2, argsreduce(cond2, lower_bound)[0])
        place(output, cond3, argsreduce(cond3, upper_bound)[0])

        if np.any(cond):
            goodargs = argsreduce(cond, *((q,)+args+(scale, loc)))
            scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2]
            place(output, cond, self._isf(*goodargs) * scale + loc)
        if output.ndim == 0:
            return output[()]
        return output

    def _unpack_loc_scale(self, theta):
        try:
            loc = theta[-2]
            scale = theta[-1]
            args = tuple(theta[:-2])
        except IndexError as e:
            raise ValueError("Not enough input arguments.") from e
        return loc, scale, args

    def _nnlf_and_penalty(self, x, args):
        """
        Compute the penalized negative log-likelihood for the
        "standardized" data (i.e. already shifted by loc and
        scaled by scale) for the shape parameters in `args`.

        `x` can be a 1D numpy array or a CensoredData instance.
        """
        if isinstance(x, CensoredData):
            # Filter out the data that is not in the support.
            xs = x._supported(*self._get_support(*args))
            n_bad = len(x) - len(xs)
            i1, i2 = xs._interval.T
            terms = [
                # logpdf of the noncensored data.
                self._logpdf(xs._uncensored, *args),
                # logcdf of the left-censored data.
                self._logcdf(xs._left, *args),
                # logsf of the right-censored data.
                self._logsf(xs._right, *args),
                # log of probability of the interval-censored data.
                np.log(self._delta_cdf(i1, i2, *args)),
            ]
        else:
            cond0 = ~self._support_mask(x, *args)
            n_bad = np.count_nonzero(cond0)
            if n_bad > 0:
                x = argsreduce(~cond0, x)[0]
            terms = [self._logpdf(x, *args)]

        totals, bad_counts = zip(*[_sum_finite(term) for term in terms])
        total = sum(totals)
        n_bad += sum(bad_counts)

        return -total + n_bad * _LOGXMAX * 100

    def _penalized_nnlf(self, theta, x):
        """Penalized negative loglikelihood function.

        i.e., - sum (log pdf(x, theta), axis=0) + penalty
        where theta are the parameters (including loc and scale)
        """
        loc, scale, args = self._unpack_loc_scale(theta)
        if not self._argcheck(*args) or scale <= 0:
            return inf
        if isinstance(x, CensoredData):
            x = (x - loc) / scale
            n_log_scale = (len(x) - x.num_censored()) * log(scale)
        else:
            x = (x - loc) / scale
            n_log_scale = len(x) * log(scale)

        return self._nnlf_and_penalty(x, args) + n_log_scale

    def _fitstart(self, data, args=None):
        """Starting point for fit (shape arguments + loc + scale)."""
        if args is None:
            args = (1.0,)*self.numargs
        loc, scale = self._fit_loc_scale_support(data, *args)
        return args + (loc, scale)

    def _reduce_func(self, args, kwds, data=None):
        """
        Return the (possibly reduced) function to optimize in order to find MLE
        estimates for the .fit method.
        """
        # Convert fixed shape parameters to the standard numeric form: e.g. for
        # stats.beta, shapes='a, b'. To fix `a`, the caller can give a value
        # for `f0`, `fa` or 'fix_a'.  The following converts the latter two
        # into the first (numeric) form.
        shapes = []
        if self.shapes:
            shapes = self.shapes.replace(',', ' ').split()
            for j, s in enumerate(shapes):
                key = 'f' + str(j)
                names = [key, 'f' + s, 'fix_' + s]
                val = _get_fixed_fit_value(kwds, names)
                if val is not None:
                    kwds[key] = val

        args = list(args)
        Nargs = len(args)
        fixedn = []
        names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale']
        x0 = []
        for n, key in enumerate(names):
            if key in kwds:
                fixedn.append(n)
                args[n] = kwds.pop(key)
            else:
                x0.append(args[n])

        methods = {"mle", "mm"}
        method = kwds.pop('method', "mle").lower()
        if method == "mm":
            n_params = len(shapes) + 2 - len(fixedn)
            exponents = (np.arange(1, n_params+1))[:, np.newaxis]
            data_moments = np.sum(data[None, :]**exponents/len(data), axis=1)

            def objective(theta, x):
                return self._moment_error(theta, x, data_moments)

        elif method == "mle":
            objective = self._penalized_nnlf
        else:
            raise ValueError(f"Method '{method}' not available; "
                             f"must be one of {methods}")

        if len(fixedn) == 0:
            func = objective
            restore = None
        else:
            if len(fixedn) == Nargs:
                raise ValueError(
                    "All parameters fixed. There is nothing to optimize.")

            def restore(args, theta):
                # Replace with theta for all numbers not in fixedn
                # This allows the non-fixed values to vary, but
                #  we still call self.nnlf with all parameters.
                i = 0
                for n in range(Nargs):
                    if n not in fixedn:
                        args[n] = theta[i]
                        i += 1
                return args

            def func(theta, x):
                newtheta = restore(args[:], theta)
                return objective(newtheta, x)

        return x0, func, restore, args

    def _moment_error(self, theta, x, data_moments):
        loc, scale, args = self._unpack_loc_scale(theta)
        if not self._argcheck(*args) or scale <= 0:
            return inf

        dist_moments = np.array([self.moment(i+1, *args, loc=loc, scale=scale)
                                 for i in range(len(data_moments))])
        if np.any(np.isnan(dist_moments)):
            raise ValueError("Method of moments encountered a non-finite "
                             "distribution moment and cannot continue. "
                             "Consider trying method='MLE'.")

        return (((data_moments - dist_moments) /
                 np.maximum(np.abs(data_moments), 1e-8))**2).sum()

    def fit(self, data, *args, **kwds):
        r"""
        Return estimates of shape (if applicable), location, and scale
        parameters from data. The default estimation method is Maximum
        Likelihood Estimation (MLE), but Method of Moments (MM)
        is also available.

        Starting estimates for the fit are given by input arguments;
        for any arguments not provided with starting estimates,
        ``self._fitstart(data)`` is called to generate such.

        One can hold some parameters fixed to specific values by passing in
        keyword arguments ``f0``, ``f1``, ..., ``fn`` (for shape parameters)
        and ``floc`` and ``fscale`` (for location and scale parameters,
        respectively).

        Parameters
        ----------
        data : array_like or `CensoredData` instance
            Data to use in estimating the distribution parameters.
        arg1, arg2, arg3,... : floats, optional
            Starting value(s) for any shape-characterizing arguments (those not
            provided will be determined by a call to ``_fitstart(data)``).
            No default value.
        **kwds : floats, optional
            - `loc`: initial guess of the distribution's location parameter.
            - `scale`: initial guess of the distribution's scale parameter.

            Special keyword arguments are recognized as holding certain
            parameters fixed:

            - f0...fn : hold respective shape parameters fixed.
              Alternatively, shape parameters to fix can be specified by name.
              For example, if ``self.shapes == "a, b"``, ``fa`` and ``fix_a``
              are equivalent to ``f0``, and ``fb`` and ``fix_b`` are
              equivalent to ``f1``.

            - floc : hold location parameter fixed to specified value.

            - fscale : hold scale parameter fixed to specified value.

            - optimizer : The optimizer to use.  The optimizer must take
              ``func`` and starting position as the first two arguments,
              plus ``args`` (for extra arguments to pass to the
              function to be optimized) and ``disp``.
              The ``fit`` method calls the optimizer with ``disp=0`` to suppress output.
              The optimizer must return the estimated parameters.

            - method : The method to use. The default is "MLE" (Maximum
              Likelihood Estimate); "MM" (Method of Moments)
              is also available.

        Raises
        ------
        TypeError, ValueError
            If an input is invalid
        `~scipy.stats.FitError`
            If fitting fails or the fit produced would be invalid

        Returns
        -------
        parameter_tuple : tuple of floats
            Estimates for any shape parameters (if applicable), followed by
            those for location and scale. For most random variables, shape
            statistics will be returned, but there are exceptions (e.g.
            ``norm``).

        Notes
        -----
        With ``method="MLE"`` (default), the fit is computed by minimizing
        the negative log-likelihood function. A large, finite penalty
        (rather than infinite negative log-likelihood) is applied for
        observations beyond the support of the distribution.

        With ``method="MM"``, the fit is computed by minimizing the L2 norm
        of the relative errors between the first *k* raw (about zero) data
        moments and the corresponding distribution moments, where *k* is the
        number of non-fixed parameters.
        More precisely, the objective function is::

            (((data_moments - dist_moments)
              / np.maximum(np.abs(data_moments), 1e-8))**2).sum()

        where the constant ``1e-8`` avoids division by zero in case of
        vanishing data moments. Typically, this error norm can be reduced to
        zero.
        Note that the standard method of moments can produce parameters for
        which some data are outside the support of the fitted distribution;
        this implementation does nothing to prevent this.

        For either method,
        the returned answer is not guaranteed to be globally optimal; it
        may only be locally optimal, or the optimization may fail altogether.
        If the data contain any of ``np.nan``, ``np.inf``, or ``-np.inf``,
        the `fit` method will raise a ``RuntimeError``.

        When passing a ``CensoredData`` instance to ``data``, the log-likelihood
        function is defined as:

        .. math::

            l(\pmb{\theta}; k) & = \sum
                                    \log(f(k_u; \pmb{\theta}))
                                + \sum
                                    \log(F(k_l; \pmb{\theta})) \\
                                & + \sum
                                    \log(1 - F(k_r; \pmb{\theta})) \\
                                & + \sum
                                    \log(F(k_{\text{high}, i}; \pmb{\theta})
                                    - F(k_{\text{low}, i}; \pmb{\theta}))

        where :math:`f` and :math:`F` are the pdf and cdf, respectively, of the
        function being fitted, :math:`\pmb{\theta}` is the parameter vector,
        :math:`u` are the indices of uncensored observations,
        :math:`l` are the indices of left-censored observations,
        :math:`r` are the indices of right-censored observations,
        subscripts "low"/"high" denote endpoints of interval-censored observations, and
        :math:`i` are the indices of interval-censored observations.

        Examples
        --------

        Generate some data to fit: draw random variates from the `beta`
        distribution

        >>> import numpy as np
        >>> from scipy.stats import beta
        >>> a, b = 1., 2.
        >>> rng = np.random.default_rng(172786373191770012695001057628748821561)
        >>> x = beta.rvs(a, b, size=1000, random_state=rng)

        Now we can fit all four parameters (``a``, ``b``, ``loc`` and
        ``scale``):

        >>> a1, b1, loc1, scale1 = beta.fit(x)
        >>> a1, b1, loc1, scale1
        (1.0198945204435628, 1.9484708982737828, 4.372241314917588e-05, 0.9979078845964814)

        The fit can be done also using a custom optimizer:

        >>> from scipy.optimize import minimize
        >>> def custom_optimizer(func, x0, args=(), disp=0):
        ...     res = minimize(func, x0, args, method="slsqp", options={"disp": disp})
        ...     if res.success:
        ...         return res.x
        ...     raise RuntimeError('optimization routine failed')
        >>> a1, b1, loc1, scale1 = beta.fit(x, method="MLE", optimizer=custom_optimizer)
        >>> a1, b1, loc1, scale1
        (1.0198821087258905, 1.948484145914738, 4.3705304486881485e-05, 0.9979104663953395)

        We can also use some prior knowledge about the dataset: let's keep
        ``loc`` and ``scale`` fixed:

        >>> a1, b1, loc1, scale1 = beta.fit(x, floc=0, fscale=1)
        >>> loc1, scale1
        (0, 1)

        We can also keep shape parameters fixed by using ``f``-keywords. To
        keep the zero-th shape parameter ``a`` equal 1, use ``f0=1`` or,
        equivalently, ``fa=1``:

        >>> a1, b1, loc1, scale1 = beta.fit(x, fa=1, floc=0, fscale=1)
        >>> a1
        1

        Not all distributions return estimates for the shape parameters.
        ``norm`` for example just returns estimates for location and scale:

        >>> from scipy.stats import norm
        >>> x = norm.rvs(a, b, size=1000, random_state=123)
        >>> loc1, scale1 = norm.fit(x)
        >>> loc1, scale1
        (0.92087172783841631, 2.0015750750324668)
        """ # noqa: E501
        method = kwds.get('method', "mle").lower()

        censored = isinstance(data, CensoredData)
        if censored:
            if method != 'mle':
                raise ValueError('For censored data, the method must'
                                 ' be "MLE".')
            if data.num_censored() == 0:
                # There are no censored values in data, so replace the
                # CensoredData instance with a regular array.
                data = data._uncensored
                censored = False

        Narg = len(args)
        if Narg > self.numargs:
            raise TypeError("Too many input arguments.")

        # Check the finiteness of data only if data is not an instance of
        # CensoredData.  The arrays in a CensoredData instance have already
        # been validated.
        if not censored:
            # Note: `ravel()` is called for backwards compatibility.
            data = np.asarray(data).ravel()
            if not np.isfinite(data).all():
                raise ValueError("The data contains non-finite values.")

        start = [None]*2
        if (Narg < self.numargs) or not ('loc' in kwds and
                                         'scale' in kwds):
            # get distribution specific starting locations
            start = self._fitstart(data)
            args += start[Narg:-2]
        loc = kwds.pop('loc', start[-2])
        scale = kwds.pop('scale', start[-1])
        args += (loc, scale)
        x0, func, restore, args = self._reduce_func(args, kwds, data=data)
        optimizer = kwds.pop('optimizer', optimize.fmin)
        # convert string to function in scipy.optimize
        optimizer = _fit_determine_optimizer(optimizer)
        # by now kwds must be empty, since everybody took what they needed
        if kwds:
            raise TypeError(f"Unknown arguments: {kwds}.")

        # In some cases, method of moments can be done with fsolve/root
        # instead of an optimizer, but sometimes no solution exists,
        # especially when the user fixes parameters. Minimizing the sum
        # of squares of the error generalizes to these cases.
        vals = optimizer(func, x0, args=(data,), disp=0)
        obj = func(vals, data)

        if restore is not None:
            vals = restore(args, vals)
        vals = tuple(vals)

        loc, scale, shapes = self._unpack_loc_scale(vals)
        if not (np.all(self._argcheck(*shapes)) and scale > 0):
            raise FitError("Optimization converged to parameters that are "
                           "outside the range allowed by the distribution.")

        if method == 'mm':
            if not np.isfinite(obj):
                raise FitError("Optimization failed: either a data moment "
                               "or fitted distribution moment is "
                               "non-finite.")

        return vals

    def _fit_loc_scale_support(self, data, *args):
        """Estimate loc and scale parameters from data accounting for support.

        Parameters
        ----------
        data : array_like
            Data to fit.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).

        Returns
        -------
        Lhat : float
            Estimated location parameter for the data.
        Shat : float
            Estimated scale parameter for the data.

        """
        if isinstance(data, CensoredData):
            # For this estimate, "uncensor" the data by taking the
            # given endpoints as the data for the left- or right-censored
            # data, and the mean for the interval-censored data.
            data = data._uncensor()
        else:
            data = np.asarray(data)

        # Estimate location and scale according to the method of moments.
        loc_hat, scale_hat = self.fit_loc_scale(data, *args)

        # Compute the support according to the shape parameters.
        self._argcheck(*args)
        _a, _b = self._get_support(*args)
        a, b = _a, _b
        support_width = b - a

        # If the support is empty then return the moment-based estimates.
        if support_width <= 0:
            return loc_hat, scale_hat

        # Compute the proposed support according to the loc and scale
        # estimates.
        a_hat = loc_hat + a * scale_hat
        b_hat = loc_hat + b * scale_hat

        # Use the moment-based estimates if they are compatible with the data.
        data_a = np.min(data)
        data_b = np.max(data)
        if a_hat < data_a and data_b < b_hat:
            return loc_hat, scale_hat

        # Otherwise find other estimates that are compatible with the data.
        data_width = data_b - data_a
        rel_margin = 0.1
        margin = data_width * rel_margin

        # For a finite interval, both the location and scale
        # should have interesting values.
        if support_width < np.inf:
            loc_hat = (data_a - a) - margin
            scale_hat = (data_width + 2 * margin) / support_width
            return loc_hat, scale_hat

        # For a one-sided interval, use only an interesting location parameter.
        if a > -np.inf:
            return (data_a - a) - margin, 1
        elif b < np.inf:
            return (data_b - b) + margin, 1
        else:
            raise RuntimeError

    def fit_loc_scale(self, data, *args):
        """
        Estimate loc and scale parameters from data using 1st and 2nd moments.

        Parameters
        ----------
        data : array_like
            Data to fit.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).

        Returns
        -------
        Lhat : float
            Estimated location parameter for the data.
        Shat : float
            Estimated scale parameter for the data.

        """
        mu, mu2 = self.stats(*args, **{'moments': 'mv'})
        tmp = asarray(data)
        muhat = tmp.mean()
        mu2hat = tmp.var()
        Shat = sqrt(mu2hat / mu2)
        with np.errstate(invalid='ignore'):
            Lhat = muhat - Shat*mu
        if not np.isfinite(Lhat):
            Lhat = 0
        if not (np.isfinite(Shat) and (0 < Shat)):
            Shat = 1
        return Lhat, Shat

    def _entropy(self, *args):
        def integ(x):
            val = self._pdf(x, *args)
            return entr(val)

        # upper limit is often inf, so suppress warnings when integrating
        _a, _b = self._get_support(*args)
        with np.errstate(over='ignore'):
            h = integrate.quad(integ, _a, _b)[0]

        if not np.isnan(h):
            return h
        else:
            # try with different limits if integration problems
            low, upp = self.ppf([1e-10, 1. - 1e-10], *args)
            if np.isinf(_b):
                upper = upp
            else:
                upper = _b
            if np.isinf(_a):
                lower = low
            else:
                lower = _a
            return integrate.quad(integ, lower, upper)[0]

    def expect(self, func=None, args=(), loc=0, scale=1, lb=None, ub=None,
               conditional=False, **kwds):
        """Calculate expected value of a function with respect to the
        distribution by numerical integration.

        The expected value of a function ``f(x)`` with respect to a
        distribution ``dist`` is defined as::

                    ub
            E[f(x)] = Integral(f(x) * dist.pdf(x)),
                    lb

        where ``ub`` and ``lb`` are arguments and ``x`` has the ``dist.pdf(x)``
        distribution. If the bounds ``lb`` and ``ub`` correspond to the
        support of the distribution, e.g. ``[-inf, inf]`` in the default
        case, then the integral is the unrestricted expectation of ``f(x)``.
        Also, the function ``f(x)`` may be defined such that ``f(x)`` is ``0``
        outside a finite interval in which case the expectation is
        calculated within the finite range ``[lb, ub]``.

        Parameters
        ----------
        func : callable, optional
            Function for which integral is calculated. Takes only one argument.
            The default is the identity mapping f(x) = x.
        args : tuple, optional
            Shape parameters of the distribution.
        loc : float, optional
            Location parameter (default=0).
        scale : float, optional
            Scale parameter (default=1).
        lb, ub : scalar, optional
            Lower and upper bound for integration. Default is set to the
            support of the distribution.
        conditional : bool, optional
            If True, the integral is corrected by the conditional probability
            of the integration interval.  The return value is the expectation
            of the function, conditional on being in the given interval.
            Default is False.

        Additional keyword arguments are passed to the integration routine.

        Returns
        -------
        expect : float
            The calculated expected value.

        Notes
        -----
        The integration behavior of this function is inherited from
        `scipy.integrate.quad`. Neither this function nor
        `scipy.integrate.quad` can verify whether the integral exists or is
        finite. For example ``cauchy(0).mean()`` returns ``np.nan`` and
        ``cauchy(0).expect()`` returns ``0.0``.

        Likewise, the accuracy of results is not verified by the function.
        `scipy.integrate.quad` is typically reliable for integrals that are
        numerically favorable, but it is not guaranteed to converge
        to a correct value for all possible intervals and integrands. This
        function is provided for convenience; for critical applications,
        check results against other integration methods.

        The function is not vectorized.

        Examples
        --------

        To understand the effect of the bounds of integration consider

        >>> from scipy.stats import expon
        >>> expon(1).expect(lambda x: 1, lb=0.0, ub=2.0)
        0.6321205588285578

        This is close to

        >>> expon(1).cdf(2.0) - expon(1).cdf(0.0)
        0.6321205588285577

        If ``conditional=True``

        >>> expon(1).expect(lambda x: 1, lb=0.0, ub=2.0, conditional=True)
        1.0000000000000002

        The slight deviation from 1 is due to numerical integration.

        The integrand can be treated as a complex-valued function
        by passing ``complex_func=True`` to `scipy.integrate.quad` .

        >>> import numpy as np
        >>> from scipy.stats import vonmises
        >>> res = vonmises(loc=2, kappa=1).expect(lambda x: np.exp(1j*x),
        ...                                       complex_func=True)
        >>> res
        (-0.18576377217422957+0.40590124735052263j)

        >>> np.angle(res)  # location of the (circular) distribution
        2.0

        """
        lockwds = {'loc': loc,
                   'scale': scale}
        self._argcheck(*args)
        _a, _b = self._get_support(*args)
        if func is None:
            def fun(x, *args):
                return x * self.pdf(x, *args, **lockwds)
        else:
            def fun(x, *args):
                return func(x) * self.pdf(x, *args, **lockwds)
        if lb is None:
            lb = loc + _a * scale
        if ub is None:
            ub = loc + _b * scale

        cdf_bounds = self.cdf([lb, ub], *args, **lockwds)
        invfac = cdf_bounds[1] - cdf_bounds[0]

        kwds['args'] = args

        # split interval to help integrator w/ infinite support; see gh-8928
        alpha = 0.05  # split body from tails at probability mass `alpha`
        inner_bounds = np.array([alpha, 1-alpha])
        cdf_inner_bounds = cdf_bounds[0] + invfac * inner_bounds
        c, d = loc + self._ppf(cdf_inner_bounds, *args) * scale

        # Do not silence warnings from integration.
        lbc = integrate.quad(fun, lb, c, **kwds)[0]
        cd = integrate.quad(fun, c, d, **kwds)[0]
        dub = integrate.quad(fun, d, ub, **kwds)[0]
        vals = (lbc + cd + dub)

        if conditional:
            vals /= invfac
        return np.array(vals)[()]  # make it a numpy scalar like other methods

    def _param_info(self):
        shape_info = self._shape_info()
        loc_info = _ShapeInfo("loc", False, (-np.inf, np.inf), (False, False))
        scale_info = _ShapeInfo("scale", False, (0, np.inf), (False, False))
        param_info = shape_info + [loc_info, scale_info]
        return param_info

    # For now, _delta_cdf is a private method.
    def _delta_cdf(self, x1, x2, *args, loc=0, scale=1):
        """
        Compute CDF(x2) - CDF(x1).

        Where x1 is greater than the median, compute SF(x1) - SF(x2),
        otherwise compute CDF(x2) - CDF(x1).

        This function is only useful if `dist.sf(x, ...)` has an implementation
        that is numerically more accurate than `1 - dist.cdf(x, ...)`.
        """
        cdf1 = self.cdf(x1, *args, loc=loc, scale=scale)
        # Possible optimizations (needs investigation-these might not be
        # better):
        # * Use _lazywhere instead of np.where
        # * Instead of cdf1 > 0.5, compare x1 to the median.
        result = np.where(cdf1 > 0.5,
                          (self.sf(x1, *args, loc=loc, scale=scale)
                           - self.sf(x2, *args, loc=loc, scale=scale)),
                          self.cdf(x2, *args, loc=loc, scale=scale) - cdf1)
        if result.ndim == 0:
            result = result[()]
        return result


# Helpers for the discrete distributions
def _drv2_moment(self, n, *args):
    """Non-central moment of discrete distribution."""
    def fun(x):
        return np.power(x, n) * self._pmf(x, *args)

    _a, _b = self._get_support(*args)
    return _expect(fun, _a, _b, self._ppf(0.5, *args), self.inc)


def _drv2_ppfsingle(self, q, *args):  # Use basic bisection algorithm
    _a, _b = self._get_support(*args)
    b = _b
    a = _a

    step = 10
    if isinf(b):            # Be sure ending point is > q
        b = float(max(100*q, 10))
        while 1:
            if b >= _b:
                qb = 1.0
                break
            qb = self._cdf(b, *args)
            if (qb < q):
                b += step
                step *= 2
            else:
                break
    else:
        qb = 1.0

    step = 10
    if isinf(a):    # be sure starting point < q
        a = float(min(-100*q, -10))
        while 1:
            if a <= _a:
                qb = 0.0
                break
            qa = self._cdf(a, *args)
            if (qa > q):
                a -= step
                step *= 2
            else:
                break
    else:
        qa = self._cdf(a, *args)

    if np.isinf(a) or np.isinf(b):
        message = "Arguments that bracket the requested quantile could not be found."
        raise RuntimeError(message)

    # maximum number of bisections within the normal float64s
    # maxiter = int(np.log2(finfo.max) - np.log2(finfo.smallest_normal))
    maxiter = 2046
    for i in range(maxiter):
        if (qa == q):
            return a
        if (qb == q):
            return b
        if b <= a+1:
            if qa > q:
                return a
            else:
                return b
        c = int((a+b)/2.0)
        qc = self._cdf(c, *args)
        if (qc < q):
            if a != c:
                a = c
            else:
                raise RuntimeError('updating stopped, endless loop')
            qa = qc
        elif (qc > q):
            if b != c:
                b = c
            else:
                raise RuntimeError('updating stopped, endless loop')
            qb = qc
        else:
            return c


# Must over-ride one of _pmf or _cdf or pass in
#  x_k, p(x_k) lists in initialization


class rv_discrete(rv_generic):
    """A generic discrete random variable class meant for subclassing.

    `rv_discrete` is a base class to construct specific distribution classes
    and instances for discrete random variables. It can also be used
    to construct an arbitrary distribution defined by a list of support
    points and corresponding probabilities.

    Parameters
    ----------
    a : float, optional
        Lower bound of the support of the distribution, default: 0
    b : float, optional
        Upper bound of the support of the distribution, default: plus infinity
    moment_tol : float, optional
        The tolerance for the generic calculation of moments.
    values : tuple of two array_like, optional
        ``(xk, pk)`` where ``xk`` are integers and ``pk`` are the non-zero
        probabilities between 0 and 1 with ``sum(pk) = 1``. ``xk``
        and ``pk`` must have the same shape, and ``xk`` must be unique.
    inc : integer, optional
        Increment for the support of the distribution.
        Default is 1. (other values have not been tested)
    badvalue : float, optional
        The value in a result arrays that indicates a value that for which
        some argument restriction is violated, default is np.nan.
    name : str, optional
        The name of the instance. This string is used to construct the default
        example for distributions.
    longname : str, optional
        This string is used as part of the first line of the docstring returned
        when a subclass has no docstring of its own. Note: `longname` exists
        for backwards compatibility, do not use for new subclasses.
    shapes : str, optional
        The shape of the distribution. For example "m, n" for a distribution
        that takes two integers as the two shape arguments for all its methods
        If not provided, shape parameters will be inferred from
        the signatures of the private methods, ``_pmf`` and ``_cdf`` of
        the instance.
    seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
        If `seed` is None (or `np.random`), the `numpy.random.RandomState`
        singleton is used.
        If `seed` is an int, a new ``RandomState`` instance is used,
        seeded with `seed`.
        If `seed` is already a ``Generator`` or ``RandomState`` instance then
        that instance is used.

    Methods
    -------
    rvs
    pmf
    logpmf
    cdf
    logcdf
    sf
    logsf
    ppf
    isf
    moment
    stats
    entropy
    expect
    median
    mean
    std
    var
    interval
    __call__
    support

    Notes
    -----
    This class is similar to `rv_continuous`. Whether a shape parameter is
    valid is decided by an ``_argcheck`` method (which defaults to checking
    that its arguments are strictly positive.)
    The main differences are as follows.

    - The support of the distribution is a set of integers.
    - Instead of the probability density function, ``pdf`` (and the
      corresponding private ``_pdf``), this class defines the
      *probability mass function*, `pmf` (and the corresponding
      private ``_pmf``.)
    - There is no ``scale`` parameter.
    - The default implementations of methods (e.g. ``_cdf``) are not designed
      for distributions with support that is unbounded below (i.e.
      ``a=-np.inf``), so they must be overridden.

    To create a new discrete distribution, we would do the following:

    >>> from scipy.stats import rv_discrete
    >>> class poisson_gen(rv_discrete):
    ...     "Poisson distribution"
    ...     def _pmf(self, k, mu):
    ...         return exp(-mu) * mu**k / factorial(k)

    and create an instance::

    >>> poisson = poisson_gen(name="poisson")

    Note that above we defined the Poisson distribution in the standard form.
    Shifting the distribution can be done by providing the ``loc`` parameter
    to the methods of the instance. For example, ``poisson.pmf(x, mu, loc)``
    delegates the work to ``poisson._pmf(x-loc, mu)``.

    **Discrete distributions from a list of probabilities**

    Alternatively, you can construct an arbitrary discrete rv defined
    on a finite set of values ``xk`` with ``Prob{X=xk} = pk`` by using the
    ``values`` keyword argument to the `rv_discrete` constructor.

    **Deepcopying / Pickling**

    If a distribution or frozen distribution is deepcopied (pickled/unpickled,
    etc.), any underlying random number generator is deepcopied with it. An
    implication is that if a distribution relies on the singleton RandomState
    before copying, it will rely on a copy of that random state after copying,
    and ``np.random.seed`` will no longer control the state.

    Examples
    --------
    Custom made discrete distribution:

    >>> import numpy as np
    >>> from scipy import stats
    >>> xk = np.arange(7)
    >>> pk = (0.1, 0.2, 0.3, 0.1, 0.1, 0.0, 0.2)
    >>> custm = stats.rv_discrete(name='custm', values=(xk, pk))
    >>>
    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(1, 1)
    >>> ax.plot(xk, custm.pmf(xk), 'ro', ms=12, mec='r')
    >>> ax.vlines(xk, 0, custm.pmf(xk), colors='r', lw=4)
    >>> plt.show()

    Random number generation:

    >>> R = custm.rvs(size=100)

    """
    def __new__(cls, a=0, b=inf, name=None, badvalue=None,
                moment_tol=1e-8, values=None, inc=1, longname=None,
                shapes=None, seed=None):

        if values is not None:
            # dispatch to a subclass
            return super().__new__(rv_sample)
        else:
            # business as usual
            return super().__new__(cls)

    def __init__(self, a=0, b=inf, name=None, badvalue=None,
                 moment_tol=1e-8, values=None, inc=1, longname=None,
                 shapes=None, seed=None):

        super().__init__(seed)

        # cf generic freeze
        self._ctor_param = dict(
            a=a, b=b, name=name, badvalue=badvalue,
            moment_tol=moment_tol, values=values, inc=inc,
            longname=longname, shapes=shapes, seed=seed)

        if badvalue is None:
            badvalue = nan
        self.badvalue = badvalue
        self.a = a
        self.b = b
        self.moment_tol = moment_tol
        self.inc = inc
        self.shapes = shapes

        if values is not None:
            raise ValueError("rv_discrete.__init__(..., values != None, ...)")

        self._construct_argparser(meths_to_inspect=[self._pmf, self._cdf],
                                  locscale_in='loc=0',
                                  # scale=1 for discrete RVs
                                  locscale_out='loc, 1')
        self._attach_methods()
        self._construct_docstrings(name, longname)

    def __getstate__(self):
        dct = self.__dict__.copy()
        # these methods will be remade in __setstate__
        attrs = ["_parse_args", "_parse_args_stats", "_parse_args_rvs",
                 "_cdfvec", "_ppfvec", "generic_moment"]
        [dct.pop(attr, None) for attr in attrs]
        return dct

    def _attach_methods(self):
        """Attaches dynamically created methods to the rv_discrete instance."""
        self._cdfvec = vectorize(self._cdf_single, otypes='d')
        self.vecentropy = vectorize(self._entropy)

        # _attach_methods is responsible for calling _attach_argparser_methods
        self._attach_argparser_methods()

        # nin correction needs to be after we know numargs
        # correct nin for generic moment vectorization
        _vec_generic_moment = vectorize(_drv2_moment, otypes='d')
        _vec_generic_moment.nin = self.numargs + 2
        self.generic_moment = types.MethodType(_vec_generic_moment, self)

        # correct nin for ppf vectorization
        _vppf = vectorize(_drv2_ppfsingle, otypes='d')
        _vppf.nin = self.numargs + 2
        self._ppfvec = types.MethodType(_vppf, self)

        # now that self.numargs is defined, we can adjust nin
        self._cdfvec.nin = self.numargs + 1

    def _construct_docstrings(self, name, longname):
        if name is None:
            name = 'Distribution'
        self.name = name

        # generate docstring for subclass instances
        if longname is None:
            if name[0] in ['aeiouAEIOU']:
                hstr = "An "
            else:
                hstr = "A "
            longname = hstr + name

        if sys.flags.optimize < 2:
            # Skip adding docstrings if interpreter is run with -OO
            if self.__doc__ is None:
                self._construct_default_doc(longname=longname,
                                            docdict=docdict_discrete,
                                            discrete='discrete')
            else:
                dct = dict(distdiscrete)
                self._construct_doc(docdict_discrete, dct.get(self.name))

            # discrete RV do not have the scale parameter, remove it
            self.__doc__ = self.__doc__.replace(
                '\n    scale : array_like, '
                'optional\n        scale parameter (default=1)', '')

    def _updated_ctor_param(self):
        """Return the current version of _ctor_param, possibly updated by user.

        Used by freezing.
        Keep this in sync with the signature of __init__.
        """
        dct = self._ctor_param.copy()
        dct['a'] = self.a
        dct['b'] = self.b
        dct['badvalue'] = self.badvalue
        dct['moment_tol'] = self.moment_tol
        dct['inc'] = self.inc
        dct['name'] = self.name
        dct['shapes'] = self.shapes
        return dct

    def _nonzero(self, k, *args):
        return floor(k) == k

    def _pmf(self, k, *args):
        return self._cdf(k, *args) - self._cdf(k-1, *args)

    def _logpmf(self, k, *args):
        with np.errstate(divide='ignore'):
            return log(self._pmf(k, *args))

    def _logpxf(self, k, *args):
        # continuous distributions have PDF, discrete have PMF, but sometimes
        # the distinction doesn't matter. This lets us use `_logpxf` for both
        # discrete and continuous distributions.
        return self._logpmf(k, *args)

    def _unpack_loc_scale(self, theta):
        try:
            loc = theta[-1]
            scale = 1
            args = tuple(theta[:-1])
        except IndexError as e:
            raise ValueError("Not enough input arguments.") from e
        return loc, scale, args

    def _cdf_single(self, k, *args):
        _a, _b = self._get_support(*args)
        m = arange(int(_a), k+1)
        return np.sum(self._pmf(m, *args), axis=0)

    def _cdf(self, x, *args):
        k = floor(x).astype(np.float64)
        return self._cdfvec(k, *args)

    # generic _logcdf, _sf, _logsf, _ppf, _isf, _rvs defined in rv_generic

    def rvs(self, *args, **kwargs):
        """Random variates of given type.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).
        size : int or tuple of ints, optional
            Defining number of random variates (Default is 1). Note that `size`
            has to be given as keyword, not as positional argument.
        random_state : {None, int, `numpy.random.Generator`,
                        `numpy.random.RandomState`}, optional

            If `random_state` is None (or `np.random`), the
            `numpy.random.RandomState` singleton is used.
            If `random_state` is an int, a new ``RandomState`` instance is
            used, seeded with `random_state`.
            If `random_state` is already a ``Generator`` or ``RandomState``
            instance, that instance is used.

        Returns
        -------
        rvs : ndarray or scalar
            Random variates of given `size`.

        """
        kwargs['discrete'] = True
        return super().rvs(*args, **kwargs)

    def pmf(self, k, *args, **kwds):
        """Probability mass function at k of the given RV.

        Parameters
        ----------
        k : array_like
            Quantiles.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            Location parameter (default=0).

        Returns
        -------
        pmf : array_like
            Probability mass function evaluated at k

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        k, loc = map(asarray, (k, loc))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        k = asarray(k-loc)
        cond0 = self._argcheck(*args)
        cond1 = (k >= _a) & (k <= _b)
        if not isinstance(self, rv_sample):
            cond1 = cond1 & self._nonzero(k, *args)
        cond = cond0 & cond1
        output = zeros(shape(cond), 'd')
        place(output, (1-cond0) + np.isnan(k), self.badvalue)
        if np.any(cond):
            goodargs = argsreduce(cond, *((k,)+args))
            place(output, cond, np.clip(self._pmf(*goodargs), 0, 1))
        if output.ndim == 0:
            return output[()]
        return output

    def logpmf(self, k, *args, **kwds):
        """Log of the probability mass function at k of the given RV.

        Parameters
        ----------
        k : array_like
            Quantiles.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter. Default is 0.

        Returns
        -------
        logpmf : array_like
            Log of the probability mass function evaluated at k.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        k, loc = map(asarray, (k, loc))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        k = asarray(k-loc)
        cond0 = self._argcheck(*args)
        cond1 = (k >= _a) & (k <= _b)
        if not isinstance(self, rv_sample):
            cond1 = cond1 & self._nonzero(k, *args)
        cond = cond0 & cond1
        output = empty(shape(cond), 'd')
        output.fill(-inf)
        place(output, (1-cond0) + np.isnan(k), self.badvalue)
        if np.any(cond):
            goodargs = argsreduce(cond, *((k,)+args))
            place(output, cond, self._logpmf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def cdf(self, k, *args, **kwds):
        """Cumulative distribution function of the given RV.

        Parameters
        ----------
        k : array_like, int
            Quantiles.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).

        Returns
        -------
        cdf : ndarray
            Cumulative distribution function evaluated at `k`.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        k, loc = map(asarray, (k, loc))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        k = asarray(k-loc)
        cond0 = self._argcheck(*args)
        cond1 = (k >= _a) & (k < _b)
        cond2 = (k >= _b)
        cond3 = np.isneginf(k)
        cond = cond0 & cond1 & np.isfinite(k)

        output = zeros(shape(cond), 'd')
        place(output, cond2*(cond0 == cond0), 1.0)
        place(output, cond3*(cond0 == cond0), 0.0)
        place(output, (1-cond0) + np.isnan(k), self.badvalue)

        if np.any(cond):
            goodargs = argsreduce(cond, *((k,)+args))
            place(output, cond, np.clip(self._cdf(*goodargs), 0, 1))
        if output.ndim == 0:
            return output[()]
        return output

    def logcdf(self, k, *args, **kwds):
        """Log of the cumulative distribution function at k of the given RV.

        Parameters
        ----------
        k : array_like, int
            Quantiles.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).

        Returns
        -------
        logcdf : array_like
            Log of the cumulative distribution function evaluated at k.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        k, loc = map(asarray, (k, loc))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        k = asarray(k-loc)
        cond0 = self._argcheck(*args)
        cond1 = (k >= _a) & (k < _b)
        cond2 = (k >= _b)
        cond = cond0 & cond1
        output = empty(shape(cond), 'd')
        output.fill(-inf)
        place(output, (1-cond0) + np.isnan(k), self.badvalue)
        place(output, cond2*(cond0 == cond0), 0.0)

        if np.any(cond):
            goodargs = argsreduce(cond, *((k,)+args))
            place(output, cond, self._logcdf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def sf(self, k, *args, **kwds):
        """Survival function (1 - `cdf`) at k of the given RV.

        Parameters
        ----------
        k : array_like
            Quantiles.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).

        Returns
        -------
        sf : array_like
            Survival function evaluated at k.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        k, loc = map(asarray, (k, loc))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        k = asarray(k-loc)
        cond0 = self._argcheck(*args)
        cond1 = (k >= _a) & (k < _b)
        cond2 = ((k < _a) | np.isneginf(k)) & cond0
        cond = cond0 & cond1 & np.isfinite(k)
        output = zeros(shape(cond), 'd')
        place(output, (1-cond0) + np.isnan(k), self.badvalue)
        place(output, cond2, 1.0)
        if np.any(cond):
            goodargs = argsreduce(cond, *((k,)+args))
            place(output, cond, np.clip(self._sf(*goodargs), 0, 1))
        if output.ndim == 0:
            return output[()]
        return output

    def logsf(self, k, *args, **kwds):
        """Log of the survival function of the given RV.

        Returns the log of the "survival function," defined as 1 - `cdf`,
        evaluated at `k`.

        Parameters
        ----------
        k : array_like
            Quantiles.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).

        Returns
        -------
        logsf : ndarray
            Log of the survival function evaluated at `k`.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        k, loc = map(asarray, (k, loc))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        k = asarray(k-loc)
        cond0 = self._argcheck(*args)
        cond1 = (k >= _a) & (k < _b)
        cond2 = (k < _a) & cond0
        cond = cond0 & cond1
        output = empty(shape(cond), 'd')
        output.fill(-inf)
        place(output, (1-cond0) + np.isnan(k), self.badvalue)
        place(output, cond2, 0.0)
        if np.any(cond):
            goodargs = argsreduce(cond, *((k,)+args))
            place(output, cond, self._logsf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def ppf(self, q, *args, **kwds):
        """Percent point function (inverse of `cdf`) at q of the given RV.

        Parameters
        ----------
        q : array_like
            Lower tail probability.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).

        Returns
        -------
        k : array_like
            Quantile corresponding to the lower tail probability, q.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        q, loc = map(asarray, (q, loc))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        cond0 = self._argcheck(*args) & (loc == loc)
        cond1 = (q > 0) & (q < 1)
        cond2 = (q == 1) & cond0
        cond = cond0 & cond1
        output = np.full(shape(cond), fill_value=self.badvalue, dtype='d')
        # output type 'd' to handle nin and inf
        place(output, (q == 0)*(cond == cond), _a-1 + loc)
        place(output, cond2, _b + loc)
        if np.any(cond):
            goodargs = argsreduce(cond, *((q,)+args+(loc,)))
            loc, goodargs = goodargs[-1], goodargs[:-1]
            place(output, cond, self._ppf(*goodargs) + loc)

        if output.ndim == 0:
            return output[()]
        return output

    def isf(self, q, *args, **kwds):
        """Inverse survival function (inverse of `sf`) at q of the given RV.

        Parameters
        ----------
        q : array_like
            Upper tail probability.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).

        Returns
        -------
        k : ndarray or scalar
            Quantile corresponding to the upper tail probability, q.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        q, loc = map(asarray, (q, loc))
        args = tuple(map(asarray, args))
        _a, _b = self._get_support(*args)
        cond0 = self._argcheck(*args) & (loc == loc)
        cond1 = (q > 0) & (q < 1)
        cond2 = (q == 1) & cond0
        cond3 = (q == 0) & cond0
        cond = cond0 & cond1

        # same problem as with ppf; copied from ppf and changed
        output = np.full(shape(cond), fill_value=self.badvalue, dtype='d')
        # output type 'd' to handle nin and inf
        lower_bound = _a - 1 + loc
        upper_bound = _b + loc
        place(output, cond2*(cond == cond), lower_bound)
        place(output, cond3*(cond == cond), upper_bound)

        # call place only if at least 1 valid argument
        if np.any(cond):
            goodargs = argsreduce(cond, *((q,)+args+(loc,)))
            loc, goodargs = goodargs[-1], goodargs[:-1]
            # PB same as ticket 766
            place(output, cond, self._isf(*goodargs) + loc)

        if output.ndim == 0:
            return output[()]
        return output

    def _entropy(self, *args):
        if hasattr(self, 'pk'):
            return stats.entropy(self.pk)
        else:
            _a, _b = self._get_support(*args)
            return _expect(lambda x: entr(self._pmf(x, *args)),
                           _a, _b, self._ppf(0.5, *args), self.inc)

    def expect(self, func=None, args=(), loc=0, lb=None, ub=None,
               conditional=False, maxcount=1000, tolerance=1e-10, chunksize=32):
        """
        Calculate expected value of a function with respect to the distribution
        for discrete distribution by numerical summation.

        Parameters
        ----------
        func : callable, optional
            Function for which the expectation value is calculated.
            Takes only one argument.
            The default is the identity mapping f(k) = k.
        args : tuple, optional
            Shape parameters of the distribution.
        loc : float, optional
            Location parameter.
            Default is 0.
        lb, ub : int, optional
            Lower and upper bound for the summation, default is set to the
            support of the distribution, inclusive (``lb <= k <= ub``).
        conditional : bool, optional
            If true then the expectation is corrected by the conditional
            probability of the summation interval. The return value is the
            expectation of the function, `func`, conditional on being in
            the given interval (k such that ``lb <= k <= ub``).
            Default is False.
        maxcount : int, optional
            Maximal number of terms to evaluate (to avoid an endless loop for
            an infinite sum). Default is 1000.
        tolerance : float, optional
            Absolute tolerance for the summation. Default is 1e-10.
        chunksize : int, optional
            Iterate over the support of a distributions in chunks of this size.
            Default is 32.

        Returns
        -------
        expect : float
            Expected value.

        Notes
        -----
        For heavy-tailed distributions, the expected value may or
        may not exist,
        depending on the function, `func`. If it does exist, but the
        sum converges
        slowly, the accuracy of the result may be rather low. For instance, for
        ``zipf(4)``, accuracy for mean, variance in example is only 1e-5.
        increasing `maxcount` and/or `chunksize` may improve the result,
        but may also make zipf very slow.

        The function is not vectorized.

        """
        # Although `args` is just the shape parameters, `poisson_binom` needs this
        # to split the vector-valued shape into a tuple of separate shapes
        args, _, _ = self._parse_args(*args)

        if func is None:
            def fun(x):
                # loc and args from outer scope
                return (x+loc)*self._pmf(x, *args)
        else:
            def fun(x):
                # loc and args from outer scope
                return func(x+loc)*self._pmf(x, *args)
        # used pmf because _pmf does not check support in randint and there
        # might be problems(?) with correct self.a, self.b at this stage maybe
        # not anymore, seems to work now with _pmf

        _a, _b = self._get_support(*args)
        if lb is None:
            lb = _a
        else:
            lb = lb - loc   # convert bound for standardized distribution
        if ub is None:
            ub = _b
        else:
            ub = ub - loc   # convert bound for standardized distribution
        if conditional:
            invfac = self.sf(lb-1, *args) - self.sf(ub, *args)
        else:
            invfac = 1.0

        if isinstance(self, rv_sample):
            res = self._expect(fun, lb, ub)
            return res / invfac

        # iterate over the support, starting from the median
        x0 = self._ppf(0.5, *args)
        res = _expect(fun, lb, ub, x0, self.inc, maxcount, tolerance, chunksize)
        return res / invfac

    def _param_info(self):
        shape_info = self._shape_info()
        loc_info = _ShapeInfo("loc", True, (-np.inf, np.inf), (False, False))
        param_info = shape_info + [loc_info]
        return param_info


def _expect(fun, lb, ub, x0, inc, maxcount=1000, tolerance=1e-10,
            chunksize=32):
    """Helper for computing the expectation value of `fun`."""
    # short-circuit if the support size is small enough
    if (ub - lb) <= chunksize:
        supp = np.arange(lb, ub+1, inc)
        vals = fun(supp)
        return np.sum(vals)

    # otherwise, iterate starting from x0
    if x0 < lb:
        x0 = lb
    if x0 > ub:
        x0 = ub

    count, tot = 0, 0.
    # iterate over [x0, ub] inclusive
    for x in _iter_chunked(x0, ub+1, chunksize=chunksize, inc=inc):
        count += x.size
        delta = np.sum(fun(x))
        tot += delta
        if abs(delta) < tolerance * x.size:
            break
        if count > maxcount:
            warnings.warn('expect(): sum did not converge',
                          RuntimeWarning, stacklevel=3)
            return tot

    # iterate over [lb, x0)
    for x in _iter_chunked(x0-1, lb-1, chunksize=chunksize, inc=-inc):
        count += x.size
        delta = np.sum(fun(x))
        tot += delta
        if abs(delta) < tolerance * x.size:
            break
        if count > maxcount:
            warnings.warn('expect(): sum did not converge',
                          RuntimeWarning, stacklevel=3)
            break

    return tot


def _iter_chunked(x0, x1, chunksize=4, inc=1):
    """Iterate from x0 to x1 in chunks of chunksize and steps inc.

    x0 must be finite, x1 need not be. In the latter case, the iterator is
    infinite.
    Handles both x0 < x1 and x0 > x1. In the latter case, iterates downwards
    (make sure to set inc < 0.)

    >>> from scipy.stats._distn_infrastructure import _iter_chunked
    >>> [x for x in _iter_chunked(2, 5, inc=2)]
    [array([2, 4])]
    >>> [x for x in _iter_chunked(2, 11, inc=2)]
    [array([2, 4, 6, 8]), array([10])]
    >>> [x for x in _iter_chunked(2, -5, inc=-2)]
    [array([ 2,  0, -2, -4])]
    >>> [x for x in _iter_chunked(2, -9, inc=-2)]
    [array([ 2,  0, -2, -4]), array([-6, -8])]

    """
    if inc == 0:
        raise ValueError('Cannot increment by zero.')
    if chunksize <= 0:
        raise ValueError(f'Chunk size must be positive; got {chunksize}.')

    s = 1 if inc > 0 else -1
    stepsize = abs(chunksize * inc)

    x = np.copy(x0)
    while (x - x1) * inc < 0:
        delta = min(stepsize, abs(x - x1))
        step = delta * s
        supp = np.arange(x, x + step, inc)
        x += step
        yield supp


class rv_sample(rv_discrete):
    """A 'sample' discrete distribution defined by the support and values.

    The ctor ignores most of the arguments, only needs the `values` argument.
    """

    def __init__(self, a=0, b=inf, name=None, badvalue=None,
                 moment_tol=1e-8, values=None, inc=1, longname=None,
                 shapes=None, seed=None):

        super(rv_discrete, self).__init__(seed)

        if values is None:
            raise ValueError("rv_sample.__init__(..., values=None,...)")

        # cf generic freeze
        self._ctor_param = dict(
            a=a, b=b, name=name, badvalue=badvalue,
            moment_tol=moment_tol, values=values, inc=inc,
            longname=longname, shapes=shapes, seed=seed)

        if badvalue is None:
            badvalue = nan
        self.badvalue = badvalue
        self.moment_tol = moment_tol
        self.inc = inc
        self.shapes = shapes
        self.vecentropy = self._entropy

        xk, pk = values

        if np.shape(xk) != np.shape(pk):
            raise ValueError("xk and pk must have the same shape.")
        if np.less(pk, 0.0).any():
            raise ValueError("All elements of pk must be non-negative.")
        if not np.allclose(np.sum(pk), 1):
            raise ValueError("The sum of provided pk is not 1.")
        if not len(set(np.ravel(xk))) == np.size(xk):
            raise ValueError("xk may not contain duplicate values.")

        indx = np.argsort(np.ravel(xk))
        self.xk = np.take(np.ravel(xk), indx, 0)
        self.pk = np.take(np.ravel(pk), indx, 0)
        self.a = self.xk[0]
        self.b = self.xk[-1]

        self.qvals = np.cumsum(self.pk, axis=0)

        self.shapes = ' '   # bypass inspection

        self._construct_argparser(meths_to_inspect=[self._pmf],
                                  locscale_in='loc=0',
                                  # scale=1 for discrete RVs
                                  locscale_out='loc, 1')

        self._attach_methods()

        self._construct_docstrings(name, longname)

    def __getstate__(self):
        dct = self.__dict__.copy()

        # these methods will be remade in rv_generic.__setstate__,
        # which calls rv_generic._attach_methods
        attrs = ["_parse_args", "_parse_args_stats", "_parse_args_rvs"]
        [dct.pop(attr, None) for attr in attrs]

        return dct

    def _attach_methods(self):
        """Attaches dynamically created argparser methods."""
        self._attach_argparser_methods()

    def _get_support(self, *args):
        """Return the support of the (unscaled, unshifted) distribution.

        Parameters
        ----------
        arg1, arg2, ... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).

        Returns
        -------
        a, b : numeric (float, or int or +/-np.inf)
            end-points of the distribution's support.
        """
        return self.a, self.b

    def _pmf(self, x):
        return np.select([x == k for k in self.xk],
                         [np.broadcast_arrays(p, x)[0] for p in self.pk], 0)

    def _cdf(self, x):
        xx, xxk = np.broadcast_arrays(x[:, None], self.xk)
        indx = np.argmax(xxk > xx, axis=-1) - 1
        return self.qvals[indx]

    def _ppf(self, q):
        qq, sqq = np.broadcast_arrays(q[..., None], self.qvals)
        indx = argmax(sqq >= qq, axis=-1)
        return self.xk[indx]

    def _rvs(self, size=None, random_state=None):
        # Need to define it explicitly, otherwise .rvs() with size=None
        # fails due to explicit broadcasting in _ppf
        U = random_state.uniform(size=size)
        if size is None:
            U = np.array(U, ndmin=1)
            Y = self._ppf(U)[0]
        else:
            Y = self._ppf(U)
        return Y

    def _entropy(self):
        return stats.entropy(self.pk)

    def generic_moment(self, n):
        n = asarray(n)
        return np.sum(self.xk**n[np.newaxis, ...] * self.pk, axis=0)

    def _expect(self, fun, lb, ub, *args, **kwds):
        # ignore all args, just do a brute force summation
        supp = self.xk[(lb <= self.xk) & (self.xk <= ub)]
        vals = fun(supp)
        return np.sum(vals)


def _check_shape(argshape, size):
    """
    This is a utility function used by `_rvs()` in the class geninvgauss_gen.
    It compares the tuple argshape to the tuple size.

    Parameters
    ----------
    argshape : tuple of integers
        Shape of the arguments.
    size : tuple of integers or integer
        Size argument of rvs().

    Returns
    -------
    The function returns two tuples, scalar_shape and bc.

    scalar_shape : tuple
        Shape to which the 1-d array of random variates returned by
        _rvs_scalar() is converted when it is copied into the
        output array of _rvs().

    bc : tuple of booleans
        bc is an tuple the same length as size. bc[j] is True if the data
        associated with that index is generated in one call of _rvs_scalar().

    """
    scalar_shape = []
    bc = []
    for argdim, sizedim in zip_longest(argshape[::-1], size[::-1],
                                       fillvalue=1):
        if sizedim > argdim or (argdim == sizedim == 1):
            scalar_shape.append(sizedim)
            bc.append(True)
        else:
            bc.append(False)
    return tuple(scalar_shape[::-1]), tuple(bc[::-1])


def get_distribution_names(namespace_pairs, rv_base_class):
    """Collect names of statistical distributions and their generators.

    Parameters
    ----------
    namespace_pairs : sequence
        A snapshot of (name, value) pairs in the namespace of a module.
    rv_base_class : class
        The base class of random variable generator classes in a module.

    Returns
    -------
    distn_names : list of strings
        Names of the statistical distributions.
    distn_gen_names : list of strings
        Names of the generators of the statistical distributions.
        Note that these are not simply the names of the statistical
        distributions, with a _gen suffix added.

    """
    distn_names = []
    distn_gen_names = []
    for name, value in namespace_pairs:
        if name.startswith('_'):
            continue
        if name.endswith('_gen') and issubclass(value, rv_base_class):
            distn_gen_names.append(name)
        if isinstance(value, rv_base_class):
            distn_names.append(name)
    return distn_names, distn_gen_names