File size: 22,524 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
from functools import cached_property

import numpy as np
from scipy import linalg
from scipy.stats import _multivariate


__all__ = ["Covariance"]


class Covariance:
    """
    Representation of a covariance matrix

    Calculations involving covariance matrices (e.g. data whitening,
    multivariate normal function evaluation) are often performed more
    efficiently using a decomposition of the covariance matrix instead of the
    covariance matrix itself. This class allows the user to construct an
    object representing a covariance matrix using any of several
    decompositions and perform calculations using a common interface.

    .. note::

        The `Covariance` class cannot be instantiated directly. Instead, use
        one of the factory methods (e.g. `Covariance.from_diagonal`).

    Examples
    --------
    The `Covariance` class is used by calling one of its
    factory methods to create a `Covariance` object, then pass that
    representation of the `Covariance` matrix as a shape parameter of a
    multivariate distribution.

    For instance, the multivariate normal distribution can accept an array
    representing a covariance matrix:

    >>> from scipy import stats
    >>> import numpy as np
    >>> d = [1, 2, 3]
    >>> A = np.diag(d)  # a diagonal covariance matrix
    >>> x = [4, -2, 5]  # a point of interest
    >>> dist = stats.multivariate_normal(mean=[0, 0, 0], cov=A)
    >>> dist.pdf(x)
    4.9595685102808205e-08

    but the calculations are performed in a very generic way that does not
    take advantage of any special properties of the covariance matrix. Because
    our covariance matrix is diagonal, we can use ``Covariance.from_diagonal``
    to create an object representing the covariance matrix, and
    `multivariate_normal` can use this to compute the probability density
    function more efficiently.

    >>> cov = stats.Covariance.from_diagonal(d)
    >>> dist = stats.multivariate_normal(mean=[0, 0, 0], cov=cov)
    >>> dist.pdf(x)
    4.9595685102808205e-08

    """
    def __init__(self):
        message = ("The `Covariance` class cannot be instantiated directly. "
                   "Please use one of the factory methods "
                   "(e.g. `Covariance.from_diagonal`).")
        raise NotImplementedError(message)

    @staticmethod
    def from_diagonal(diagonal):
        r"""
        Return a representation of a covariance matrix from its diagonal.

        Parameters
        ----------
        diagonal : array_like
            The diagonal elements of a diagonal matrix.

        Notes
        -----
        Let the diagonal elements of a diagonal covariance matrix :math:`D` be
        stored in the vector :math:`d`.

        When all elements of :math:`d` are strictly positive, whitening of a
        data point :math:`x` is performed by computing
        :math:`x \cdot d^{-1/2}`, where the inverse square root can be taken
        element-wise.
        :math:`\log\det{D}` is calculated as :math:`-2 \sum(\log{d})`,
        where the :math:`\log` operation is performed element-wise.

        This `Covariance` class supports singular covariance matrices. When
        computing ``_log_pdet``, non-positive elements of :math:`d` are
        ignored. Whitening is not well defined when the point to be whitened
        does not lie in the span of the columns of the covariance matrix. The
        convention taken here is to treat the inverse square root of
        non-positive elements of :math:`d` as zeros.

        Examples
        --------
        Prepare a symmetric positive definite covariance matrix ``A`` and a
        data point ``x``.

        >>> import numpy as np
        >>> from scipy import stats
        >>> rng = np.random.default_rng()
        >>> n = 5
        >>> A = np.diag(rng.random(n))
        >>> x = rng.random(size=n)

        Extract the diagonal from ``A`` and create the `Covariance` object.

        >>> d = np.diag(A)
        >>> cov = stats.Covariance.from_diagonal(d)

        Compare the functionality of the `Covariance` object against a
        reference implementations.

        >>> res = cov.whiten(x)
        >>> ref = np.diag(d**-0.5) @ x
        >>> np.allclose(res, ref)
        True
        >>> res = cov.log_pdet
        >>> ref = np.linalg.slogdet(A)[-1]
        >>> np.allclose(res, ref)
        True

        """
        return CovViaDiagonal(diagonal)

    @staticmethod
    def from_precision(precision, covariance=None):
        r"""
        Return a representation of a covariance from its precision matrix.

        Parameters
        ----------
        precision : array_like
            The precision matrix; that is, the inverse of a square, symmetric,
            positive definite covariance matrix.
        covariance : array_like, optional
            The square, symmetric, positive definite covariance matrix. If not
            provided, this may need to be calculated (e.g. to evaluate the
            cumulative distribution function of
            `scipy.stats.multivariate_normal`) by inverting `precision`.

        Notes
        -----
        Let the covariance matrix be :math:`A`, its precision matrix be
        :math:`P = A^{-1}`, and :math:`L` be the lower Cholesky factor such
        that :math:`L L^T = P`.
        Whitening of a data point :math:`x` is performed by computing
        :math:`x^T L`. :math:`\log\det{A}` is calculated as
        :math:`-2tr(\log{L})`, where the :math:`\log` operation is performed
        element-wise.

        This `Covariance` class does not support singular covariance matrices
        because the precision matrix does not exist for a singular covariance
        matrix.

        Examples
        --------
        Prepare a symmetric positive definite precision matrix ``P`` and a
        data point ``x``. (If the precision matrix is not already available,
        consider the other factory methods of the `Covariance` class.)

        >>> import numpy as np
        >>> from scipy import stats
        >>> rng = np.random.default_rng()
        >>> n = 5
        >>> P = rng.random(size=(n, n))
        >>> P = P @ P.T  # a precision matrix must be positive definite
        >>> x = rng.random(size=n)

        Create the `Covariance` object.

        >>> cov = stats.Covariance.from_precision(P)

        Compare the functionality of the `Covariance` object against
        reference implementations.

        >>> res = cov.whiten(x)
        >>> ref = x @ np.linalg.cholesky(P)
        >>> np.allclose(res, ref)
        True
        >>> res = cov.log_pdet
        >>> ref = -np.linalg.slogdet(P)[-1]
        >>> np.allclose(res, ref)
        True

        """
        return CovViaPrecision(precision, covariance)

    @staticmethod
    def from_cholesky(cholesky):
        r"""
        Representation of a covariance provided via the (lower) Cholesky factor

        Parameters
        ----------
        cholesky : array_like
            The lower triangular Cholesky factor of the covariance matrix.

        Notes
        -----
        Let the covariance matrix be :math:`A` and :math:`L` be the lower
        Cholesky factor such that :math:`L L^T = A`.
        Whitening of a data point :math:`x` is performed by computing
        :math:`L^{-1} x`. :math:`\log\det{A}` is calculated as
        :math:`2tr(\log{L})`, where the :math:`\log` operation is performed
        element-wise.

        This `Covariance` class does not support singular covariance matrices
        because the Cholesky decomposition does not exist for a singular
        covariance matrix.

        Examples
        --------
        Prepare a symmetric positive definite covariance matrix ``A`` and a
        data point ``x``.

        >>> import numpy as np
        >>> from scipy import stats
        >>> rng = np.random.default_rng()
        >>> n = 5
        >>> A = rng.random(size=(n, n))
        >>> A = A @ A.T  # make the covariance symmetric positive definite
        >>> x = rng.random(size=n)

        Perform the Cholesky decomposition of ``A`` and create the
        `Covariance` object.

        >>> L = np.linalg.cholesky(A)
        >>> cov = stats.Covariance.from_cholesky(L)

        Compare the functionality of the `Covariance` object against
        reference implementation.

        >>> from scipy.linalg import solve_triangular
        >>> res = cov.whiten(x)
        >>> ref = solve_triangular(L, x, lower=True)
        >>> np.allclose(res, ref)
        True
        >>> res = cov.log_pdet
        >>> ref = np.linalg.slogdet(A)[-1]
        >>> np.allclose(res, ref)
        True

        """
        return CovViaCholesky(cholesky)

    @staticmethod
    def from_eigendecomposition(eigendecomposition):
        r"""
        Representation of a covariance provided via eigendecomposition

        Parameters
        ----------
        eigendecomposition : sequence
            A sequence (nominally a tuple) containing the eigenvalue and
            eigenvector arrays as computed by `scipy.linalg.eigh` or
            `numpy.linalg.eigh`.

        Notes
        -----
        Let the covariance matrix be :math:`A`, let :math:`V` be matrix of
        eigenvectors, and let :math:`W` be the diagonal matrix of eigenvalues
        such that `V W V^T = A`.

        When all of the eigenvalues are strictly positive, whitening of a
        data point :math:`x` is performed by computing
        :math:`x^T (V W^{-1/2})`, where the inverse square root can be taken
        element-wise.
        :math:`\log\det{A}` is calculated as  :math:`tr(\log{W})`,
        where the :math:`\log` operation is performed element-wise.

        This `Covariance` class supports singular covariance matrices. When
        computing ``_log_pdet``, non-positive eigenvalues are ignored.
        Whitening is not well defined when the point to be whitened
        does not lie in the span of the columns of the covariance matrix. The
        convention taken here is to treat the inverse square root of
        non-positive eigenvalues as zeros.

        Examples
        --------
        Prepare a symmetric positive definite covariance matrix ``A`` and a
        data point ``x``.

        >>> import numpy as np
        >>> from scipy import stats
        >>> rng = np.random.default_rng()
        >>> n = 5
        >>> A = rng.random(size=(n, n))
        >>> A = A @ A.T  # make the covariance symmetric positive definite
        >>> x = rng.random(size=n)

        Perform the eigendecomposition of ``A`` and create the `Covariance`
        object.

        >>> w, v = np.linalg.eigh(A)
        >>> cov = stats.Covariance.from_eigendecomposition((w, v))

        Compare the functionality of the `Covariance` object against
        reference implementations.

        >>> res = cov.whiten(x)
        >>> ref = x @ (v @ np.diag(w**-0.5))
        >>> np.allclose(res, ref)
        True
        >>> res = cov.log_pdet
        >>> ref = np.linalg.slogdet(A)[-1]
        >>> np.allclose(res, ref)
        True

        """
        return CovViaEigendecomposition(eigendecomposition)

    def whiten(self, x):
        """
        Perform a whitening transformation on data.

        "Whitening" ("white" as in "white noise", in which each frequency has
        equal magnitude) transforms a set of random variables into a new set of
        random variables with unit-diagonal covariance. When a whitening
        transform is applied to a sample of points distributed according to
        a multivariate normal distribution with zero mean, the covariance of
        the transformed sample is approximately the identity matrix.

        Parameters
        ----------
        x : array_like
            An array of points. The last dimension must correspond with the
            dimensionality of the space, i.e., the number of columns in the
            covariance matrix.

        Returns
        -------
        x_ : array_like
            The transformed array of points.

        References
        ----------
        .. [1] "Whitening Transformation". Wikipedia.
               https://en.wikipedia.org/wiki/Whitening_transformation
        .. [2] Novak, Lukas, and Miroslav Vorechovsky. "Generalization of
               coloring linear transformation". Transactions of VSB 18.2
               (2018): 31-35. :doi:`10.31490/tces-2018-0013`

        Examples
        --------
        >>> import numpy as np
        >>> from scipy import stats
        >>> rng = np.random.default_rng()
        >>> n = 3
        >>> A = rng.random(size=(n, n))
        >>> cov_array = A @ A.T  # make matrix symmetric positive definite
        >>> precision = np.linalg.inv(cov_array)
        >>> cov_object = stats.Covariance.from_precision(precision)
        >>> x = rng.multivariate_normal(np.zeros(n), cov_array, size=(10000))
        >>> x_ = cov_object.whiten(x)
        >>> np.cov(x_, rowvar=False)  # near-identity covariance
        array([[0.97862122, 0.00893147, 0.02430451],
               [0.00893147, 0.96719062, 0.02201312],
               [0.02430451, 0.02201312, 0.99206881]])

        """
        return self._whiten(np.asarray(x))

    def colorize(self, x):
        """
        Perform a colorizing transformation on data.

        "Colorizing" ("color" as in "colored noise", in which different
        frequencies may have different magnitudes) transforms a set of
        uncorrelated random variables into a new set of random variables with
        the desired covariance. When a coloring transform is applied to a
        sample of points distributed according to a multivariate normal
        distribution with identity covariance and zero mean, the covariance of
        the transformed sample is approximately the covariance matrix used
        in the coloring transform.

        Parameters
        ----------
        x : array_like
            An array of points. The last dimension must correspond with the
            dimensionality of the space, i.e., the number of columns in the
            covariance matrix.

        Returns
        -------
        x_ : array_like
            The transformed array of points.

        References
        ----------
        .. [1] "Whitening Transformation". Wikipedia.
               https://en.wikipedia.org/wiki/Whitening_transformation
        .. [2] Novak, Lukas, and Miroslav Vorechovsky. "Generalization of
               coloring linear transformation". Transactions of VSB 18.2
               (2018): 31-35. :doi:`10.31490/tces-2018-0013`

        Examples
        --------
        >>> import numpy as np
        >>> from scipy import stats
        >>> rng = np.random.default_rng(1638083107694713882823079058616272161)
        >>> n = 3
        >>> A = rng.random(size=(n, n))
        >>> cov_array = A @ A.T  # make matrix symmetric positive definite
        >>> cholesky = np.linalg.cholesky(cov_array)
        >>> cov_object = stats.Covariance.from_cholesky(cholesky)
        >>> x = rng.multivariate_normal(np.zeros(n), np.eye(n), size=(10000))
        >>> x_ = cov_object.colorize(x)
        >>> cov_data = np.cov(x_, rowvar=False)
        >>> np.allclose(cov_data, cov_array, rtol=3e-2)
        True
        """
        return self._colorize(np.asarray(x))

    @property
    def log_pdet(self):
        """
        Log of the pseudo-determinant of the covariance matrix
        """
        return np.array(self._log_pdet, dtype=float)[()]

    @property
    def rank(self):
        """
        Rank of the covariance matrix
        """
        return np.array(self._rank, dtype=int)[()]

    @property
    def covariance(self):
        """
        Explicit representation of the covariance matrix
        """
        return self._covariance

    @property
    def shape(self):
        """
        Shape of the covariance array
        """
        return self._shape

    def _validate_matrix(self, A, name):
        A = np.atleast_2d(A)
        m, n = A.shape[-2:]
        if m != n or A.ndim != 2 or not (np.issubdtype(A.dtype, np.integer) or
                                         np.issubdtype(A.dtype, np.floating)):
            message = (f"The input `{name}` must be a square, "
                       "two-dimensional array of real numbers.")
            raise ValueError(message)
        return A

    def _validate_vector(self, A, name):
        A = np.atleast_1d(A)
        if A.ndim != 1 or not (np.issubdtype(A.dtype, np.integer) or
                               np.issubdtype(A.dtype, np.floating)):
            message = (f"The input `{name}` must be a one-dimensional array "
                       "of real numbers.")
            raise ValueError(message)
        return A


class CovViaPrecision(Covariance):

    def __init__(self, precision, covariance=None):
        precision = self._validate_matrix(precision, 'precision')
        if covariance is not None:
            covariance = self._validate_matrix(covariance, 'covariance')
            message = "`precision.shape` must equal `covariance.shape`."
            if precision.shape != covariance.shape:
                raise ValueError(message)

        self._chol_P = np.linalg.cholesky(precision)
        self._log_pdet = -2*np.log(np.diag(self._chol_P)).sum(axis=-1)
        self._rank = precision.shape[-1]  # must be full rank if invertible
        self._precision = precision
        self._cov_matrix = covariance
        self._shape = precision.shape
        self._allow_singular = False

    def _whiten(self, x):
        return x @ self._chol_P

    @cached_property
    def _covariance(self):
        n = self._shape[-1]
        return (linalg.cho_solve((self._chol_P, True), np.eye(n))
                if self._cov_matrix is None else self._cov_matrix)

    def _colorize(self, x):
        return linalg.solve_triangular(self._chol_P.T, x.T, lower=False).T


def _dot_diag(x, d):
    # If d were a full diagonal matrix, x @ d would always do what we want.
    # Special treatment is needed for n-dimensional `d` in which each row
    # includes only the diagonal elements of a covariance matrix.
    return x * d if x.ndim < 2 else x * np.expand_dims(d, -2)


class CovViaDiagonal(Covariance):

    def __init__(self, diagonal):
        diagonal = self._validate_vector(diagonal, 'diagonal')

        i_zero = diagonal <= 0
        positive_diagonal = np.array(diagonal, dtype=np.float64)

        positive_diagonal[i_zero] = 1  # ones don't affect determinant
        self._log_pdet = np.sum(np.log(positive_diagonal), axis=-1)

        psuedo_reciprocals = 1 / np.sqrt(positive_diagonal)
        psuedo_reciprocals[i_zero] = 0

        self._sqrt_diagonal = np.sqrt(diagonal)
        self._LP = psuedo_reciprocals
        self._rank = positive_diagonal.shape[-1] - i_zero.sum(axis=-1)
        self._covariance = np.apply_along_axis(np.diag, -1, diagonal)
        self._i_zero = i_zero
        self._shape = self._covariance.shape
        self._allow_singular = True

    def _whiten(self, x):
        return _dot_diag(x, self._LP)

    def _colorize(self, x):
        return _dot_diag(x, self._sqrt_diagonal)

    def _support_mask(self, x):
        """
        Check whether x lies in the support of the distribution.
        """
        return ~np.any(_dot_diag(x, self._i_zero), axis=-1)


class CovViaCholesky(Covariance):

    def __init__(self, cholesky):
        L = self._validate_matrix(cholesky, 'cholesky')

        self._factor = L
        self._log_pdet = 2*np.log(np.diag(self._factor)).sum(axis=-1)
        self._rank = L.shape[-1]  # must be full rank for cholesky
        self._shape = L.shape
        self._allow_singular = False

    @cached_property
    def _covariance(self):
        return self._factor @ self._factor.T

    def _whiten(self, x):
        res = linalg.solve_triangular(self._factor, x.T, lower=True).T
        return res

    def _colorize(self, x):
        return x @ self._factor.T


class CovViaEigendecomposition(Covariance):

    def __init__(self, eigendecomposition):
        eigenvalues, eigenvectors = eigendecomposition
        eigenvalues = self._validate_vector(eigenvalues, 'eigenvalues')
        eigenvectors = self._validate_matrix(eigenvectors, 'eigenvectors')
        message = ("The shapes of `eigenvalues` and `eigenvectors` "
                   "must be compatible.")
        try:
            eigenvalues = np.expand_dims(eigenvalues, -2)
            eigenvectors, eigenvalues = np.broadcast_arrays(eigenvectors,
                                                            eigenvalues)
            eigenvalues = eigenvalues[..., 0, :]
        except ValueError:
            raise ValueError(message)

        i_zero = eigenvalues <= 0
        positive_eigenvalues = np.array(eigenvalues, dtype=np.float64)

        positive_eigenvalues[i_zero] = 1  # ones don't affect determinant
        self._log_pdet = np.sum(np.log(positive_eigenvalues), axis=-1)

        psuedo_reciprocals = 1 / np.sqrt(positive_eigenvalues)
        psuedo_reciprocals[i_zero] = 0

        self._LP = eigenvectors * psuedo_reciprocals
        self._LA = eigenvectors * np.sqrt(eigenvalues)
        self._rank = positive_eigenvalues.shape[-1] - i_zero.sum(axis=-1)
        self._w = eigenvalues
        self._v = eigenvectors
        self._shape = eigenvectors.shape
        self._null_basis = eigenvectors * i_zero
        # This is only used for `_support_mask`, not to decide whether
        # the covariance is singular or not.
        self._eps = _multivariate._eigvalsh_to_eps(eigenvalues) * 10**3
        self._allow_singular = True

    def _whiten(self, x):
        return x @ self._LP

    def _colorize(self, x):
        return x @ self._LA.T

    @cached_property
    def _covariance(self):
        return (self._v * self._w) @ self._v.T

    def _support_mask(self, x):
        """
        Check whether x lies in the support of the distribution.
        """
        residual = np.linalg.norm(x @ self._null_basis, axis=-1)
        in_support = residual < self._eps
        return in_support


class CovViaPSD(Covariance):
    """
    Representation of a covariance provided via an instance of _PSD
    """

    def __init__(self, psd):
        self._LP = psd.U
        self._log_pdet = psd.log_pdet
        self._rank = psd.rank
        self._covariance = psd._M
        self._shape = psd._M.shape
        self._psd = psd
        self._allow_singular = False  # by default

    def _whiten(self, x):
        return x @ self._LP

    def _support_mask(self, x):
        return self._psd._support_mask(x)