File size: 6,264 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/* Translated into C++ by SciPy developers in 2024.
 * Original header with Copyright information appears below.
 */

/*                                                     kn.c
 *
 *     Modified Bessel function, third kind, integer order
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, kn();
 * int n;
 *
 * y = kn( n, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns modified Bessel function of the third kind
 * of order n of the argument.
 *
 * The range is partitioned into the two intervals [0,9.55] and
 * (9.55, infinity).  An ascending power series is used in the
 * low range, and an asymptotic expansion in the high range.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0,30        90000       1.8e-8      3.0e-10
 *
 *  Error is high only near the crossover point x = 9.55
 * between the two expansions used.
 */

/*
 * Cephes Math Library Release 2.8:  June, 2000
 * Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
 */

/*
 * Algorithm for Kn.
 *                        n-1
 *                    -n   -  (n-k-1)!    2   k
 * K (x)  =  0.5 (x/2)     >  -------- (-x /4)
 *  n                      -     k!
 *                        k=0
 *
 *                     inf.                                   2   k
 *        n         n   -                                   (x /4)
 *  + (-1)  0.5(x/2)    >  {p(k+1) + p(n+k+1) - 2log(x/2)} ---------
 *                      -                                  k! (n+k)!
 *                     k=0
 *
 * where  p(m) is the psi function: p(1) = -EUL and
 *
 *                       m-1
 *                        -
 *       p(m)  =  -EUL +  >  1/k
 *                        -
 *                       k=1
 *
 * For large x,
 *                                          2        2     2
 *                                       u-1     (u-1 )(u-3 )
 * K (z)  =  sqrt(pi/2z) exp(-z) { 1 + ------- + ------------ + ...}
 *  v                                        1            2
 *                                     1! (8z)     2! (8z)
 * asymptotically, where
 *
 *            2
 *     u = 4 v .
 *
 */
#pragma once

#include "../config.h"
#include "../error.h"

#include "const.h"

namespace xsf {
namespace cephes {

    namespace detail {

        constexpr int kn_MAXFAC = 31;

    }

    XSF_HOST_DEVICE inline double kn(int nn, double x) {
        double k, kf, nk1f, nkf, zn, t, s, z0, z;
        double ans, fn, pn, pk, zmn, tlg, tox;
        int i, n;

        if (nn < 0)
            n = -nn;
        else
            n = nn;

        if (n > detail::kn_MAXFAC) {
        overf:
            set_error("kn", SF_ERROR_OVERFLOW, NULL);
            return (std::numeric_limits<double>::infinity());
        }

        if (x <= 0.0) {
            if (x < 0.0) {
                set_error("kn", SF_ERROR_DOMAIN, NULL);
                return std::numeric_limits<double>::quiet_NaN();
            } else {
                set_error("kn", SF_ERROR_SINGULAR, NULL);
                return std::numeric_limits<double>::infinity();
            }
        }

        if (x > 9.55)
            goto asymp;

        ans = 0.0;
        z0 = 0.25 * x * x;
        fn = 1.0;
        pn = 0.0;
        zmn = 1.0;
        tox = 2.0 / x;

        if (n > 0) {
            /* compute factorial of n and psi(n) */
            pn = -detail::SCIPY_EULER;
            k = 1.0;
            for (i = 1; i < n; i++) {
                pn += 1.0 / k;
                k += 1.0;
                fn *= k;
            }

            zmn = tox;

            if (n == 1) {
                ans = 1.0 / x;
            } else {
                nk1f = fn / n;
                kf = 1.0;
                s = nk1f;
                z = -z0;
                zn = 1.0;
                for (i = 1; i < n; i++) {
                    nk1f = nk1f / (n - i);
                    kf = kf * i;
                    zn *= z;
                    t = nk1f * zn / kf;
                    s += t;
                    if ((std::numeric_limits<double>::max() - std::abs(t)) < std::abs(s)) {
                        goto overf;
                    }
                    if ((tox > 1.0) && ((std::numeric_limits<double>::max() / tox) < zmn)) {
                        goto overf;
                    }
                    zmn *= tox;
                }
                s *= 0.5;
                t = std::abs(s);
                if ((zmn > 1.0) && ((std::numeric_limits<double>::max() / zmn) < t)) {
                    goto overf;
                }
                if ((t > 1.0) && ((std::numeric_limits<double>::max() / t) < zmn)) {
                    goto overf;
                }
                ans = s * zmn;
            }
        }

        tlg = 2.0 * log(0.5 * x);
        pk = -detail::SCIPY_EULER;
        if (n == 0) {
            pn = pk;
            t = 1.0;
        } else {
            pn = pn + 1.0 / n;
            t = 1.0 / fn;
        }
        s = (pk + pn - tlg) * t;
        k = 1.0;
        do {
            t *= z0 / (k * (k + n));
            pk += 1.0 / k;
            pn += 1.0 / (k + n);
            s += (pk + pn - tlg) * t;
            k += 1.0;
        } while (fabs(t / s) > detail::MACHEP);

        s = 0.5 * s / zmn;
        if (n & 1) {
            s = -s;
        }
        ans += s;

        return (ans);

        /* Asymptotic expansion for Kn(x) */
        /* Converges to 1.4e-17 for x > 18.4 */

    asymp:

        if (x > detail::MAXLOG) {
            set_error("kn", SF_ERROR_UNDERFLOW, NULL);
            return (0.0);
        }
        k = n;
        pn = 4.0 * k * k;
        pk = 1.0;
        z0 = 8.0 * x;
        fn = 1.0;
        t = 1.0;
        s = t;
        nkf = std::numeric_limits<double>::infinity();
        i = 0;
        do {
            z = pn - pk * pk;
            t = t * z / (fn * z0);
            nk1f = std::abs(t);
            if ((i >= n) && (nk1f > nkf)) {
                goto adone;
            }
            nkf = nk1f;
            s += t;
            fn += 1.0;
            pk += 2.0;
            i += 1;
        } while (std::abs(t / s) > detail::MACHEP);

    adone:
        ans = std::exp(-x) * std::sqrt(M_PI / (2.0 * x)) * s;
        return (ans);
    }

} // namespace cephes
} // namespace xsf