File size: 4,548 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/* Translated into C++ by SciPy developers in 2024.
 * Original header with Copyright information appears below.
 */

/*                                                     i0.c
 *
 *     Modified Bessel function of order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, i0();
 *
 * y = i0( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns modified Bessel function of order zero of the
 * argument.
 *
 * The function is defined as i0(x) = j0( ix ).
 *
 * The range is partitioned into the two intervals [0,8] and
 * (8, infinity).  Chebyshev polynomial expansions are employed
 * in each interval.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0,30        30000       5.8e-16     1.4e-16
 *
 */
/*							i0e.c
 *
 *	Modified Bessel function of order zero,
 *	exponentially scaled
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, i0e();
 *
 * y = i0e( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns exponentially scaled modified Bessel function
 * of order zero of the argument.
 *
 * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0,30        30000       5.4e-16     1.2e-16
 * See i0().
 *
 */

/*                                                     i0.c            */

/*
 * Cephes Math Library Release 2.8:  June, 2000
 * Copyright 1984, 1987, 2000 by Stephen L. Moshier
 */
#pragma once

#include "../config.h"
#include "chbevl.h"

namespace xsf {
namespace cephes {

    namespace detail {

        /* Chebyshev coefficients for exp(-x) I0(x)
         * in the interval [0,8].
         *
         * lim(x->0){ exp(-x) I0(x) } = 1.
         */
        constexpr double i0_A[] = {
            -4.41534164647933937950E-18, 3.33079451882223809783E-17,  -2.43127984654795469359E-16,
            1.71539128555513303061E-15,  -1.16853328779934516808E-14, 7.67618549860493561688E-14,
            -4.85644678311192946090E-13, 2.95505266312963983461E-12,  -1.72682629144155570723E-11,
            9.67580903537323691224E-11,  -5.18979560163526290666E-10, 2.65982372468238665035E-9,
            -1.30002500998624804212E-8,  6.04699502254191894932E-8,   -2.67079385394061173391E-7,
            1.11738753912010371815E-6,   -4.41673835845875056359E-6,  1.64484480707288970893E-5,
            -5.75419501008210370398E-5,  1.88502885095841655729E-4,   -5.76375574538582365885E-4,
            1.63947561694133579842E-3,   -4.32430999505057594430E-3,  1.05464603945949983183E-2,
            -2.37374148058994688156E-2,  4.93052842396707084878E-2,   -9.49010970480476444210E-2,
            1.71620901522208775349E-1,   -3.04682672343198398683E-1,  6.76795274409476084995E-1};

        /* Chebyshev coefficients for exp(-x) sqrt(x) I0(x)
         * in the inverted interval [8,infinity].
         *
         * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi).
         */
        constexpr double i0_B[] = {
            -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17,
            3.46122286769746109310E-17,  -2.82762398051658348494E-16, -3.42548561967721913462E-16,
            1.77256013305652638360E-15,  3.81168066935262242075E-15,  -9.55484669882830764870E-15,
            -4.15056934728722208663E-14, 1.54008621752140982691E-14,  3.85277838274214270114E-13,
            7.18012445138366623367E-13,  -1.79417853150680611778E-12, -1.32158118404477131188E-11,
            -3.14991652796324136454E-11, 1.18891471078464383424E-11,  4.94060238822496958910E-10,
            3.39623202570838634515E-9,   2.26666899049817806459E-8,   2.04891858946906374183E-7,
            2.89137052083475648297E-6,   6.88975834691682398426E-5,   3.36911647825569408990E-3,
            8.04490411014108831608E-1};
    } // namespace detail

    XSF_HOST_DEVICE inline double i0(double x) {
        double y;

        if (x < 0)
            x = -x;
        if (x <= 8.0) {
            y = (x / 2.0) - 2.0;
            return (std::exp(x) * chbevl(y, detail::i0_A, 30));
        }

        return (std::exp(x) * chbevl(32.0 / x - 2.0, detail::i0_B, 25) / sqrt(x));
    }

    XSF_HOST_DEVICE inline double i0e(double x) {
        double y;

        if (x < 0)
            x = -x;
        if (x <= 8.0) {
            y = (x / 2.0) - 2.0;
            return (chbevl(y, detail::i0_A, 30));
        }

        return (chbevl(32.0 / x - 2.0, detail::i0_B, 25) / std::sqrt(x));
    }

} // namespace cephes
} // namespace xsf