File size: 11,089 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
/* Translated into C++ by SciPy developers in 2024.
* Original header with Copyright information appears below.
*/
/* airy.c
*
* Airy function
*
*
*
* SYNOPSIS:
*
* double x, ai, aip, bi, bip;
* int airy();
*
* airy( x, _&ai, _&aip, _&bi, _&bip );
*
*
*
* DESCRIPTION:
*
* Solution of the differential equation
*
* y"(x) = xy.
*
* The function returns the two independent solutions Ai, Bi
* and their first derivatives Ai'(x), Bi'(x).
*
* Evaluation is by power series summation for small x,
* by rational minimax approximations for large x.
*
*
*
* ACCURACY:
* Error criterion is absolute when function <= 1, relative
* when function > 1, except * denotes relative error criterion.
* For large negative x, the absolute error increases as x^1.5.
* For large positive x, the relative error increases as x^1.5.
*
* Arithmetic domain function # trials peak rms
* IEEE -10, 0 Ai 10000 1.6e-15 2.7e-16
* IEEE 0, 10 Ai 10000 2.3e-14* 1.8e-15*
* IEEE -10, 0 Ai' 10000 4.6e-15 7.6e-16
* IEEE 0, 10 Ai' 10000 1.8e-14* 1.5e-15*
* IEEE -10, 10 Bi 30000 4.2e-15 5.3e-16
* IEEE -10, 10 Bi' 30000 4.9e-15 7.3e-16
*
*/
/* airy.c */
/*
* Cephes Math Library Release 2.8: June, 2000
* Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
*/
#pragma once
#include "../config.h"
#include "const.h"
#include "polevl.h"
namespace xsf {
namespace cephes {
namespace detail {
constexpr double airy_c1 = 0.35502805388781723926;
constexpr double airy_c2 = 0.258819403792806798405;
constexpr double MAXAIRY = 103.892;
constexpr double airy_AN[8] = {
3.46538101525629032477E-1, 1.20075952739645805542E1, 7.62796053615234516538E1, 1.68089224934630576269E2,
1.59756391350164413639E2, 7.05360906840444183113E1, 1.40264691163389668864E1, 9.99999999999999995305E-1,
};
constexpr double airy_AD[8] = {
5.67594532638770212846E-1, 1.47562562584847203173E1, 8.45138970141474626562E1, 1.77318088145400459522E2,
1.64234692871529701831E2, 7.14778400825575695274E1, 1.40959135607834029598E1, 1.00000000000000000470E0,
};
constexpr double airy_APN[8] = {
6.13759184814035759225E-1, 1.47454670787755323881E1, 8.20584123476060982430E1, 1.71184781360976385540E2,
1.59317847137141783523E2, 6.99778599330103016170E1, 1.39470856980481566958E1, 1.00000000000000000550E0,
};
constexpr double airy_APD[8] = {
3.34203677749736953049E-1, 1.11810297306158156705E1, 7.11727352147859965283E1, 1.58778084372838313640E2,
1.53206427475809220834E2, 6.86752304592780337944E1, 1.38498634758259442477E1, 9.99999999999999994502E-1,
};
constexpr double airy_BN16[5] = {
-2.53240795869364152689E-1, 5.75285167332467384228E-1, -3.29907036873225371650E-1,
6.44404068948199951727E-2, -3.82519546641336734394E-3,
};
constexpr double airy_BD16[5] = {
/* 1.00000000000000000000E0, */
-7.15685095054035237902E0, 1.06039580715664694291E1, -5.23246636471251500874E0,
9.57395864378383833152E-1, -5.50828147163549611107E-2,
};
constexpr double airy_BPPN[5] = {
4.65461162774651610328E-1, -1.08992173800493920734E0, 6.38800117371827987759E-1,
-1.26844349553102907034E-1, 7.62487844342109852105E-3,
};
constexpr double airy_BPPD[5] = {
/* 1.00000000000000000000E0, */
-8.70622787633159124240E0, 1.38993162704553213172E1, -7.14116144616431159572E0,
1.34008595960680518666E0, -7.84273211323341930448E-2,
};
constexpr double airy_AFN[9] = {
-1.31696323418331795333E-1, -6.26456544431912369773E-1, -6.93158036036933542233E-1,
-2.79779981545119124951E-1, -4.91900132609500318020E-2, -4.06265923594885404393E-3,
-1.59276496239262096340E-4, -2.77649108155232920844E-6, -1.67787698489114633780E-8,
};
constexpr double airy_AFD[9] = {
/* 1.00000000000000000000E0, */
1.33560420706553243746E1, 3.26825032795224613948E1, 2.67367040941499554804E1,
9.18707402907259625840E0, 1.47529146771666414581E0, 1.15687173795188044134E-1,
4.40291641615211203805E-3, 7.54720348287414296618E-5, 4.51850092970580378464E-7,
};
constexpr double airy_AGN[11] = {
1.97339932091685679179E-2, 3.91103029615688277255E-1, 1.06579897599595591108E0, 9.39169229816650230044E-1,
3.51465656105547619242E-1, 6.33888919628925490927E-2, 5.85804113048388458567E-3, 2.82851600836737019778E-4,
6.98793669997260967291E-6, 8.11789239554389293311E-8, 3.41551784765923618484E-10,
};
constexpr double airy_AGD[10] = {
/* 1.00000000000000000000E0, */
9.30892908077441974853E0, 1.98352928718312140417E1, 1.55646628932864612953E1, 5.47686069422975497931E0,
9.54293611618961883998E-1, 8.64580826352392193095E-2, 4.12656523824222607191E-3, 1.01259085116509135510E-4,
1.17166733214413521882E-6, 4.91834570062930015649E-9,
};
constexpr double airy_APFN[9] = {
1.85365624022535566142E-1, 8.86712188052584095637E-1, 9.87391981747398547272E-1,
4.01241082318003734092E-1, 7.10304926289631174579E-2, 5.90618657995661810071E-3,
2.33051409401776799569E-4, 4.08718778289035454598E-6, 2.48379932900442457853E-8,
};
constexpr double airy_APFD[9] = {
/* 1.00000000000000000000E0, */
1.47345854687502542552E1, 3.75423933435489594466E1, 3.14657751203046424330E1,
1.09969125207298778536E1, 1.78885054766999417817E0, 1.41733275753662636873E-1,
5.44066067017226003627E-3, 9.39421290654511171663E-5, 5.65978713036027009243E-7,
};
constexpr double airy_APGN[11] = {
-3.55615429033082288335E-2, -6.37311518129435504426E-1, -1.70856738884312371053E0,
-1.50221872117316635393E0, -5.63606665822102676611E-1, -1.02101031120216891789E-1,
-9.48396695961445269093E-3, -4.60325307486780994357E-4, -1.14300836484517375919E-5,
-1.33415518685547420648E-7, -5.63803833958893494476E-10,
};
constexpr double airy_APGD[11] = {
/* 1.00000000000000000000E0, */
9.85865801696130355144E0, 2.16401867356585941885E1, 1.73130776389749389525E1, 6.17872175280828766327E0,
1.08848694396321495475E0, 9.95005543440888479402E-2, 4.78468199683886610842E-3, 1.18159633322838625562E-4,
1.37480673554219441465E-6, 5.79912514929147598821E-9,
};
} // namespace detail
XSF_HOST_DEVICE inline int airy(double x, double *ai, double *aip, double *bi, double *bip) {
double z, zz, t, f, g, uf, ug, k, zeta, theta;
int domflg;
domflg = 0;
if (x > detail::MAXAIRY) {
*ai = 0;
*aip = 0;
*bi = std::numeric_limits<double>::infinity();
*bip = std::numeric_limits<double>::infinity();
return (-1);
}
if (x < -2.09) {
domflg = 15;
t = std::sqrt(-x);
zeta = -2.0 * x * t / 3.0;
t = std::sqrt(t);
k = detail::SQRT1OPI / t;
z = 1.0 / zeta;
zz = z * z;
uf = 1.0 + zz * polevl(zz, detail::airy_AFN, 8) / p1evl(zz, detail::airy_AFD, 9);
ug = z * polevl(zz, detail::airy_AGN, 10) / p1evl(zz, detail::airy_AGD, 10);
theta = zeta + 0.25 * M_PI;
f = std::sin(theta);
g = std::cos(theta);
*ai = k * (f * uf - g * ug);
*bi = k * (g * uf + f * ug);
uf = 1.0 + zz * polevl(zz, detail::airy_APFN, 8) / p1evl(zz, detail::airy_APFD, 9);
ug = z * polevl(zz, detail::airy_APGN, 10) / p1evl(zz, detail::airy_APGD, 10);
k = detail::SQRT1OPI * t;
*aip = -k * (g * uf + f * ug);
*bip = k * (f * uf - g * ug);
return (0);
}
if (x >= 2.09) { /* cbrt(9) */
domflg = 5;
t = std::sqrt(x);
zeta = 2.0 * x * t / 3.0;
g = std::exp(zeta);
t = std::sqrt(t);
k = 2.0 * t * g;
z = 1.0 / zeta;
f = polevl(z, detail::airy_AN, 7) / polevl(z, detail::airy_AD, 7);
*ai = detail::SQRT1OPI * f / k;
k = -0.5 * detail::SQRT1OPI * t / g;
f = polevl(z, detail::airy_APN, 7) / polevl(z, detail::airy_APD, 7);
*aip = f * k;
if (x > 8.3203353) { /* zeta > 16 */
f = z * polevl(z, detail::airy_BN16, 4) / p1evl(z, detail::airy_BD16, 5);
k = detail::SQRT1OPI * g;
*bi = k * (1.0 + f) / t;
f = z * polevl(z, detail::airy_BPPN, 4) / p1evl(z, detail::airy_BPPD, 5);
*bip = k * t * (1.0 + f);
return (0);
}
}
f = 1.0;
g = x;
t = 1.0;
uf = 1.0;
ug = x;
k = 1.0;
z = x * x * x;
while (t > detail::MACHEP) {
uf *= z;
k += 1.0;
uf /= k;
ug *= z;
k += 1.0;
ug /= k;
uf /= k;
f += uf;
k += 1.0;
ug /= k;
g += ug;
t = std::abs(uf / f);
}
uf = detail::airy_c1 * f;
ug = detail::airy_c2 * g;
if ((domflg & 1) == 0) {
*ai = uf - ug;
}
if ((domflg & 2) == 0) {
*bi = detail::SQRT3 * (uf + ug);
}
/* the deriviative of ai */
k = 4.0;
uf = x * x / 2.0;
ug = z / 3.0;
f = uf;
g = 1.0 + ug;
uf /= 3.0;
t = 1.0;
while (t > detail::MACHEP) {
uf *= z;
ug /= k;
k += 1.0;
ug *= z;
uf /= k;
f += uf;
k += 1.0;
ug /= k;
uf /= k;
g += ug;
k += 1.0;
t = std::abs(ug / g);
}
uf = detail::airy_c1 * f;
ug = detail::airy_c2 * g;
if ((domflg & 4) == 0) {
*aip = uf - ug;
}
if ((domflg & 8) == 0) {
*bip = detail::SQRT3 * (uf + ug);
};
return (0);
}
inline int airy(float xf, float *aif, float *aipf, float *bif, float *bipf) {
double ai;
double aip;
double bi;
double bip;
int res = cephes::airy(xf, &ai, &aip, &bi, &bip);
*aif = ai;
*aipf = aip;
*bif = bi;
*bipf = bip;
return res;
}
} // namespace cephes
} // namespace xsf
|