File size: 18,522 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
import collections
import numbers
import numpy as np
from ._input_validation import _nonneg_int_or_fail
from ._special_ufuncs import (legendre_p, assoc_legendre_p,
sph_legendre_p, sph_harm_y)
from ._gufuncs import (legendre_p_all, assoc_legendre_p_all,
sph_legendre_p_all, sph_harm_y_all)
__all__ = [
"assoc_legendre_p",
"assoc_legendre_p_all",
"legendre_p",
"legendre_p_all",
"sph_harm_y",
"sph_harm_y_all",
"sph_legendre_p",
"sph_legendre_p_all",
]
class MultiUFunc:
def __init__(self, ufunc_or_ufuncs, doc=None, *,
force_complex_output=False, **default_kwargs):
if not isinstance(ufunc_or_ufuncs, np.ufunc):
if isinstance(ufunc_or_ufuncs, collections.abc.Mapping):
ufuncs_iter = ufunc_or_ufuncs.values()
elif isinstance(ufunc_or_ufuncs, collections.abc.Iterable):
ufuncs_iter = ufunc_or_ufuncs
else:
raise ValueError("ufunc_or_ufuncs should be a ufunc or a"
" ufunc collection")
# Perform input validation to ensure all ufuncs in ufuncs are
# actually ufuncs and all take the same input types.
seen_input_types = set()
for ufunc in ufuncs_iter:
if not isinstance(ufunc, np.ufunc):
raise ValueError("All ufuncs must have type `numpy.ufunc`."
f" Received {ufunc_or_ufuncs}")
seen_input_types.add(frozenset(x.split("->")[0] for x in ufunc.types))
if len(seen_input_types) > 1:
raise ValueError("All ufuncs must take the same input types.")
self._ufunc_or_ufuncs = ufunc_or_ufuncs
self.__doc = doc
self.__force_complex_output = force_complex_output
self._default_kwargs = default_kwargs
self._resolve_out_shapes = None
self._finalize_out = None
self._key = None
self._ufunc_default_args = lambda *args, **kwargs: ()
self._ufunc_default_kwargs = lambda *args, **kwargs: {}
@property
def __doc__(self):
return self.__doc
def _override_key(self, func):
"""Set `key` method by decorating a function.
"""
self._key = func
def _override_ufunc_default_args(self, func):
self._ufunc_default_args = func
def _override_ufunc_default_kwargs(self, func):
self._ufunc_default_kwargs = func
def _override_resolve_out_shapes(self, func):
"""Set `resolve_out_shapes` method by decorating a function."""
if func.__doc__ is None:
func.__doc__ = \
"""Resolve to output shapes based on relevant inputs."""
func.__name__ = "resolve_out_shapes"
self._resolve_out_shapes = func
def _override_finalize_out(self, func):
self._finalize_out = func
def _resolve_ufunc(self, **kwargs):
"""Resolve to a ufunc based on keyword arguments."""
if isinstance(self._ufunc_or_ufuncs, np.ufunc):
return self._ufunc_or_ufuncs
ufunc_key = self._key(**kwargs)
return self._ufunc_or_ufuncs[ufunc_key]
def __call__(self, *args, **kwargs):
kwargs = self._default_kwargs | kwargs
args += self._ufunc_default_args(**kwargs)
ufunc = self._resolve_ufunc(**kwargs)
# array arguments to be passed to the ufunc
ufunc_args = [np.asarray(arg) for arg in args[-ufunc.nin:]]
ufunc_kwargs = self._ufunc_default_kwargs(**kwargs)
if (self._resolve_out_shapes is not None):
ufunc_arg_shapes = tuple(np.shape(ufunc_arg) for ufunc_arg in ufunc_args)
ufunc_out_shapes = self._resolve_out_shapes(*args[:-ufunc.nin],
*ufunc_arg_shapes, ufunc.nout,
**kwargs)
ufunc_arg_dtypes = tuple(ufunc_arg.dtype if hasattr(ufunc_arg, 'dtype')
else np.dtype(type(ufunc_arg))
for ufunc_arg in ufunc_args)
if hasattr(ufunc, 'resolve_dtypes'):
ufunc_dtypes = ufunc_arg_dtypes + ufunc.nout * (None,)
ufunc_dtypes = ufunc.resolve_dtypes(ufunc_dtypes)
ufunc_out_dtypes = ufunc_dtypes[-ufunc.nout:]
else:
ufunc_out_dtype = np.result_type(*ufunc_arg_dtypes)
if (not np.issubdtype(ufunc_out_dtype, np.inexact)):
ufunc_out_dtype = np.float64
ufunc_out_dtypes = ufunc.nout * (ufunc_out_dtype,)
if self.__force_complex_output:
ufunc_out_dtypes = tuple(np.result_type(1j, ufunc_out_dtype)
for ufunc_out_dtype in ufunc_out_dtypes)
out = tuple(np.empty(ufunc_out_shape, dtype=ufunc_out_dtype)
for ufunc_out_shape, ufunc_out_dtype
in zip(ufunc_out_shapes, ufunc_out_dtypes))
ufunc_kwargs['out'] = out
out = ufunc(*ufunc_args, **ufunc_kwargs)
if (self._finalize_out is not None):
out = self._finalize_out(out)
return out
sph_legendre_p = MultiUFunc(
sph_legendre_p,
r"""sph_legendre_p(n, m, theta, *, diff_n=0)
Spherical Legendre polynomial of the first kind.
Parameters
----------
n : ArrayLike[int]
Degree of the spherical Legendre polynomial. Must have ``n >= 0``.
m : ArrayLike[int]
Order of the spherical Legendre polynomial.
theta : ArrayLike[float]
Input value.
diff_n : Optional[int]
A non-negative integer. Compute and return all derivatives up
to order ``diff_n``. Default is 0.
Returns
-------
p : ndarray or tuple[ndarray]
Spherical Legendre polynomial with ``diff_n`` derivatives.
Notes
-----
The spherical counterpart of an (unnormalized) associated Legendre polynomial has
the additional factor
.. math::
\sqrt{\frac{(2 n + 1) (n - m)!}{4 \pi (n + m)!}}
It is the same as the spherical harmonic :math:`Y_{n}^{m}(\theta, \phi)`
with :math:`\phi = 0`.
""", diff_n=0
)
@sph_legendre_p._override_key
def _(diff_n):
diff_n = _nonneg_int_or_fail(diff_n, "diff_n", strict=False)
if not 0 <= diff_n <= 2:
raise ValueError(
"diff_n is currently only implemented for orders 0, 1, and 2,"
f" received: {diff_n}."
)
return diff_n
@sph_legendre_p._override_finalize_out
def _(out):
return np.moveaxis(out, -1, 0)
sph_legendre_p_all = MultiUFunc(
sph_legendre_p_all,
"""sph_legendre_p_all(n, m, theta, *, diff_n=0)
All spherical Legendre polynomials of the first kind up to the
specified degree ``n`` and order ``m``.
Output shape is ``(n + 1, 2 * m + 1, ...)``. The entry at ``(j, i)``
corresponds to degree ``j`` and order ``i`` for all ``0 <= j <= n``
and ``-m <= i <= m``.
See Also
--------
sph_legendre_p
""", diff_n=0
)
@sph_legendre_p_all._override_key
def _(diff_n):
diff_n = _nonneg_int_or_fail(diff_n, "diff_n", strict=False)
if not 0 <= diff_n <= 2:
raise ValueError(
"diff_n is currently only implemented for orders 0, 1, and 2,"
f" received: {diff_n}."
)
return diff_n
@sph_legendre_p_all._override_ufunc_default_kwargs
def _(diff_n):
return {'axes': [()] + [(0, 1, -1)]}
@sph_legendre_p_all._override_resolve_out_shapes
def _(n, m, theta_shape, nout, diff_n):
if not isinstance(n, numbers.Integral) or (n < 0):
raise ValueError("n must be a non-negative integer.")
return ((n + 1, 2 * abs(m) + 1) + theta_shape + (diff_n + 1,),)
@sph_legendre_p_all._override_finalize_out
def _(out):
return np.moveaxis(out, -1, 0)
assoc_legendre_p = MultiUFunc(
assoc_legendre_p,
r"""assoc_legendre_p(n, m, z, *, branch_cut=2, norm=False, diff_n=0)
Associated Legendre polynomial of the first kind.
Parameters
----------
n : ArrayLike[int]
Degree of the associated Legendre polynomial. Must have ``n >= 0``.
m : ArrayLike[int]
order of the associated Legendre polynomial.
z : ArrayLike[float | complex]
Input value.
branch_cut : Optional[ArrayLike[int]]
Selects branch cut. Must be 2 (default) or 3.
2: cut on the real axis ``|z| > 1``
3: cut on the real axis ``-1 < z < 1``
norm : Optional[bool]
If ``True``, compute the normalized associated Legendre polynomial.
Default is ``False``.
diff_n : Optional[int]
A non-negative integer. Compute and return all derivatives up
to order ``diff_n``. Default is 0.
Returns
-------
p : ndarray or tuple[ndarray]
Associated Legendre polynomial with ``diff_n`` derivatives.
Notes
-----
The normalized counterpart of an (unnormalized) associated Legendre
polynomial has the additional factor
.. math::
\sqrt{\frac{(2 n + 1) (n - m)!}{2 (n + m)!}}
""", branch_cut=2, norm=False, diff_n=0
)
@assoc_legendre_p._override_key
def _(branch_cut, norm, diff_n):
diff_n = _nonneg_int_or_fail(diff_n, "diff_n", strict=False)
if not 0 <= diff_n <= 2:
raise ValueError(
"diff_n is currently only implemented for orders 0, 1, and 2,"
f" received: {diff_n}."
)
return norm, diff_n
@assoc_legendre_p._override_ufunc_default_args
def _(branch_cut, norm, diff_n):
return branch_cut,
@assoc_legendre_p._override_finalize_out
def _(out):
return np.moveaxis(out, -1, 0)
assoc_legendre_p_all = MultiUFunc(
assoc_legendre_p_all,
"""assoc_legendre_p_all(n, m, z, *, branch_cut=2, norm=False, diff_n=0)
All associated Legendre polynomials of the first kind up to the
specified degree ``n`` and order ``m``.
Output shape is ``(n + 1, 2 * m + 1, ...)``. The entry at ``(j, i)``
corresponds to degree ``j`` and order ``i`` for all ``0 <= j <= n``
and ``-m <= i <= m``.
See Also
--------
assoc_legendre_p
""", branch_cut=2, norm=False, diff_n=0
)
@assoc_legendre_p_all._override_key
def _(branch_cut, norm, diff_n):
if not ((isinstance(diff_n, numbers.Integral))
and diff_n >= 0):
raise ValueError(
f"diff_n must be a non-negative integer, received: {diff_n}."
)
if not 0 <= diff_n <= 2:
raise ValueError(
"diff_n is currently only implemented for orders 0, 1, and 2,"
f" received: {diff_n}."
)
return norm, diff_n
@assoc_legendre_p_all._override_ufunc_default_args
def _(branch_cut, norm, diff_n):
return branch_cut,
@assoc_legendre_p_all._override_ufunc_default_kwargs
def _(branch_cut, norm, diff_n):
return {'axes': [(), ()] + [(0, 1, -1)]}
@assoc_legendre_p_all._override_resolve_out_shapes
def _(n, m, z_shape, branch_cut_shape, nout, **kwargs):
diff_n = kwargs['diff_n']
if not isinstance(n, numbers.Integral) or (n < 0):
raise ValueError("n must be a non-negative integer.")
if not isinstance(m, numbers.Integral) or (m < 0):
raise ValueError("m must be a non-negative integer.")
return ((n + 1, 2 * abs(m) + 1) +
np.broadcast_shapes(z_shape, branch_cut_shape) + (diff_n + 1,),)
@assoc_legendre_p_all._override_finalize_out
def _(out):
return np.moveaxis(out, -1, 0)
legendre_p = MultiUFunc(
legendre_p,
"""legendre_p(n, z, *, diff_n=0)
Legendre polynomial of the first kind.
Parameters
----------
n : ArrayLike[int]
Degree of the Legendre polynomial. Must have ``n >= 0``.
z : ArrayLike[float]
Input value.
diff_n : Optional[int]
A non-negative integer. Compute and return all derivatives up
to order ``diff_n``. Default is 0.
Returns
-------
p : ndarray or tuple[ndarray]
Legendre polynomial with ``diff_n`` derivatives.
See Also
--------
legendre
References
----------
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
Functions", John Wiley and Sons, 1996.
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
""", diff_n=0
)
@legendre_p._override_key
def _(diff_n):
if (not isinstance(diff_n, numbers.Integral)) or (diff_n < 0):
raise ValueError(
f"diff_n must be a non-negative integer, received: {diff_n}."
)
if not 0 <= diff_n <= 2:
raise NotImplementedError(
"diff_n is currently only implemented for orders 0, 1, and 2,"
f" received: {diff_n}."
)
return diff_n
@legendre_p._override_finalize_out
def _(out):
return np.moveaxis(out, -1, 0)
legendre_p_all = MultiUFunc(
legendre_p_all,
"""legendre_p_all(n, z, *, diff_n=0)
All Legendre polynomials of the first kind up to the
specified degree ``n``.
Output shape is ``(n + 1, ...)``. The entry at ``j``
corresponds to degree ``j`` for all ``0 <= j <= n``.
See Also
--------
legendre_p
""", diff_n=0
)
@legendre_p_all._override_key
def _(diff_n):
diff_n = _nonneg_int_or_fail(diff_n, "diff_n", strict=False)
if not 0 <= diff_n <= 2:
raise ValueError(
"diff_n is currently only implemented for orders 0, 1, and 2,"
f" received: {diff_n}."
)
return diff_n
@legendre_p_all._override_ufunc_default_kwargs
def _(diff_n):
return {'axes': [(), (0, -1)]}
@legendre_p_all._override_resolve_out_shapes
def _(n, z_shape, nout, diff_n):
n = _nonneg_int_or_fail(n, 'n', strict=False)
return nout * ((n + 1,) + z_shape + (diff_n + 1,),)
@legendre_p_all._override_finalize_out
def _(out):
return np.moveaxis(out, -1, 0)
sph_harm_y = MultiUFunc(
sph_harm_y,
r"""sph_harm_y(n, m, theta, phi, *, diff_n=0)
Spherical harmonics. They are defined as
.. math::
Y_n^m(\theta,\phi) = \sqrt{\frac{2 n + 1}{4 \pi} \frac{(n - m)!}{(n + m)!}}
P_n^m(\cos(\theta)) e^{i m \phi}
where :math:`P_n^m` are the (unnormalized) associated Legendre polynomials.
Parameters
----------
n : ArrayLike[int]
Degree of the harmonic. Must have ``n >= 0``. This is
often denoted by ``l`` (lower case L) in descriptions of
spherical harmonics.
m : ArrayLike[int]
Order of the harmonic.
theta : ArrayLike[float]
Polar (colatitudinal) coordinate; must be in ``[0, pi]``.
phi : ArrayLike[float]
Azimuthal (longitudinal) coordinate; must be in ``[0, 2*pi]``.
diff_n : Optional[int]
A non-negative integer. Compute and return all derivatives up
to order ``diff_n``. Default is 0.
Returns
-------
y : ndarray[complex] or tuple[ndarray[complex]]
Spherical harmonics with ``diff_n`` derivatives.
Notes
-----
There are different conventions for the meanings of the input
arguments ``theta`` and ``phi``. In SciPy ``theta`` is the
polar angle and ``phi`` is the azimuthal angle. It is common to
see the opposite convention, that is, ``theta`` as the azimuthal angle
and ``phi`` as the polar angle.
Note that SciPy's spherical harmonics include the Condon-Shortley
phase [2]_ because it is part of `sph_legendre_p`.
With SciPy's conventions, the first several spherical harmonics
are
.. math::
Y_0^0(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{1}{\pi}} \\
Y_1^{-1}(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{3}{2\pi}}
e^{-i\phi} \sin(\theta) \\
Y_1^0(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{3}{\pi}}
\cos(\theta) \\
Y_1^1(\theta, \phi) &= -\frac{1}{2} \sqrt{\frac{3}{2\pi}}
e^{i\phi} \sin(\theta).
References
----------
.. [1] Digital Library of Mathematical Functions, 14.30.
https://dlmf.nist.gov/14.30
.. [2] https://en.wikipedia.org/wiki/Spherical_harmonics#Condon.E2.80.93Shortley_phase
""", force_complex_output=True, diff_n=0
)
@sph_harm_y._override_key
def _(diff_n):
diff_n = _nonneg_int_or_fail(diff_n, "diff_n", strict=False)
if not 0 <= diff_n <= 2:
raise ValueError(
"diff_n is currently only implemented for orders 0, 1, and 2,"
f" received: {diff_n}."
)
return diff_n
@sph_harm_y._override_finalize_out
def _(out):
if (out.shape[-1] == 1):
return out[..., 0, 0]
if (out.shape[-1] == 2):
return out[..., 0, 0], out[..., [1, 0], [0, 1]]
if (out.shape[-1] == 3):
return (out[..., 0, 0], out[..., [1, 0], [0, 1]],
out[..., [[2, 1], [1, 0]], [[0, 1], [1, 2]]])
sph_harm_y_all = MultiUFunc(
sph_harm_y_all,
"""sph_harm_y_all(n, m, theta, phi, *, diff_n=0)
All spherical harmonics up to the specified degree ``n`` and order ``m``.
Output shape is ``(n + 1, 2 * m + 1, ...)``. The entry at ``(j, i)``
corresponds to degree ``j`` and order ``i`` for all ``0 <= j <= n``
and ``-m <= i <= m``.
See Also
--------
sph_harm_y
""", force_complex_output=True, diff_n=0
)
@sph_harm_y_all._override_key
def _(diff_n):
diff_n = _nonneg_int_or_fail(diff_n, "diff_n", strict=False)
if not 0 <= diff_n <= 2:
raise ValueError(
"diff_n is currently only implemented for orders 2,"
f" received: {diff_n}."
)
return diff_n
@sph_harm_y_all._override_ufunc_default_kwargs
def _(diff_n):
return {'axes': [(), ()] + [(0, 1, -2, -1)]}
@sph_harm_y_all._override_resolve_out_shapes
def _(n, m, theta_shape, phi_shape, nout, **kwargs):
diff_n = kwargs['diff_n']
if not isinstance(n, numbers.Integral) or (n < 0):
raise ValueError("n must be a non-negative integer.")
return ((n + 1, 2 * abs(m) + 1) + np.broadcast_shapes(theta_shape, phi_shape) +
(diff_n + 1, diff_n + 1),)
@sph_harm_y_all._override_finalize_out
def _(out):
if (out.shape[-1] == 1):
return out[..., 0, 0]
if (out.shape[-1] == 2):
return out[..., 0, 0], out[..., [1, 0], [0, 1]]
if (out.shape[-1] == 3):
return (out[..., 0, 0], out[..., [1, 0], [0, 1]],
out[..., [[2, 1], [1, 0]], [[0, 1], [1, 2]]])
|