File size: 29,134 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
import numpy as np
from numpy.testing import assert_equal
import pytest
from scipy.linalg import block_diag
from scipy.sparse import coo_array, random_array
from .._coo import _block_diag, _extract_block_diag
def test_shape_constructor():
empty1d = coo_array((3,))
assert empty1d.shape == (3,)
assert_equal(empty1d.toarray(), np.zeros((3,)))
empty2d = coo_array((3, 2))
assert empty2d.shape == (3, 2)
assert_equal(empty2d.toarray(), np.zeros((3, 2)))
empty_nd = coo_array((2,3,4,6,7))
assert empty_nd.shape == (2,3,4,6,7)
assert_equal(empty_nd.toarray(), np.zeros((2,3,4,6,7)))
def test_dense_constructor():
# 1d
res1d = coo_array([1, 2, 3])
assert res1d.shape == (3,)
assert_equal(res1d.toarray(), np.array([1, 2, 3]))
# 2d
res2d = coo_array([[1, 2, 3], [4, 5, 6]])
assert res2d.shape == (2, 3)
assert_equal(res2d.toarray(), np.array([[1, 2, 3], [4, 5, 6]]))
# 4d
arr4d = np.array([[[[3, 7], [1, 0]], [[6, 5], [9, 2]]],
[[[4, 3], [2, 8]], [[7, 5], [1, 6]]],
[[[0, 9], [4, 3]], [[2, 1], [7, 8]]]])
res4d = coo_array(arr4d)
assert res4d.shape == (3, 2, 2, 2)
assert_equal(res4d.toarray(), arr4d)
# 9d
np.random.seed(12)
arr9d = np.random.randn(2,3,4,7,6,5,3,2,4)
res9d = coo_array(arr9d)
assert res9d.shape == (2,3,4,7,6,5,3,2,4)
assert_equal(res9d.toarray(), arr9d)
# storing nan as element of sparse array
nan_3d = coo_array([[[1, np.nan]], [[3, 4]], [[5, 6]]])
assert nan_3d.shape == (3, 1, 2)
assert_equal(nan_3d.toarray(), np.array([[[1, np.nan]], [[3, 4]], [[5, 6]]]))
def test_dense_constructor_with_shape():
res1d = coo_array([1, 2, 3], shape=(3,))
assert res1d.shape == (3,)
assert_equal(res1d.toarray(), np.array([1, 2, 3]))
res2d = coo_array([[1, 2, 3], [4, 5, 6]], shape=(2, 3))
assert res2d.shape == (2, 3)
assert_equal(res2d.toarray(), np.array([[1, 2, 3], [4, 5, 6]]))
res3d = coo_array([[[3]], [[4]]], shape=(2, 1, 1))
assert res3d.shape == (2, 1, 1)
assert_equal(res3d.toarray(), np.array([[[3]], [[4]]]))
np.random.seed(12)
arr7d = np.random.randn(2,4,1,6,5,3,2)
res7d = coo_array((arr7d), shape=(2,4,1,6,5,3,2))
assert res7d.shape == (2,4,1,6,5,3,2)
assert_equal(res7d.toarray(), arr7d)
def test_dense_constructor_with_inconsistent_shape():
with pytest.raises(ValueError, match='inconsistent shapes'):
coo_array([1, 2, 3], shape=(4,))
with pytest.raises(ValueError, match='inconsistent shapes'):
coo_array([1, 2, 3], shape=(3, 1))
with pytest.raises(ValueError, match='inconsistent shapes'):
coo_array([[1, 2, 3]], shape=(3,))
with pytest.raises(ValueError, match='inconsistent shapes'):
coo_array([[[3]], [[4]]], shape=(1, 1, 1))
with pytest.raises(ValueError,
match='axis 0 index 2 exceeds matrix dimension 2'):
coo_array(([1], ([2],)), shape=(2,))
with pytest.raises(ValueError,
match='axis 1 index 3 exceeds matrix dimension 3'):
coo_array(([1,3], ([0, 1], [0, 3], [1, 1])), shape=(2, 3, 2))
with pytest.raises(ValueError, match='negative axis 0 index: -1'):
coo_array(([1], ([-1],)))
with pytest.raises(ValueError, match='negative axis 2 index: -1'):
coo_array(([1], ([0], [2], [-1])))
def test_1d_sparse_constructor():
empty1d = coo_array((3,))
res = coo_array(empty1d)
assert res.shape == (3,)
assert_equal(res.toarray(), np.zeros((3,)))
def test_1d_tuple_constructor():
res = coo_array(([9,8], ([1,2],)))
assert res.shape == (3,)
assert_equal(res.toarray(), np.array([0, 9, 8]))
def test_1d_tuple_constructor_with_shape():
res = coo_array(([9,8], ([1,2],)), shape=(4,))
assert res.shape == (4,)
assert_equal(res.toarray(), np.array([0, 9, 8, 0]))
def test_non_subscriptability():
coo_2d = coo_array((2, 2))
with pytest.raises(TypeError,
match="'coo_array' object does not support item assignment"):
coo_2d[0, 0] = 1
with pytest.raises(TypeError,
match="'coo_array' object is not subscriptable"):
coo_2d[0, :]
def test_reshape_overflow():
# see gh-22353 : new idx_dtype can need to be int64 instead of int32
M, N = (1045507, 523266)
coords = (np.array([M - 1], dtype='int32'), np.array([N - 1], dtype='int32'))
A = coo_array(([3.3], coords), shape=(M, N))
# need new idx_dtype to not overflow
B = A.reshape((M * N, 1))
assert B.coords[0].dtype == np.dtype('int64')
assert B.coords[0][0] == (M * N) - 1
# need idx_dtype to stay int32 if before and after can be int32
C = A.reshape(N, M)
assert C.coords[0].dtype == np.dtype('int32')
assert C.coords[0][0] == N - 1
def test_reshape():
arr1d = coo_array([1, 0, 3])
assert arr1d.shape == (3,)
col_vec = arr1d.reshape((3, 1))
assert col_vec.shape == (3, 1)
assert_equal(col_vec.toarray(), np.array([[1], [0], [3]]))
row_vec = arr1d.reshape((1, 3))
assert row_vec.shape == (1, 3)
assert_equal(row_vec.toarray(), np.array([[1, 0, 3]]))
# attempting invalid reshape
with pytest.raises(ValueError, match="cannot reshape array"):
arr1d.reshape((3,3))
# attempting reshape with a size 0 dimension
with pytest.raises(ValueError, match="cannot reshape array"):
arr1d.reshape((3,0))
arr2d = coo_array([[1, 2, 0], [0, 0, 3]])
assert arr2d.shape == (2, 3)
flat = arr2d.reshape((6,))
assert flat.shape == (6,)
assert_equal(flat.toarray(), np.array([1, 2, 0, 0, 0, 3]))
# 2d to 3d
to_3d_arr = arr2d.reshape((2, 3, 1))
assert to_3d_arr.shape == (2, 3, 1)
assert_equal(to_3d_arr.toarray(), np.array([[[1], [2], [0]], [[0], [0], [3]]]))
# attempting invalid reshape
with pytest.raises(ValueError, match="cannot reshape array"):
arr2d.reshape((1,3))
def test_nnz():
arr1d = coo_array([1, 0, 3])
assert arr1d.shape == (3,)
assert arr1d.nnz == 2
arr2d = coo_array([[1, 2, 0], [0, 0, 3]])
assert arr2d.shape == (2, 3)
assert arr2d.nnz == 3
def test_transpose():
arr1d = coo_array([1, 0, 3]).T
assert arr1d.shape == (3,)
assert_equal(arr1d.toarray(), np.array([1, 0, 3]))
arr2d = coo_array([[1, 2, 0], [0, 0, 3]]).T
assert arr2d.shape == (3, 2)
assert_equal(arr2d.toarray(), np.array([[1, 0], [2, 0], [0, 3]]))
def test_transpose_with_axis():
arr1d = coo_array([1, 0, 3]).transpose(axes=(0,))
assert arr1d.shape == (3,)
assert_equal(arr1d.toarray(), np.array([1, 0, 3]))
arr2d = coo_array([[1, 2, 0], [0, 0, 3]]).transpose(axes=(0, 1))
assert arr2d.shape == (2, 3)
assert_equal(arr2d.toarray(), np.array([[1, 2, 0], [0, 0, 3]]))
with pytest.raises(ValueError, match="axes don't match matrix dimensions"):
coo_array([1, 0, 3]).transpose(axes=(0, 1))
with pytest.raises(ValueError, match="repeated axis in transpose"):
coo_array([[1, 2, 0], [0, 0, 3]]).transpose(axes=(1, 1))
def test_1d_row_and_col():
res = coo_array([1, -2, -3])
assert_equal(res.col, np.array([0, 1, 2]))
assert_equal(res.row, np.zeros_like(res.col))
assert res.row.dtype == res.col.dtype
assert res.row.flags.writeable is False
res.col = [1, 2, 3]
assert len(res.coords) == 1
assert_equal(res.col, np.array([1, 2, 3]))
assert res.row.dtype == res.col.dtype
with pytest.raises(ValueError, match="cannot set row attribute"):
res.row = [1, 2, 3]
def test_1d_toformats():
res = coo_array([1, -2, -3])
for f in [res.tobsr, res.tocsc, res.todia, res.tolil]:
with pytest.raises(ValueError, match='Cannot convert'):
f()
for f in [res.tocoo, res.tocsr, res.todok]:
assert_equal(f().toarray(), res.toarray())
@pytest.mark.parametrize('arg', [1, 2, 4, 5, 8])
def test_1d_resize(arg: int):
den = np.array([1, -2, -3])
res = coo_array(den)
den.resize(arg, refcheck=False)
res.resize(arg)
assert res.shape == den.shape
assert_equal(res.toarray(), den)
@pytest.mark.parametrize('arg', zip([1, 2, 3, 4], [1, 2, 3, 4]))
def test_1d_to_2d_resize(arg: tuple[int, int]):
den = np.array([1, 0, 3])
res = coo_array(den)
den.resize(arg, refcheck=False)
res.resize(arg)
assert res.shape == den.shape
assert_equal(res.toarray(), den)
@pytest.mark.parametrize('arg', [1, 4, 6, 8])
def test_2d_to_1d_resize(arg: int):
den = np.array([[1, 0, 3], [4, 0, 0]])
res = coo_array(den)
den.resize(arg, refcheck=False)
res.resize(arg)
assert res.shape == den.shape
assert_equal(res.toarray(), den)
def test_sum_duplicates():
# 1d case
arr1d = coo_array(([2, 2, 2], ([1, 0, 1],)))
assert arr1d.nnz == 3
assert_equal(arr1d.toarray(), np.array([2, 4]))
arr1d.sum_duplicates()
assert arr1d.nnz == 2
assert_equal(arr1d.toarray(), np.array([2, 4]))
# 4d case
arr4d = coo_array(([2, 3, 7], ([1, 0, 1], [0, 2, 0], [1, 2, 1], [1, 0, 1])))
assert arr4d.nnz == 3
expected = np.array( # noqa: E501
[[[[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [3, 0]]],
[[[0, 0], [0, 9], [0, 0]], [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]]]]
)
assert_equal(arr4d.toarray(), expected)
arr4d.sum_duplicates()
assert arr4d.nnz == 2
assert_equal(arr4d.toarray(), expected)
# when there are no duplicates
arr_nodups = coo_array(([1, 2, 3, 4], ([0, 1, 2, 3],)))
assert arr_nodups.nnz == 4
arr_nodups.sum_duplicates()
assert arr_nodups.nnz == 4
def test_eliminate_zeros():
arr1d = coo_array(([0, 0, 1], ([1, 0, 1],)))
assert arr1d.nnz == 3
assert arr1d.count_nonzero() == 1
assert_equal(arr1d.toarray(), np.array([0, 1]))
arr1d.eliminate_zeros()
assert arr1d.nnz == 1
assert arr1d.count_nonzero() == 1
assert_equal(arr1d.toarray(), np.array([0, 1]))
assert_equal(arr1d.col, np.array([1]))
assert_equal(arr1d.row, np.array([0]))
def test_1d_add_dense():
den_a = np.array([0, -2, -3, 0])
den_b = np.array([0, 1, 2, 3])
exp = den_a + den_b
res = coo_array(den_a) + den_b
assert type(res) is type(exp)
assert_equal(res, exp)
def test_1d_add_sparse():
den_a = np.array([0, -2, -3, 0])
den_b = np.array([0, 1, 2, 3])
dense_sum = den_a + den_b
# this routes through CSR format
sparse_sum = coo_array(den_a) + coo_array(den_b)
assert_equal(dense_sum, sparse_sum.toarray())
def test_1d_matmul_vector():
den_a = np.array([0, -2, -3, 0])
den_b = np.array([0, 1, 2, 3])
exp = den_a @ den_b
res = coo_array(den_a) @ den_b
assert np.ndim(res) == 0
assert_equal(res, exp)
def test_1d_matmul_multivector():
den = np.array([0, -2, -3, 0])
other = np.array([[0, 1, 2, 3], [3, 2, 1, 0]]).T
exp = den @ other
res = coo_array(den) @ other
assert type(res) is type(exp)
assert_equal(res, exp)
def test_2d_matmul_multivector():
# sparse-sparse matmul
den = np.array([[0, 1, 2, 3], [3, 2, 1, 0]])
arr2d = coo_array(den)
exp = den @ den.T
res = arr2d @ arr2d.T
assert_equal(res.toarray(), exp)
# sparse-dense matmul for self.ndim = 2
den = np.array([[0, 4, 3, 0, 5], [1, 0, 7, 3, 4]])
arr2d = coo_array(den)
exp = den @ den.T
res = arr2d @ den.T
assert_equal(res, exp)
# sparse-dense matmul for self.ndim = 1
den_a = np.array([[0, 4, 3, 0, 5], [1, 0, 7, 3, 4]])
den_b = np.array([0, 1, 6, 0, 4])
arr1d = coo_array(den_b)
exp = den_b @ den_a.T
res = arr1d @ den_a.T
assert_equal(res, exp)
# sparse-dense matmul for self.ndim = 1 and other.ndim = 2
den_a = np.array([1, 0, 2])
den_b = np.array([[3], [4], [0]])
exp = den_a @ den_b
res = coo_array(den_a) @ den_b
assert_equal(res, exp)
res = coo_array(den_a) @ list(den_b)
assert_equal(res, exp)
def test_1d_diagonal():
den = np.array([0, -2, -3, 0])
with pytest.raises(ValueError, match='diagonal requires two dimensions'):
coo_array(den).diagonal()
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_todense(shape):
np.random.seed(12)
arr = np.random.randint(low=0, high=5, size=shape)
assert_equal(coo_array(arr).todense(), arr)
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_sparse_constructor(shape):
empty_arr = coo_array(shape)
res = coo_array(empty_arr)
assert res.shape == (shape)
assert_equal(res.toarray(), np.zeros(shape))
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_tuple_constructor(shape):
np.random.seed(12)
arr = np.random.randn(*shape)
res = coo_array(arr)
assert res.shape == shape
assert_equal(res.toarray(), arr)
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_tuple_constructor_with_shape(shape):
np.random.seed(12)
arr = np.random.randn(*shape)
res = coo_array(arr, shape=shape)
assert res.shape == shape
assert_equal(res.toarray(), arr)
def test_tuple_constructor_for_dim_size_zero():
# arrays with a dimension of size 0
with pytest.raises(ValueError, match='exceeds matrix dimension'):
coo_array(([9, 8], ([1, 2], [1, 0], [2, 1])), shape=(3,4,0))
empty_arr = coo_array(([], ([], [], [], [])), shape=(4,0,2,3))
assert_equal(empty_arr.toarray(), np.empty((4,0,2,3)))
@pytest.mark.parametrize(('shape', 'new_shape'), [((4,9,6,5), (3,6,15,4)),
((4,9,6,5), (36,30)),
((4,9,6,5), (1080,)),
((4,9,6,5), (2,3,2,2,3,5,3)),])
def test_nd_reshape(shape, new_shape):
# reshaping a 4d sparse array
rng = np.random.default_rng(23409823)
arr4d = random_array(shape, density=0.6, rng=rng, dtype=int)
assert arr4d.shape == shape
den4d = arr4d.toarray()
exp_arr = den4d.reshape(new_shape)
res_arr = arr4d.reshape(new_shape)
assert res_arr.shape == new_shape
assert_equal(res_arr.toarray(), exp_arr)
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_nnz(shape):
rng = np.random.default_rng(23409823)
arr = random_array(shape, density=0.6, rng=rng, dtype=int)
assert arr.nnz == np.count_nonzero(arr.toarray())
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_transpose(shape):
rng = np.random.default_rng(23409823)
arr = random_array(shape, density=0.6, rng=rng, dtype=int)
exp_arr = arr.toarray().T
trans_arr = arr.transpose()
assert trans_arr.shape == shape[::-1]
assert_equal(exp_arr, trans_arr.toarray())
@pytest.mark.parametrize(('shape', 'axis_perm'), [((3,), (0,)),
((2,3), (0,1)),
((2,4,3,6,5,3), (1,2,0,5,3,4)),])
def test_nd_transpose_with_axis(shape, axis_perm):
rng = np.random.default_rng(23409823)
arr = random_array(shape, density=0.6, rng=rng, dtype=int)
trans_arr = arr.transpose(axes=axis_perm)
assert_equal(trans_arr.toarray(), np.transpose(arr.toarray(), axes=axis_perm))
def test_transpose_with_inconsistent_axis():
with pytest.raises(ValueError, match="axes don't match matrix dimensions"):
coo_array([1, 0, 3]).transpose(axes=(0, 1))
with pytest.raises(ValueError, match="repeated axis in transpose"):
coo_array([[1, 2, 0], [0, 0, 3]]).transpose(axes=(1, 1))
def test_nd_eliminate_zeros():
# for 3d sparse arrays
arr3d = coo_array(([1, 0, 0, 4], ([0, 1, 1, 2], [0, 1, 0, 1], [1, 1, 2, 0])))
assert arr3d.nnz == 4
assert arr3d.count_nonzero() == 2
assert_equal(arr3d.toarray(), np.array([[[0, 1, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [4, 0, 0]]]))
arr3d.eliminate_zeros()
assert arr3d.nnz == 2
assert arr3d.count_nonzero() == 2
assert_equal(arr3d.toarray(), np.array([[[0, 1, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [4, 0, 0]]]))
# for a 5d sparse array when all elements of data array are 0
coords = ([0, 1, 1, 2], [0, 1, 0, 1], [1, 1, 2, 0], [0, 0, 2, 3], [1, 0, 0, 2])
arr5d = coo_array(([0, 0, 0, 0], coords))
assert arr5d.nnz == 4
assert arr5d.count_nonzero() == 0
arr5d.eliminate_zeros()
assert arr5d.nnz == 0
assert arr5d.count_nonzero() == 0
assert_equal(arr5d.col, np.array([]))
assert_equal(arr5d.row, np.array([]))
assert_equal(arr5d.coords, ([], [], [], [], []))
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_add_dense(shape):
rng = np.random.default_rng(23409823)
sp_x = random_array(shape, density=0.6, rng=rng, dtype=int)
sp_y = random_array(shape, density=0.6, rng=rng, dtype=int)
den_x, den_y = sp_x.toarray(), sp_y.toarray()
exp = den_x + den_y
res = sp_x + den_y
assert type(res) is type(exp)
assert_equal(res, exp)
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_add_sparse(shape):
rng = np.random.default_rng(23409823)
sp_x = random_array((shape), density=0.6, rng=rng, dtype=int)
sp_y = random_array((shape), density=0.6, rng=rng, dtype=int)
den_x, den_y = sp_x.toarray(), sp_y.toarray()
dense_sum = den_x + den_y
sparse_sum = sp_x + sp_y
assert_equal(dense_sum, sparse_sum.toarray())
def test_add_sparse_with_inf():
# addition of sparse arrays with an inf element
den_a = np.array([[[0], [np.inf]], [[-3], [0]]])
den_b = np.array([[[0], [1]], [[2], [3]]])
dense_sum = den_a + den_b
sparse_sum = coo_array(den_a) + coo_array(den_b)
assert_equal(dense_sum, sparse_sum.toarray())
@pytest.mark.parametrize(('a_shape', 'b_shape'), [((7,), (12,)),
((6,4), (6,5)),
((5,9,3,2), (9,5,2,3)),])
def test_nd_add_sparse_with_inconsistent_shapes(a_shape, b_shape):
rng = np.random.default_rng(23409823)
arr_a = random_array((a_shape), density=0.6, rng=rng, dtype=int)
arr_b = random_array((b_shape), density=0.6, rng=rng, dtype=int)
with pytest.raises(ValueError,
match="(Incompatible|inconsistent) shapes|cannot be broadcast"):
arr_a + arr_b
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_sub_dense(shape):
rng = np.random.default_rng(23409823)
sp_x = random_array(shape, density=0.6, rng=rng, dtype=int)
sp_y = random_array(shape, density=0.6, rng=rng, dtype=int)
den_x, den_y = sp_x.toarray(), sp_y.toarray()
exp = den_x - den_y
res = sp_x - den_y
assert type(res) is type(exp)
assert_equal(res, exp)
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_sub_sparse(shape):
rng = np.random.default_rng(23409823)
sp_x = random_array(shape, density=0.6, rng=rng, dtype=int)
sp_y = random_array(shape, density=0.6, rng=rng, dtype=int)
den_x, den_y = sp_x.toarray(), sp_y.toarray()
dense_sum = den_x - den_y
sparse_sum = sp_x - sp_y
assert_equal(dense_sum, sparse_sum.toarray())
def test_nd_sub_sparse_with_nan():
# subtraction of sparse arrays with a nan element
den_a = np.array([[[0], [np.nan]], [[-3], [0]]])
den_b = np.array([[[0], [1]], [[2], [3]]])
dense_sum = den_a - den_b
sparse_sum = coo_array(den_a) - coo_array(den_b)
assert_equal(dense_sum, sparse_sum.toarray())
@pytest.mark.parametrize(('a_shape', 'b_shape'), [((7,), (12,)),
((6,4), (6,5)),
((5,9,3,2), (9,5,2,3)),])
def test_nd_sub_sparse_with_inconsistent_shapes(a_shape, b_shape):
rng = np.random.default_rng(23409823)
arr_a = random_array((a_shape), density=0.6, rng=rng, dtype=int)
arr_b = random_array((b_shape), density=0.6, rng=rng, dtype=int)
with pytest.raises(ValueError, match="inconsistent shapes"):
arr_a - arr_b
mat_vec_shapes = [
((2, 3, 4, 5), (5,)),
((0, 0), (0,)),
((2, 3, 4, 7, 8), (8,)),
((4, 4, 2, 0), (0,)),
((6, 5, 3, 2, 4), (4, 1)),
((2,5), (5,)),
((2, 5), (5, 1)),
((3,), (3, 1)),
((4,), (4,))
]
@pytest.mark.parametrize(('mat_shape', 'vec_shape'), mat_vec_shapes)
def test_nd_matmul_vector(mat_shape, vec_shape):
rng = np.random.default_rng(23409823)
sp_x = random_array(mat_shape, density=0.6, rng=rng, dtype=int)
sp_y = random_array(vec_shape, density=0.6, rng=rng, dtype=int)
den_x, den_y = sp_x.toarray(), sp_y.toarray()
exp = den_x @ den_y
res = sp_x @ den_y
assert_equal(res,exp)
res = sp_x @ list(den_y)
assert_equal(res,exp)
mat_mat_shapes = [
((2, 3, 4, 5), (2, 3, 5, 7)),
((0, 0), (0,)),
((4, 4, 2, 0), (0,)),
((7, 8, 3), (3,)),
((7, 8, 3), (3, 1)),
((6, 5, 3, 2, 4), (4, 3)),
((1, 3, 2, 4), (6, 5, 1, 4, 3)),
((6, 1, 1, 2, 4), (1, 3, 4, 3)),
((4,), (2, 4, 3)),
((3,), (5, 6, 7, 3, 2)),
((4,), (4, 3)),
((2, 5), (5, 1)),
]
@pytest.mark.parametrize(('mat_shape1', 'mat_shape2'), mat_mat_shapes)
def test_nd_matmul(mat_shape1, mat_shape2):
rng = np.random.default_rng(23409823)
sp_x = random_array(mat_shape1, density=0.6, random_state=rng, dtype=int)
sp_y = random_array(mat_shape2, density=0.6, random_state=rng, dtype=int)
den_x, den_y = sp_x.toarray(), sp_y.toarray()
exp = den_x @ den_y
# sparse-sparse
res = sp_x @ sp_y
assert_equal(res.toarray(), exp)
# sparse-dense
res = sp_x @ den_y
assert_equal(res, exp)
res = sp_x @ list(den_y)
assert_equal(res, exp)
# dense-sparse
res = den_x @ sp_y
assert_equal(res, exp)
def test_nd_matmul_sparse_with_inconsistent_arrays():
rng = np.random.default_rng(23409823)
sp_x = random_array((4,5,7,6,3), density=0.6, random_state=rng, dtype=int)
sp_y = random_array((1,5,3,2,5), density=0.6, random_state=rng, dtype=int)
with pytest.raises(ValueError, match="matmul: dimension mismatch with signature"):
sp_x @ sp_y
with pytest.raises(ValueError, match="matmul: dimension mismatch with signature"):
sp_x @ (sp_y.toarray())
sp_z = random_array((1,5,3,2), density=0.6, random_state=rng, dtype=int)
with pytest.raises(ValueError, match="Batch dimensions are not broadcastable"):
sp_x @ sp_z
with pytest.raises(ValueError, match="Batch dimensions are not broadcastable"):
sp_x @ (sp_z.toarray())
def test_dot_1d_1d(): # 1-D inner product
a = coo_array([1,2,3])
b = coo_array([4,5,6])
exp = np.dot(a.toarray(), b.toarray())
res = a.dot(b)
assert_equal(res, exp)
res = a.dot(b.toarray())
assert_equal(res, exp)
def test_dot_sparse_scalar():
a = coo_array([[1, 2], [3, 4], [5, 6]])
b = 3
res = a.dot(b)
exp = np.dot(a.toarray(), b)
assert_equal(res.toarray(), exp)
def test_dot_with_inconsistent_shapes():
arr_a = coo_array([[[1, 2]], [[3, 4]]])
arr_b = coo_array([4, 5, 6])
with pytest.raises(ValueError, match="not aligned for n-D dot"):
arr_a.dot(arr_b)
def test_matmul_dot_not_implemented():
arr_a = coo_array([[1, 2], [3, 4]])
with pytest.raises(TypeError, match="argument not supported type"):
arr_a.dot(None)
with pytest.raises(TypeError, match="arg not supported type"):
arr_a.tensordot(None)
with pytest.raises(TypeError, match="unsupported operand type"):
arr_a @ None
with pytest.raises(TypeError, match="unsupported operand type"):
None @ arr_a
dot_shapes = [
((3,3), (3,3)), ((4,6), (6,7)), ((1,4), (4,1)), # matrix multiplication 2-D
((3,2,4,7), (7,)), ((5,), (6,3,5,2)), # dot of n-D and 1-D arrays
((3,2,4,7), (7,1)), ((1,5,), (6,3,5,2)),
((4,6), (3,2,6,4)), ((2,8,7), (4,5,7,7,2)), # dot of n-D and m-D arrays
((4,5,7,6), (3,2,6,4)),
]
@pytest.mark.parametrize(('a_shape', 'b_shape'), dot_shapes)
def test_dot_nd(a_shape, b_shape):
rng = np.random.default_rng(23409823)
arr_a = random_array(a_shape, density=0.6, random_state=rng, dtype=int)
arr_b = random_array(b_shape, density=0.6, random_state=rng, dtype=int)
exp = np.dot(arr_a.toarray(), arr_b.toarray())
# sparse-dense
res = arr_a.dot(arr_b.toarray())
assert_equal(res, exp)
res = arr_a.dot(list(arr_b.toarray()))
assert_equal(res, exp)
# sparse-sparse
res = arr_a.dot(arr_b)
assert_equal(res.toarray(), exp)
tensordot_shapes_and_axes = [
((4,6), (6,7), ([1], [0])),
((3,2,4,7), (7,), ([3], [0])),
((5,), (6,3,5,2), ([0], [2])),
((4,5,7,6), (3,2,6,4), ([0, 3], [3, 2])),
((2,8,7), (4,5,7,8,2), ([0, 1, 2], [4, 3, 2])),
((4,5,3,2,6), (3,2,6,7,8), 3),
((4,5,7), (7,3,7), 1),
((2,3,4), (2,3,4), ([0, 1, 2], [0, 1, 2])),
]
@pytest.mark.parametrize(('a_shape', 'b_shape', 'axes'), tensordot_shapes_and_axes)
def test_tensordot(a_shape, b_shape, axes):
rng = np.random.default_rng(23409823)
arr_a = random_array(a_shape, density=0.6, random_state=rng, dtype=int)
arr_b = random_array(b_shape, density=0.6, random_state=rng, dtype=int)
exp = np.tensordot(arr_a.toarray(), arr_b.toarray(), axes=axes)
# sparse-dense
res = arr_a.tensordot(arr_b.toarray(), axes=axes)
assert_equal(res, exp)
res = arr_a.tensordot(list(arr_b.toarray()), axes=axes)
assert_equal(res, exp)
# sparse-sparse
res = arr_a.tensordot(arr_b, axes=axes)
if type(res) is coo_array:
assert_equal(res.toarray(), exp)
else:
assert_equal(res, exp)
def test_tensordot_with_invalid_args():
rng = np.random.default_rng(23409823)
arr_a = random_array((3,4,5), density=0.6, random_state=rng, dtype=int)
arr_b = random_array((3,4,6), density=0.6, random_state=rng, dtype=int)
axes = ([2], [2]) # sizes of 2nd axes of both shapes do not match
with pytest.raises(ValueError, match="sizes of the corresponding axes must match"):
arr_a.tensordot(arr_b, axes=axes)
arr_a = random_array((5,4,2,3,7), density=0.6, random_state=rng, dtype=int)
arr_b = random_array((4,6,3,2), density=0.6, random_state=rng, dtype=int)
axes = ([2,0,1], [1,3]) # lists have different lengths
with pytest.raises(ValueError, match="axes lists/tuples must be of the"
" same length"):
arr_a.tensordot(arr_b, axes=axes)
@pytest.mark.parametrize(('actual_shape', 'broadcast_shape'),
[((1,3,5,4), (2,3,5,4)), ((2,1,5,4), (6,2,3,5,4)),
((1,1,7,8,9), (4,5,6,7,8,9)), ((1,3), (4,5,3)),
((7,8,1), (7,8,5)), ((3,1), (3,4)), ((1,), (5,)),
((1,1,1), (4,5,6)), ((1,3,1,5,4), (8,2,3,9,5,4)),])
def test_broadcast_to(actual_shape, broadcast_shape):
rng = np.random.default_rng(23409823)
arr = random_array(actual_shape, density=0.6, random_state=rng, dtype=int)
res = arr._broadcast_to(broadcast_shape)
exp = np.broadcast_to(arr.toarray(), broadcast_shape)
assert_equal(res.toarray(), exp)
@pytest.mark.parametrize(('shape'), [(4,5,6,7,8), (6,4),
(5,9,3,2), (9,5,2,3,4),])
def test_block_diag(shape):
rng = np.random.default_rng(23409823)
sp_x = random_array(shape, density=0.6, random_state=rng, dtype=int)
den_x = sp_x.toarray()
# converting n-d numpy array to an array of slices of 2-D matrices,
# to pass as argument into scipy.linalg.block_diag
num_slices = int(np.prod(den_x.shape[:-2]))
reshaped_array = den_x.reshape((num_slices,) + den_x.shape[-2:])
matrices = [reshaped_array[i, :, :] for i in range(num_slices)]
exp = block_diag(*matrices)
res = _block_diag(sp_x)
assert_equal(res.toarray(), exp)
@pytest.mark.parametrize(('shape'), [(4,5,6,7,8), (6,4),
(5,9,3,2), (9,5,2,3,4),])
def test_extract_block_diag(shape):
rng = np.random.default_rng(23409823)
sp_x = random_array(shape, density=0.6, random_state=rng, dtype=int)
res = _extract_block_diag(_block_diag(sp_x), shape)
assert_equal(res.toarray(), sp_x.toarray())
|