File size: 18,156 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
"""Compressed Sparse Row matrix format"""
__docformat__ = "restructuredtext en"
__all__ = ['csr_array', 'csr_matrix', 'isspmatrix_csr']
import numpy as np
from ._matrix import spmatrix
from ._base import _spbase, sparray
from ._sparsetools import (csr_tocsc, csr_tobsr, csr_count_blocks,
get_csr_submatrix, csr_sample_values)
from ._sputils import upcast
from ._compressed import _cs_matrix
class _csr_base(_cs_matrix):
_format = 'csr'
_allow_nd = (1, 2)
def transpose(self, axes=None, copy=False):
if axes is not None and axes != (1, 0):
raise ValueError("Sparse arrays/matrices do not support "
"an 'axes' parameter because swapping "
"dimensions is the only logical permutation.")
if self.ndim == 1:
return self.copy() if copy else self
M, N = self.shape
return self._csc_container((self.data, self.indices,
self.indptr), shape=(N, M), copy=copy)
transpose.__doc__ = _spbase.transpose.__doc__
def tolil(self, copy=False):
if self.ndim != 2:
raise ValueError("Cannot convert a 1d sparse array to lil format")
lil = self._lil_container(self.shape, dtype=self.dtype)
self.sum_duplicates()
ptr,ind,dat = self.indptr,self.indices,self.data
rows, data = lil.rows, lil.data
for n in range(self.shape[0]):
start = ptr[n]
end = ptr[n+1]
rows[n] = ind[start:end].tolist()
data[n] = dat[start:end].tolist()
return lil
tolil.__doc__ = _spbase.tolil.__doc__
def tocsr(self, copy=False):
if copy:
return self.copy()
else:
return self
tocsr.__doc__ = _spbase.tocsr.__doc__
def tocsc(self, copy=False):
if self.ndim != 2:
raise ValueError("Cannot convert a 1d sparse array to csc format")
M, N = self.shape
idx_dtype = self._get_index_dtype((self.indptr, self.indices),
maxval=max(self.nnz, M))
indptr = np.empty(N + 1, dtype=idx_dtype)
indices = np.empty(self.nnz, dtype=idx_dtype)
data = np.empty(self.nnz, dtype=upcast(self.dtype))
csr_tocsc(M, N,
self.indptr.astype(idx_dtype),
self.indices.astype(idx_dtype),
self.data,
indptr,
indices,
data)
A = self._csc_container((data, indices, indptr), shape=self.shape)
A.has_sorted_indices = True
return A
tocsc.__doc__ = _spbase.tocsc.__doc__
def tobsr(self, blocksize=None, copy=True):
if self.ndim != 2:
raise ValueError("Cannot convert a 1d sparse array to bsr format")
if blocksize is None:
from ._spfuncs import estimate_blocksize
return self.tobsr(blocksize=estimate_blocksize(self))
elif blocksize == (1,1):
arg1 = (self.data.reshape(-1,1,1),self.indices,self.indptr)
return self._bsr_container(arg1, shape=self.shape, copy=copy)
else:
R,C = blocksize
M,N = self.shape
if R < 1 or C < 1 or M % R != 0 or N % C != 0:
raise ValueError(f'invalid blocksize {blocksize}')
blks = csr_count_blocks(M,N,R,C,self.indptr,self.indices)
idx_dtype = self._get_index_dtype((self.indptr, self.indices),
maxval=max(N//C, blks))
indptr = np.empty(M//R+1, dtype=idx_dtype)
indices = np.empty(blks, dtype=idx_dtype)
data = np.zeros((blks,R,C), dtype=self.dtype)
csr_tobsr(M, N, R, C,
self.indptr.astype(idx_dtype),
self.indices.astype(idx_dtype),
self.data,
indptr, indices, data.ravel())
return self._bsr_container(
(data, indices, indptr), shape=self.shape
)
tobsr.__doc__ = _spbase.tobsr.__doc__
# these functions are used by the parent class (_cs_matrix)
# to remove redundancy between csc_matrix and csr_array
@staticmethod
def _swap(x):
"""swap the members of x if this is a column-oriented matrix
"""
return x
def __iter__(self):
if self.ndim == 1:
zero = self.dtype.type(0)
u = 0
for v, d in zip(self.indices, self.data):
for _ in range(v - u):
yield zero
yield d
u = v + 1
for _ in range(self.shape[0] - u):
yield zero
return
indptr = np.zeros(2, dtype=self.indptr.dtype)
# return 1d (sparray) or 2drow (spmatrix)
shape = self.shape[1:] if isinstance(self, sparray) else (1, self.shape[1])
i0 = 0
for i1 in self.indptr[1:]:
indptr[1] = i1 - i0
indices = self.indices[i0:i1]
data = self.data[i0:i1]
yield self.__class__((data, indices, indptr), shape=shape, copy=True)
i0 = i1
def _getrow(self, i):
"""Returns a copy of row i of the matrix, as a (1 x n)
CSR matrix (row vector).
"""
if self.ndim == 1:
if i not in (0, -1):
raise IndexError(f'index ({i}) out of range')
return self.reshape((1, self.shape[0]), copy=True)
M, N = self.shape
i = int(i)
if i < 0:
i += M
if i < 0 or i >= M:
raise IndexError('index (%d) out of range' % i)
indptr, indices, data = get_csr_submatrix(
M, N, self.indptr, self.indices, self.data, i, i + 1, 0, N)
return self.__class__((data, indices, indptr), shape=(1, N),
dtype=self.dtype, copy=False)
def _getcol(self, i):
"""Returns a copy of column i. A (m x 1) sparse array (column vector).
"""
if self.ndim == 1:
raise ValueError("getcol not provided for 1d arrays. Use indexing A[j]")
M, N = self.shape
i = int(i)
if i < 0:
i += N
if i < 0 or i >= N:
raise IndexError('index (%d) out of range' % i)
indptr, indices, data = get_csr_submatrix(
M, N, self.indptr, self.indices, self.data, 0, M, i, i + 1)
return self.__class__((data, indices, indptr), shape=(M, 1),
dtype=self.dtype, copy=False)
def _get_int(self, idx):
spot = np.flatnonzero(self.indices == idx)
if spot.size:
return self.data[spot[0]]
return self.data.dtype.type(0)
def _get_slice(self, idx):
if idx == slice(None):
return self.copy()
if idx.step in (1, None):
ret = self._get_submatrix(0, idx, copy=True)
return ret.reshape(ret.shape[-1])
return self._minor_slice(idx)
def _get_array(self, idx):
idx_dtype = self._get_index_dtype(self.indices)
idx = np.asarray(idx, dtype=idx_dtype)
if idx.size == 0:
return self.__class__([], dtype=self.dtype)
M, N = 1, self.shape[0]
row = np.zeros_like(idx, dtype=idx_dtype)
col = np.asarray(idx, dtype=idx_dtype)
val = np.empty(row.size, dtype=self.dtype)
csr_sample_values(M, N, self.indptr, self.indices, self.data,
row.size, row, col, val)
new_shape = col.shape if col.shape[0] > 1 else (col.shape[0],)
return self.__class__(val.reshape(new_shape))
def _get_intXarray(self, row, col):
return self._getrow(row)._minor_index_fancy(col)
def _get_intXslice(self, row, col):
if col.step in (1, None):
return self._get_submatrix(row, col, copy=True)
# TODO: uncomment this once it's faster:
# return self._getrow(row)._minor_slice(col)
M, N = self.shape
start, stop, stride = col.indices(N)
ii, jj = self.indptr[row:row+2]
row_indices = self.indices[ii:jj]
row_data = self.data[ii:jj]
if stride > 0:
ind = (row_indices >= start) & (row_indices < stop)
else:
ind = (row_indices <= start) & (row_indices > stop)
if abs(stride) > 1:
ind &= (row_indices - start) % stride == 0
row_indices = (row_indices[ind] - start) // stride
row_data = row_data[ind]
row_indptr = np.array([0, len(row_indices)])
if stride < 0:
row_data = row_data[::-1]
row_indices = abs(row_indices[::-1])
shape = (1, max(0, int(np.ceil(float(stop - start) / stride))))
return self.__class__((row_data, row_indices, row_indptr), shape=shape,
dtype=self.dtype, copy=False)
def _get_sliceXint(self, row, col):
if row.step in (1, None):
return self._get_submatrix(row, col, copy=True)
return self._major_slice(row)._get_submatrix(minor=col)
def _get_sliceXarray(self, row, col):
return self._major_slice(row)._minor_index_fancy(col)
def _get_arrayXint(self, row, col):
res = self._major_index_fancy(row)._get_submatrix(minor=col)
if row.ndim > 1:
return res.reshape(row.shape)
return res
def _get_arrayXslice(self, row, col):
if col.step not in (1, None):
col = np.arange(*col.indices(self.shape[1]))
return self._get_arrayXarray(row, col)
return self._major_index_fancy(row)._get_submatrix(minor=col)
def _set_int(self, idx, x):
self._set_many(0, idx, x)
def _set_array(self, idx, x):
x = np.broadcast_to(x, idx.shape)
self._set_many(np.zeros_like(idx), idx, x)
def isspmatrix_csr(x):
"""Is `x` of csr_matrix type?
Parameters
----------
x
object to check for being a csr matrix
Returns
-------
bool
True if `x` is a csr matrix, False otherwise
Examples
--------
>>> from scipy.sparse import csr_array, csr_matrix, coo_matrix, isspmatrix_csr
>>> isspmatrix_csr(csr_matrix([[5]]))
True
>>> isspmatrix_csr(csr_array([[5]]))
False
>>> isspmatrix_csr(coo_matrix([[5]]))
False
"""
return isinstance(x, csr_matrix)
# This namespace class separates array from matrix with isinstance
class csr_array(_csr_base, sparray):
"""
Compressed Sparse Row array.
This can be instantiated in several ways:
csr_array(D)
where D is a 2-D ndarray
csr_array(S)
with another sparse array or matrix S (equivalent to S.tocsr())
csr_array((M, N), [dtype])
to construct an empty array with shape (M, N)
dtype is optional, defaulting to dtype='d'.
csr_array((data, (row_ind, col_ind)), [shape=(M, N)])
where ``data``, ``row_ind`` and ``col_ind`` satisfy the
relationship ``a[row_ind[k], col_ind[k]] = data[k]``.
csr_array((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for
row i are stored in ``indices[indptr[i]:indptr[i+1]]`` and their
corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``.
If the shape parameter is not supplied, the array dimensions
are inferred from the index arrays.
Attributes
----------
dtype : dtype
Data type of the array
shape : 2-tuple
Shape of the array
ndim : int
Number of dimensions (this is always 2)
nnz
size
data
CSR format data array of the array
indices
CSR format index array of the array
indptr
CSR format index pointer array of the array
has_sorted_indices
has_canonical_format
T
Notes
-----
Sparse arrays can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Advantages of the CSR format
- efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
- efficient row slicing
- fast matrix vector products
Disadvantages of the CSR format
- slow column slicing operations (consider CSC)
- changes to the sparsity structure are expensive (consider LIL or DOK)
Canonical Format
- Within each row, indices are sorted by column.
- There are no duplicate entries.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csr_array
>>> csr_array((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_array((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_array((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
Duplicate entries are summed together:
>>> row = np.array([0, 1, 2, 0])
>>> col = np.array([0, 1, 1, 0])
>>> data = np.array([1, 2, 4, 8])
>>> csr_array((data, (row, col)), shape=(3, 3)).toarray()
array([[9, 0, 0],
[0, 2, 0],
[0, 4, 0]])
As an example of how to construct a CSR array incrementally,
the following snippet builds a term-document array from texts:
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
... for term in d:
... index = vocabulary.setdefault(term, len(vocabulary))
... indices.append(index)
... data.append(1)
... indptr.append(len(indices))
...
>>> csr_array((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
[0, 1, 1, 1]])
"""
class csr_matrix(spmatrix, _csr_base):
"""
Compressed Sparse Row matrix.
This can be instantiated in several ways:
csr_matrix(D)
where D is a 2-D ndarray
csr_matrix(S)
with another sparse array or matrix S (equivalent to S.tocsr())
csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.
csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where ``data``, ``row_ind`` and ``col_ind`` satisfy the
relationship ``a[row_ind[k], col_ind[k]] = data[k]``.
csr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for
row i are stored in ``indices[indptr[i]:indptr[i+1]]`` and their
corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``.
If the shape parameter is not supplied, the matrix dimensions
are inferred from the index arrays.
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
size
data
CSR format data array of the matrix
indices
CSR format index array of the matrix
indptr
CSR format index pointer array of the matrix
has_sorted_indices
has_canonical_format
T
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Advantages of the CSR format
- efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
- efficient row slicing
- fast matrix vector products
Disadvantages of the CSR format
- slow column slicing operations (consider CSC)
- changes to the sparsity structure are expensive (consider LIL or DOK)
Canonical Format
- Within each row, indices are sorted by column.
- There are no duplicate entries.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
Duplicate entries are summed together:
>>> row = np.array([0, 1, 2, 0])
>>> col = np.array([0, 1, 1, 0])
>>> data = np.array([1, 2, 4, 8])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[9, 0, 0],
[0, 2, 0],
[0, 4, 0]])
As an example of how to construct a CSR matrix incrementally,
the following snippet builds a term-document matrix from texts:
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
... for term in d:
... index = vocabulary.setdefault(term, len(vocabulary))
... indices.append(index)
... data.append(1)
... indptr.append(len(indices))
...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
[0, 1, 1, 1]])
"""
|