File size: 64,224 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
""" A sparse matrix in COOrdinate or 'triplet' format"""

__docformat__ = "restructuredtext en"

__all__ = ['coo_array', 'coo_matrix', 'isspmatrix_coo']

import math
from warnings import warn

import numpy as np

from .._lib._util import copy_if_needed
from ._matrix import spmatrix
from ._sparsetools import (coo_tocsr, coo_todense, coo_todense_nd,
                           coo_matvec, coo_matvec_nd, coo_matmat_dense,
                           coo_matmat_dense_nd)
from ._base import issparse, SparseEfficiencyWarning, _spbase, sparray
from ._data import _data_matrix, _minmax_mixin
from ._sputils import (upcast_char, to_native, isshape, getdtype,
                       getdata, downcast_intp_index, get_index_dtype,
                       check_shape, check_reshape_kwargs, isscalarlike, isdense)

import operator


class _coo_base(_data_matrix, _minmax_mixin):
    _format = 'coo'
    _allow_nd = range(1, 65)

    def __init__(self, arg1, shape=None, dtype=None, copy=False, *, maxprint=None):
        _data_matrix.__init__(self, arg1, maxprint=maxprint)
        if not copy:
            copy = copy_if_needed

        if isinstance(arg1, tuple):
            if isshape(arg1, allow_nd=self._allow_nd):
                self._shape = check_shape(arg1, allow_nd=self._allow_nd)
                idx_dtype = self._get_index_dtype(maxval=max(self._shape))
                data_dtype = getdtype(dtype, default=float)
                self.coords = tuple(np.array([], dtype=idx_dtype)
                                     for _ in range(len(self._shape)))
                self.data = np.array([], dtype=data_dtype)
                self.has_canonical_format = True
            else:
                try:
                    obj, coords = arg1
                except (TypeError, ValueError) as e:
                    raise TypeError('invalid input format') from e

                if shape is None:
                    if any(len(idx) == 0 for idx in coords):
                        raise ValueError('cannot infer dimensions from zero '
                                         'sized index arrays')
                    shape = tuple(operator.index(np.max(idx)) + 1
                                  for idx in coords)
                self._shape = check_shape(shape, allow_nd=self._allow_nd)
                idx_dtype = self._get_index_dtype(coords,
                                                  maxval=max(self.shape),
                                                  check_contents=True)
                self.coords = tuple(np.array(idx, copy=copy, dtype=idx_dtype)
                                     for idx in coords)
                self.data = getdata(obj, copy=copy, dtype=dtype)
                self.has_canonical_format = False
        else:
            if issparse(arg1):
                if arg1.format == self.format and copy:
                    self.coords = tuple(idx.copy() for idx in arg1.coords)
                    self.data = arg1.data.astype(getdtype(dtype, arg1))  # copy=True
                    self._shape = check_shape(arg1.shape, allow_nd=self._allow_nd)
                    self.has_canonical_format = arg1.has_canonical_format
                else:
                    coo = arg1.tocoo()
                    self.coords = tuple(coo.coords)
                    self.data = coo.data.astype(getdtype(dtype, coo), copy=False)
                    self._shape = check_shape(coo.shape, allow_nd=self._allow_nd)
                    self.has_canonical_format = False
            else:
                # dense argument
                M = np.asarray(arg1)
                if not isinstance(self, sparray):
                    M = np.atleast_2d(M)
                    if M.ndim != 2:
                        raise TypeError(f'expected 2D array or matrix, not {M.ndim}D')

                self._shape = check_shape(M.shape, allow_nd=self._allow_nd)
                if shape is not None:
                    if check_shape(shape, allow_nd=self._allow_nd) != self._shape:
                        message = f'inconsistent shapes: {shape} != {self._shape}'
                        raise ValueError(message)

                index_dtype = self._get_index_dtype(maxval=max(self._shape))
                coords = M.nonzero()
                self.coords = tuple(idx.astype(index_dtype, copy=False)
                                     for idx in coords)
                self.data = getdata(M[coords], copy=copy, dtype=dtype)
                self.has_canonical_format = True

        if len(self._shape) > 2:
            self.coords = tuple(idx.astype(np.int64, copy=False) for idx in self.coords)

        self._check()

    @property
    def row(self):
        if self.ndim > 1:
            return self.coords[-2]
        result = np.zeros_like(self.col)
        result.setflags(write=False)
        return result


    @row.setter
    def row(self, new_row):
        if self.ndim < 2:
            raise ValueError('cannot set row attribute of a 1-dimensional sparse array')
        new_row = np.asarray(new_row, dtype=self.coords[-2].dtype)
        self.coords = self.coords[:-2] + (new_row,) + self.coords[-1:]

    @property
    def col(self):
        return self.coords[-1]

    @col.setter
    def col(self, new_col):
        new_col = np.asarray(new_col, dtype=self.coords[-1].dtype)
        self.coords = self.coords[:-1] + (new_col,)

    def reshape(self, *args, **kwargs):
        shape = check_shape(args, self.shape, allow_nd=self._allow_nd)
        order, copy = check_reshape_kwargs(kwargs)

        # Return early if reshape is not required
        if shape == self.shape:
            if copy:
                return self.copy()
            else:
                return self

        # When reducing the number of dimensions, we need to be careful about
        # index overflow. This is why we can't simply call
        # `np.ravel_multi_index()` followed by `np.unravel_index()` here.
        flat_coords = _ravel_coords(self.coords, self.shape, order=order)
        if len(shape) == 2:
            if order == 'C':
                new_coords = divmod(flat_coords, shape[1])
            else:
                new_coords = divmod(flat_coords, shape[0])[::-1]
        else:
            new_coords = np.unravel_index(flat_coords, shape, order=order)

        idx_dtype = self._get_index_dtype(self.coords, maxval=max(shape))
        new_coords = tuple(np.asarray(co, dtype=idx_dtype) for co in new_coords)

        # Handle copy here rather than passing on to the constructor so that no
        # copy will be made of `new_coords` regardless.
        if copy:
            new_data = self.data.copy()
        else:
            new_data = self.data

        return self.__class__((new_data, new_coords), shape=shape, copy=False)

    reshape.__doc__ = _spbase.reshape.__doc__

    def _getnnz(self, axis=None):
        if axis is None or (axis == 0 and self.ndim == 1):
            nnz = len(self.data)
            if any(len(idx) != nnz for idx in self.coords):
                raise ValueError('all index and data arrays must have the '
                                 'same length')

            if self.data.ndim != 1 or any(idx.ndim != 1 for idx in self.coords):
                raise ValueError('coordinates and data arrays must be 1-D')

            return int(nnz)

        if axis < 0:
            axis += self.ndim
        if axis >= self.ndim:
            raise ValueError('axis out of bounds')

        return np.bincount(downcast_intp_index(self.coords[1 - axis]),
                           minlength=self.shape[1 - axis])

    _getnnz.__doc__ = _spbase._getnnz.__doc__

    def count_nonzero(self, axis=None):
        self.sum_duplicates()
        if axis is None:
            return np.count_nonzero(self.data)

        if axis < 0:
            axis += self.ndim
        if axis < 0 or axis >= self.ndim:
            raise ValueError('axis out of bounds')
        mask = self.data != 0
        coord = self.coords[1 - axis][mask]
        return np.bincount(downcast_intp_index(coord), minlength=self.shape[1 - axis])

    count_nonzero.__doc__ = _spbase.count_nonzero.__doc__

    def _check(self):
        """ Checks data structure for consistency """
        if self.ndim != len(self.coords):
            raise ValueError('mismatching number of index arrays for shape; '
                             f'got {len(self.coords)}, expected {self.ndim}')

        # index arrays should have integer data types
        for i, idx in enumerate(self.coords):
            if idx.dtype.kind != 'i':
                warn(f'index array {i} has non-integer dtype ({idx.dtype.name})',
                     stacklevel=3)

        idx_dtype = self._get_index_dtype(self.coords, maxval=max(self.shape))
        self.coords = tuple(np.asarray(idx, dtype=idx_dtype)
                             for idx in self.coords)
        self.data = to_native(self.data)

        if self.nnz > 0:
            for i, idx in enumerate(self.coords):
                if idx.max() >= self.shape[i]:
                    raise ValueError(f'axis {i} index {idx.max()} exceeds '
                                     f'matrix dimension {self.shape[i]}')
                if idx.min() < 0:
                    raise ValueError(f'negative axis {i} index: {idx.min()}')

    def transpose(self, axes=None, copy=False):
        if axes is None:
            axes = range(self.ndim)[::-1]
        elif isinstance(self, sparray):
            if not hasattr(axes, "__len__") or len(axes) != self.ndim:
                raise ValueError("axes don't match matrix dimensions")
            if len(set(axes)) != self.ndim:
                raise ValueError("repeated axis in transpose")
        elif axes != (1, 0):
            raise ValueError("Sparse matrices do not support an 'axes' "
                             "parameter because swapping dimensions is the "
                             "only logical permutation.")

        permuted_shape = tuple(self._shape[i] for i in axes)
        permuted_coords = tuple(self.coords[i] for i in axes)
        return self.__class__((self.data, permuted_coords),
                              shape=permuted_shape, copy=copy)

    transpose.__doc__ = _spbase.transpose.__doc__

    def resize(self, *shape) -> None:
        shape = check_shape(shape, allow_nd=self._allow_nd)
        if self.ndim > 2:
            raise ValueError("only 1-D or 2-D input accepted")
        if len(shape) > 2:
            raise ValueError("shape argument must be 1-D or 2-D")
        # Check for added dimensions.
        if len(shape) > self.ndim:
            flat_coords = _ravel_coords(self.coords, self.shape)
            max_size = math.prod(shape)
            self.coords = np.unravel_index(flat_coords[:max_size], shape)
            self.data = self.data[:max_size]
            self._shape = shape
            return

        # Check for removed dimensions.
        if len(shape) < self.ndim:
            tmp_shape = (
                self._shape[:len(shape) - 1]  # Original shape without last axis
                + (-1,)  # Last axis is used to flatten the array
                + (1,) * (self.ndim - len(shape))  # Pad with ones
            )
            tmp = self.reshape(tmp_shape)
            self.coords = tmp.coords[:len(shape)]
            self._shape = tmp.shape[:len(shape)]

        # Handle truncation of existing dimensions.
        is_truncating = any(old > new for old, new in zip(self.shape, shape))
        if is_truncating:
            mask = np.logical_and.reduce([
                idx < size for idx, size in zip(self.coords, shape)
            ])
            if not mask.all():
                self.coords = tuple(idx[mask] for idx in self.coords)
                self.data = self.data[mask]

        self._shape = shape

    resize.__doc__ = _spbase.resize.__doc__

    def toarray(self, order=None, out=None):
        B = self._process_toarray_args(order, out)
        fortran = int(B.flags.f_contiguous)
        if not fortran and not B.flags.c_contiguous:
            raise ValueError("Output array must be C or F contiguous")
        # This handles both 0D and 1D cases correctly regardless of the
        # original shape.
        if self.ndim == 1:
            coo_todense_nd(np.array([1]), self.nnz, self.ndim,
                           self.coords[0], self.data, B.ravel('A'), fortran)
        elif self.ndim == 2:
            M, N = self.shape
            coo_todense(M, N, self.nnz, self.row, self.col, self.data,
                        B.ravel('A'), fortran)
        else:
            if fortran:
                strides = np.append(1, np.cumprod(self.shape[:-1]))
            else:
                strides = np.append(np.cumprod(self.shape[1:][::-1])[::-1], 1)
            coords = np.concatenate(self.coords)
            coo_todense_nd(strides, self.nnz, self.ndim,
                           coords, self.data, B.ravel('A'), fortran)
        # Note: reshape() doesn't copy here, but does return a new array (view).
        return B.reshape(self.shape)

    toarray.__doc__ = _spbase.toarray.__doc__

    def tocsc(self, copy=False):
        """Convert this array/matrix to Compressed Sparse Column format

        Duplicate entries will be summed together.

        Examples
        --------
        >>> from numpy import array
        >>> from scipy.sparse import coo_array
        >>> row  = array([0, 0, 1, 3, 1, 0, 0])
        >>> col  = array([0, 2, 1, 3, 1, 0, 0])
        >>> data = array([1, 1, 1, 1, 1, 1, 1])
        >>> A = coo_array((data, (row, col)), shape=(4, 4)).tocsc()
        >>> A.toarray()
        array([[3, 0, 1, 0],
               [0, 2, 0, 0],
               [0, 0, 0, 0],
               [0, 0, 0, 1]])

        """
        if self.ndim != 2:
            raise ValueError(f'Cannot convert. CSC format must be 2D. Got {self.ndim}D')
        if self.nnz == 0:
            return self._csc_container(self.shape, dtype=self.dtype)
        else:
            from ._csc import csc_array
            indptr, indices, data, shape = self._coo_to_compressed(csc_array._swap)

            x = self._csc_container((data, indices, indptr), shape=shape)
            if not self.has_canonical_format:
                x.sum_duplicates()
            return x

    def tocsr(self, copy=False):
        """Convert this array/matrix to Compressed Sparse Row format

        Duplicate entries will be summed together.

        Examples
        --------
        >>> from numpy import array
        >>> from scipy.sparse import coo_array
        >>> row  = array([0, 0, 1, 3, 1, 0, 0])
        >>> col  = array([0, 2, 1, 3, 1, 0, 0])
        >>> data = array([1, 1, 1, 1, 1, 1, 1])
        >>> A = coo_array((data, (row, col)), shape=(4, 4)).tocsr()
        >>> A.toarray()
        array([[3, 0, 1, 0],
               [0, 2, 0, 0],
               [0, 0, 0, 0],
               [0, 0, 0, 1]])

        """
        if self.ndim > 2:
            raise ValueError(f'Cannot convert. CSR must be 1D or 2D. Got {self.ndim}D')
        if self.nnz == 0:
            return self._csr_container(self.shape, dtype=self.dtype)
        else:
            from ._csr import csr_array
            arrays = self._coo_to_compressed(csr_array._swap, copy=copy)
            indptr, indices, data, shape = arrays

            x = self._csr_container((data, indices, indptr), shape=self.shape)
            if not self.has_canonical_format:
                x.sum_duplicates()
            return x

    def _coo_to_compressed(self, swap, copy=False):
        """convert (shape, coords, data) to (indptr, indices, data, shape)"""
        M, N = swap(self._shape_as_2d)
        # convert idx_dtype intc to int32 for pythran.
        # tested in scipy/optimize/tests/test__numdiff.py::test_group_columns
        idx_dtype = self._get_index_dtype(self.coords, maxval=max(self.nnz, N))

        if self.ndim == 1:
            indices = self.coords[0].copy() if copy else self.coords[0]
            nnz = len(indices)
            indptr = np.array([0, nnz], dtype=idx_dtype)
            data = self.data.copy() if copy else self.data
            return indptr, indices, data, self.shape

        # ndim == 2
        major, minor = swap(self.coords)
        nnz = len(major)
        major = major.astype(idx_dtype, copy=False)
        minor = minor.astype(idx_dtype, copy=False)

        indptr = np.empty(M + 1, dtype=idx_dtype)
        indices = np.empty_like(minor, dtype=idx_dtype)
        data = np.empty_like(self.data, dtype=self.dtype)

        coo_tocsr(M, N, nnz, major, minor, self.data, indptr, indices, data)
        return indptr, indices, data, self.shape

    def tocoo(self, copy=False):
        if copy:
            return self.copy()
        else:
            return self

    tocoo.__doc__ = _spbase.tocoo.__doc__

    def todia(self, copy=False):
        if self.ndim != 2:
            raise ValueError(f'Cannot convert. DIA format must be 2D. Got {self.ndim}D')
        self.sum_duplicates()
        ks = self.col - self.row  # the diagonal for each nonzero
        diags, diag_idx = np.unique(ks, return_inverse=True)

        if len(diags) > 100:
            # probably undesired, should todia() have a maxdiags parameter?
            warn(f"Constructing a DIA matrix with {len(diags)} diagonals "
                 "is inefficient",
                 SparseEfficiencyWarning, stacklevel=2)

        #initialize and fill in data array
        if self.data.size == 0:
            data = np.zeros((0, 0), dtype=self.dtype)
        else:
            data = np.zeros((len(diags), self.col.max()+1), dtype=self.dtype)
            data[diag_idx, self.col] = self.data

        return self._dia_container((data, diags), shape=self.shape)

    todia.__doc__ = _spbase.todia.__doc__

    def todok(self, copy=False):
        if self.ndim > 2:
            raise ValueError(f'Cannot convert. DOK must be 1D or 2D. Got {self.ndim}D')
        self.sum_duplicates()
        dok = self._dok_container(self.shape, dtype=self.dtype)
        # ensure that 1d coordinates are not tuples
        if self.ndim == 1:
            coords = self.coords[0]
        else:
            coords = zip(*self.coords)

        dok._dict = dict(zip(coords, self.data))
        return dok

    todok.__doc__ = _spbase.todok.__doc__

    def diagonal(self, k=0):
        if self.ndim != 2:
            raise ValueError("diagonal requires two dimensions")
        rows, cols = self.shape
        if k <= -rows or k >= cols:
            return np.empty(0, dtype=self.data.dtype)
        diag = np.zeros(min(rows + min(k, 0), cols - max(k, 0)),
                        dtype=self.dtype)
        diag_mask = (self.row + k) == self.col

        if self.has_canonical_format:
            row = self.row[diag_mask]
            data = self.data[diag_mask]
        else:
            inds = tuple(idx[diag_mask] for idx in self.coords)
            (row, _), data = self._sum_duplicates(inds, self.data[diag_mask])
        diag[row + min(k, 0)] = data

        return diag

    diagonal.__doc__ = _data_matrix.diagonal.__doc__

    def _setdiag(self, values, k):
        if self.ndim != 2:
            raise ValueError("setting a diagonal requires two dimensions")
        M, N = self.shape
        if values.ndim and not len(values):
            return
        idx_dtype = self.row.dtype

        # Determine which triples to keep and where to put the new ones.
        full_keep = self.col - self.row != k
        if k < 0:
            max_index = min(M+k, N)
            if values.ndim:
                max_index = min(max_index, len(values))
            keep = np.logical_or(full_keep, self.col >= max_index)
            new_row = np.arange(-k, -k + max_index, dtype=idx_dtype)
            new_col = np.arange(max_index, dtype=idx_dtype)
        else:
            max_index = min(M, N-k)
            if values.ndim:
                max_index = min(max_index, len(values))
            keep = np.logical_or(full_keep, self.row >= max_index)
            new_row = np.arange(max_index, dtype=idx_dtype)
            new_col = np.arange(k, k + max_index, dtype=idx_dtype)

        # Define the array of data consisting of the entries to be added.
        if values.ndim:
            new_data = values[:max_index]
        else:
            new_data = np.empty(max_index, dtype=self.dtype)
            new_data[:] = values

        # Update the internal structure.
        self.coords = (np.concatenate((self.row[keep], new_row)),
                       np.concatenate((self.col[keep], new_col)))
        self.data = np.concatenate((self.data[keep], new_data))
        self.has_canonical_format = False

    # needed by _data_matrix
    def _with_data(self, data, copy=True):
        """Returns a matrix with the same sparsity structure as self,
        but with different data. By default the index arrays are copied.
        """
        if copy:
            coords = tuple(idx.copy() for idx in self.coords)
        else:
            coords = self.coords
        return self.__class__((data, coords), shape=self.shape, dtype=data.dtype)

    def sum_duplicates(self) -> None:
        """Eliminate duplicate entries by adding them together

        This is an *in place* operation
        """
        if self.has_canonical_format:
            return
        summed = self._sum_duplicates(self.coords, self.data)
        self.coords, self.data = summed
        self.has_canonical_format = True

    def _sum_duplicates(self, coords, data):
        # Assumes coords not in canonical format.
        if len(data) == 0:
            return coords, data
        # Sort coords w.r.t. rows, then cols. This corresponds to C-order,
        # which we rely on for argmin/argmax to return the first index in the
        # same way that numpy does (in the case of ties).
        order = np.lexsort(coords[::-1])
        coords = tuple(idx[order] for idx in coords)
        data = data[order]
        unique_mask = np.logical_or.reduce([
            idx[1:] != idx[:-1] for idx in coords
        ])
        unique_mask = np.append(True, unique_mask)
        coords = tuple(idx[unique_mask] for idx in coords)
        unique_inds, = np.nonzero(unique_mask)
        data = np.add.reduceat(data, downcast_intp_index(unique_inds), dtype=self.dtype)
        return coords, data

    def eliminate_zeros(self):
        """Remove zero entries from the array/matrix

        This is an *in place* operation
        """
        mask = self.data != 0
        self.data = self.data[mask]
        self.coords = tuple(idx[mask] for idx in self.coords)

    #######################
    # Arithmetic handlers #
    #######################

    def _add_dense(self, other):
        if other.shape != self.shape:
            raise ValueError(f'Incompatible shapes ({self.shape} and {other.shape})')
        dtype = upcast_char(self.dtype.char, other.dtype.char)
        result = np.array(other, dtype=dtype, copy=True)
        fortran = int(result.flags.f_contiguous)
        if self.ndim == 1:
            coo_todense_nd(np.array([1]), self.nnz, self.ndim,
                           self.coords[0], self.data, result.ravel('A'), fortran)
        elif self.ndim == 2:
            M, N = self._shape_as_2d
            coo_todense(M, N, self.nnz, self.row, self.col, self.data,
                        result.ravel('A'), fortran)
        else:
            if fortran:
                strides = np.append(1, np.cumprod(self.shape[:-1]))
            else:
                strides = np.append(np.cumprod(self.shape[1:][::-1])[::-1], 1)
            coords = np.concatenate(self.coords)
            coo_todense_nd(strides, self.nnz, self.ndim,
                           coords, self.data, result.ravel('A'), fortran)
        return self._container(result, copy=False)


    def _add_sparse(self, other):
        if self.ndim < 3:
            return self.tocsr()._add_sparse(other)

        if other.shape != self.shape:
            raise ValueError(f'Incompatible shapes ({self.shape} and {other.shape})')
        other = self.__class__(other)
        new_data = np.concatenate((self.data, other.data))
        new_coords = tuple(np.concatenate((self.coords, other.coords), axis=1))
        A = self.__class__((new_data, new_coords), shape=self.shape)
        return A


    def _sub_sparse(self, other):
        if self.ndim < 3:
            return self.tocsr()._sub_sparse(other)

        if other.shape != self.shape:
            raise ValueError(f'Incompatible shapes ({self.shape} and {other.shape})')
        other = self.__class__(other)
        new_data = np.concatenate((self.data, -other.data))
        new_coords = tuple(np.concatenate((self.coords, other.coords), axis=1))
        A = coo_array((new_data, new_coords), shape=self.shape)
        return A


    def _matmul_vector(self, other):
        if self.ndim > 2:
            result = np.zeros(math.prod(self.shape[:-1]),
                              dtype=upcast_char(self.dtype.char, other.dtype.char))
            shape = np.array(self.shape)
            strides = np.append(np.cumprod(shape[:-1][::-1])[::-1][1:], 1)
            coords = np.concatenate(self.coords)
            coo_matvec_nd(self.nnz, len(self.shape), strides, coords, self.data,
                          other, result)

            result = result.reshape(self.shape[:-1])
            return result

        # self.ndim <= 2
        result_shape = self.shape[0] if self.ndim > 1 else 1
        result = np.zeros(result_shape,
                          dtype=upcast_char(self.dtype.char, other.dtype.char))
        if self.ndim == 2:
            col = self.col
            row = self.row
        elif self.ndim == 1:
            col = self.coords[0]
            row = np.zeros_like(col)
        else:
            raise NotImplementedError(
                f"coo_matvec not implemented for ndim={self.ndim}")

        coo_matvec(self.nnz, row, col, self.data, other, result)
        # Array semantics return a scalar here, not a single-element array.
        if isinstance(self, sparray) and result_shape == 1:
            return result[0]
        return result


    def _rmatmul_dispatch(self, other):
        if isscalarlike(other):
            return self._mul_scalar(other)
        else:
            # Don't use asarray unless we have to
            try:
                o_ndim = other.ndim
            except AttributeError:
                other = np.asarray(other)
                o_ndim = other.ndim
            perm = tuple(range(o_ndim)[:-2]) + tuple(range(o_ndim)[-2:][::-1])
            tr = other.transpose(perm)

            s_ndim = self.ndim
            perm = tuple(range(s_ndim)[:-2]) + tuple(range(s_ndim)[-2:][::-1])
            ret = self.transpose(perm)._matmul_dispatch(tr)
            if ret is NotImplemented:
                return NotImplemented

            if s_ndim == 1 or o_ndim == 1:
                perm = range(ret.ndim)
            else:
                perm = tuple(range(ret.ndim)[:-2]) + tuple(range(ret.ndim)[-2:][::-1])
            return ret.transpose(perm)


    def _matmul_dispatch(self, other):
        if isscalarlike(other):
            return self.multiply(other)

        if not (issparse(other) or isdense(other)):
            # If it's a list or whatever, treat it like an array
            other_a = np.asanyarray(other)

            if other_a.ndim == 0 and other_a.dtype == np.object_:
                # Not interpretable as an array; return NotImplemented so that
                # other's __rmatmul__ can kick in if that's implemented.
                return NotImplemented

            try:
                other.shape
            except AttributeError:
                other = other_a

        if self.ndim < 3 and other.ndim < 3:
            return _spbase._matmul_dispatch(self, other)

        N = self.shape[-1]
        err_prefix = "matmul: dimension mismatch with signature"
        if other.__class__ is np.ndarray:
            if other.shape == (N,):
                return self._matmul_vector(other)
            if other.shape == (N, 1):
                result = self._matmul_vector(other.ravel())
                return result.reshape(*self.shape[:-1], 1)
            if other.ndim == 1:
                msg = f"{err_prefix} (n,k={N}),(k={other.shape[0]},)->(n,)"
                raise ValueError(msg)
            if other.shape[-2] == N:
                # check for batch dimensions compatibility
                batch_shape_A = self.shape[:-2]
                batch_shape_B = other.shape[:-2]
                if batch_shape_A != batch_shape_B:
                    try:
                        # This will raise an error if the shapes are not broadcastable
                        np.broadcast_shapes(batch_shape_A, batch_shape_B)
                    except ValueError:
                        raise ValueError("Batch dimensions are not broadcastable")

                return self._matmul_multivector(other)
            else:
                raise ValueError(
                    f"{err_prefix} (n,..,k={N}),(k={other.shape[-2]},..,m)->(n,..,m)"
                )


        if isscalarlike(other):
            # scalar value
            return self._mul_scalar(other)

        if issparse(other):
            self_is_1d = self.ndim == 1
            other_is_1d = other.ndim == 1

            # reshape to 2-D if self or other is 1-D
            if self_is_1d:
                self = self.reshape(self._shape_as_2d) # prepend 1 to shape

            if other_is_1d:
                other = other.reshape((other.shape[0], 1)) # append 1 to shape

            # Check if the inner dimensions match for matrix multiplication
            if N != other.shape[-2]:
                raise ValueError(
                    f"{err_prefix} (n,..,k={N}),(k={other.shape[-2]},..,m)->(n,..,m)"
                )

            # If A or B has more than 2 dimensions, check for
            # batch dimensions compatibility
            if self.ndim > 2 or other.ndim > 2:
                batch_shape_A = self.shape[:-2]
                batch_shape_B = other.shape[:-2]
                if batch_shape_A != batch_shape_B:
                    try:
                        # This will raise an error if the shapes are not broadcastable
                        np.broadcast_shapes(batch_shape_A, batch_shape_B)
                    except ValueError:
                        raise ValueError("Batch dimensions are not broadcastable")

            result = self._matmul_sparse(other)

            # reshape back if a or b were originally 1-D
            if self_is_1d:
                # if self was originally 1-D, reshape result accordingly
                result = result.reshape(tuple(result.shape[:-2]) +
                                        tuple(result.shape[-1:]))
            if other_is_1d:
                result = result.reshape(result.shape[:-1])
            return result


    def _matmul_multivector(self, other):
        result_dtype = upcast_char(self.dtype.char, other.dtype.char)
        if self.ndim >= 3 or other.ndim >= 3:
            # if self has shape (N,), reshape to (1,N)
            if self.ndim == 1:
                result = self.reshape(1, self.shape[0])._matmul_multivector(other)
                return result.reshape(tuple(other.shape[:-2]) + tuple(other.shape[-1:]))

            broadcast_shape = np.broadcast_shapes(self.shape[:-2], other.shape[:-2])
            self_shape = broadcast_shape + self.shape[-2:]
            other_shape = broadcast_shape + other.shape[-2:]

            self = self._broadcast_to(self_shape)
            other = np.broadcast_to(other, other_shape)
            result_shape = broadcast_shape + self.shape[-2:-1] + other.shape[-1:]
            result = np.zeros(result_shape, dtype=result_dtype)
            coo_matmat_dense_nd(self.nnz, len(self.shape), other.shape[-1],
                                np.array(other_shape), np.array(result_shape),
                                np.concatenate(self.coords),
                                self.data, other.ravel('C'), result)
            return result

        if self.ndim == 2:
            result_shape = (self.shape[0], other.shape[1])
            col = self.col
            row = self.row
        elif self.ndim == 1:
            result_shape = (other.shape[1],)
            col = self.coords[0]
            row = np.zeros_like(col)
        result = np.zeros(result_shape, dtype=result_dtype)
        coo_matmat_dense(self.nnz, other.shape[-1], row, col,
                         self.data, other.ravel('C'), result)
        return result.view(type=type(other))


    def dot(self, other):
        """Return the dot product of two arrays.

        Strictly speaking a dot product involves two vectors.
        But in the sense that an array with ndim >= 1 is a collection
        of vectors, the function computes the collection of dot products
        between each vector in the first array with each vector in the
        second array. The axis upon which the sum of products is performed
        is the last axis of the first array and the second to last axis of
        the second array. If the second array is 1-D, the last axis is used.

        Thus, if both arrays are 1-D, the inner product is returned.
        If both are 2-D, we have matrix multiplication. If `other` is 1-D,
        the sum product is taken along the last axis of each array. If
        `other` is N-D for N>=2, the sum product is over the last axis of
        the first array and the second-to-last axis of the second array.

        Parameters
        ----------
        other : array_like (dense or sparse)
            Second array

        Returns
        -------
        output : array (sparse or dense)
            The dot product of this array with `other`.
            It will be dense/sparse if `other` is dense/sparse.

        Examples
        --------

        >>> import numpy as np
        >>> from scipy.sparse import coo_array
        >>> A = coo_array([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
        >>> v = np.array([1, 0, -1])
        >>> A.dot(v)
        array([ 1, -3, -1], dtype=int64)

        For 2-D arrays it is the matrix product:

        >>> A = coo_array([[1, 0], [0, 1]])
        >>> B = coo_array([[4, 1], [2, 2]])
        >>> A.dot(B).toarray()
        array([[4, 1],
               [2, 2]])

        For 3-D arrays the shape extends unused axes by other unused axes.

        >>> A = coo_array(np.arange(3*4*5*6)).reshape((3,4,5,6))
        >>> B = coo_array(np.arange(3*4*5*6)).reshape((5,4,6,3))
        >>> A.dot(B).shape
        (3, 4, 5, 5, 4, 3)
        """
        if not (issparse(other) or isdense(other) or isscalarlike(other)):
            # If it's a list or whatever, treat it like an array
            o_array = np.asanyarray(other)

            if o_array.ndim == 0 and o_array.dtype == np.object_:
                raise TypeError(f"dot argument not supported type: '{type(other)}'")
            try:
                other.shape
            except AttributeError:
                other = o_array

        if self.ndim < 3 and (np.isscalar(other) or other.ndim<3):
            return _spbase.dot(self, other)
        # Handle scalar multiplication
        if np.isscalar(other):
            return self * other
        if isdense(other):
            return self._dense_dot(other)
        elif other.format != "coo":
            raise TypeError("input must be a COO matrix/array")
        elif self.ndim == 1 and other.ndim == 1:
            # Handle inner product of vectors (1-D arrays)
            if self.shape[0] != other.shape[0]:
                raise ValueError(f"shapes {self.shape} and {other.shape}"
                                 " are not aligned for inner product")
            return self @ other
        elif self.ndim == 2 and other.ndim == 2:
            # Handle matrix multiplication (2-D arrays)
            if self.shape[1] != other.shape[0]:
                raise ValueError(f"shapes {self.shape} and {other.shape}"
                                 " are not aligned for matmul")
            return self @ other
        else:
            return self._sparse_dot(other)


    def _sparse_dot(self, other):
        self_is_1d = self.ndim == 1
        other_is_1d = other.ndim == 1

        # reshape to 2-D if self or other is 1-D
        if self_is_1d:
            self = self.reshape(self._shape_as_2d)  # prepend 1 to shape
        if other_is_1d:
            other = other.reshape((other.shape[0], 1))  # append 1 to shape

        if self.shape[-1] != other.shape[-2]:
                raise ValueError(f"shapes {self.shape} and {other.shape}"
                                 " are not aligned for n-D dot")

        # Prepare the tensors for dot operation
        # Ravel non-reduced axes coordinates
        self_raveled_coords = _ravel_non_reduced_axes(self.coords,
                                                      self.shape, [self.ndim-1])
        other_raveled_coords = _ravel_non_reduced_axes(other.coords,
                                                       other.shape, [other.ndim-2])

        # Get the shape of the non-reduced axes
        self_nonreduced_shape = self.shape[:-1]
        other_nonreduced_shape = other.shape[:-2] + other.shape[-1:]

        # Create 2D coords arrays
        ravel_coords_shape_self = (math.prod(self_nonreduced_shape), self.shape[-1])
        ravel_coords_shape_other = (other.shape[-2], math.prod(other_nonreduced_shape))

        self_2d_coords = (self_raveled_coords, self.coords[-1])
        other_2d_coords = (other.coords[-2], other_raveled_coords)

        self_2d = coo_array((self.data, self_2d_coords), ravel_coords_shape_self)
        other_2d = coo_array((other.data, other_2d_coords), ravel_coords_shape_other)

        prod = (self_2d @ other_2d).tocoo() # routes via 2-D CSR

        # Combine the shapes of the non-reduced axes
        combined_shape = self_nonreduced_shape + other_nonreduced_shape

        # Unravel the 2D coordinates to get multi-dimensional coordinates
        shapes = (self_nonreduced_shape, other_nonreduced_shape)
        prod_coords = []
        for c, s in zip(prod.coords, shapes):
            prod_coords.extend(np.unravel_index(c, s))

        prod_arr = coo_array((prod.data, prod_coords), combined_shape)

        # reshape back if a or b were originally 1-D
        # TODO: Move this logic before computation of prod_coords for efficiency
        if self_is_1d:
            prod_arr = prod_arr.reshape(combined_shape[1:])
        if other_is_1d:
            prod_arr = prod_arr.reshape(combined_shape[:-1])

        return prod_arr

    def _dense_dot(self, other):
        self_is_1d = self.ndim == 1
        other_is_1d = other.ndim == 1

        # reshape to 2-D if self or other is 1-D
        if self_is_1d:
            self = self.reshape(self._shape_as_2d)  # prepend 1 to shape
        if other_is_1d:
            other = other.reshape((other.shape[0], 1))  # append 1 to shape

        if self.shape[-1] != other.shape[-2]:
                raise ValueError(f"shapes {self.shape} and {other.shape}"
                                 " are not aligned for n-D dot")

        new_shape_self = (
            self.shape[:-1] + (1,) * (len(other.shape) - 1) + self.shape[-1:]
        )
        new_shape_other = (1,) * (len(self.shape) - 1) + other.shape

        result_shape = self.shape[:-1] + other.shape[:-2] + other.shape[-1:]
        result = self.reshape(new_shape_self) @ other.reshape(new_shape_other)
        prod_arr = result.reshape(result_shape)

        # reshape back if a or b were originally 1-D
        if self_is_1d:
            prod_arr = prod_arr.reshape(result_shape[1:])
        if other_is_1d:
            prod_arr = prod_arr.reshape(result_shape[:-1])

        return prod_arr

    def tensordot(self, other, axes=2):
        """Return the tensordot product with another array along the given axes.

        The tensordot differs from dot and matmul in that any axis can be
        chosen for each of the first and second array and the sum of the
        products is computed just like for matrix multiplication, only not
        just for the rows of the first times the columns of the second. It
        takes the dot product of the collection of vectors along the specified
        axes.  Here we can even take the sum of the products along two or even
        more axes if desired. So, tensordot is a dot product computation
        applied to arrays of any dimension >= 1. It is like matmul but over
        arbitrary axes for each matrix.

        Given two tensors, `a` and `b`, and the desired axes specified as a
        2-tuple/list/array containing two sequences of axis numbers,
        ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s elements
        (components) over the axes specified by ``a_axes`` and ``b_axes``.
        The `axes` input can be a single non-negative integer, ``N``;
        if it is, then the last ``N`` dimensions of `a` and the first
        ``N`` dimensions of `b` are summed over.

        Parameters
        ----------
        a, b : array_like
            Tensors to "dot".

        axes : int or (2,) array_like
            * integer_like
              If an int N, sum over the last N axes of `a` and the first N axes
              of `b` in order. The sizes of the corresponding axes must match.
            * (2,) array_like
              A 2-tuple of sequences of axes to be summed over, the first applying
              to `a`, the second to `b`. The sequences must be the same length.
              The shape of the corresponding axes must match between `a` and `b`.

        Returns
        -------
        output : coo_array
            The tensor dot product of this array with `other`.
            It will be dense/sparse if `other` is dense/sparse.

        See Also
        --------
        dot

        Examples
        --------
        >>> import numpy as np
        >>> import scipy.sparse
        >>> A = scipy.sparse.coo_array([[[2, 3], [0, 0]], [[0, 1], [0, 5]]])
        >>> A.shape
        (2, 2, 2)

        Integer axes N are shorthand for (range(-N, 0), range(0, N)):

        >>> A.tensordot(A, axes=1).toarray()
        array([[[[ 4,  9],
                 [ 0, 15]],
        <BLANKLINE>
                [[ 0,  0],
                 [ 0,  0]]],
        <BLANKLINE>
        <BLANKLINE>
               [[[ 0,  1],
                 [ 0,  5]],
        <BLANKLINE>
                [[ 0,  5],
                 [ 0, 25]]]])
        >>> A.tensordot(A, axes=2).toarray()
        array([[ 4,  6],
               [ 0, 25]])
        >>> A.tensordot(A, axes=3)
        array(39)

        Using tuple for axes:

        >>> a = scipy.sparse.coo_array(np.arange(60).reshape(3,4,5))
        >>> b = np.arange(24).reshape(4,3,2)
        >>> c = a.tensordot(b, axes=([1,0],[0,1]))
        >>> c.shape
        (5, 2)
        >>> c
        array([[4400, 4730],
               [4532, 4874],
               [4664, 5018],
               [4796, 5162],
               [4928, 5306]])

        """
        if not isdense(other) and not issparse(other):
            # If it's a list or whatever, treat it like an array
            other_array = np.asanyarray(other)

            if other_array.ndim == 0 and other_array.dtype == np.object_:
                raise TypeError(f"tensordot arg not supported type: '{type(other)}'")
            try:
                other.shape
            except AttributeError:
                other = other_array

        axes_self, axes_other = _process_axes(self.ndim, other.ndim, axes)

        # Check for shape compatibility along specified axes
        if any(self.shape[ax] != other.shape[bx]
               for ax, bx in zip(axes_self, axes_other)):
            raise ValueError("sizes of the corresponding axes must match")

        if isdense(other):
            return self._dense_tensordot(other, axes_self, axes_other)
        else:
            return self._sparse_tensordot(other, axes_self, axes_other)


    def _sparse_tensordot(self, other, axes_self, axes_other):
        ndim_self = len(self.shape)
        ndim_other = len(other.shape)

        # Prepare the tensors for tensordot operation
        # Ravel non-reduced axes coordinates
        self_non_red_coords = _ravel_non_reduced_axes(self.coords, self.shape,
                                                      axes_self)
        self_reduced_coords = np.ravel_multi_index(
            [self.coords[ax] for ax in axes_self], [self.shape[ax] for ax in axes_self])
        other_non_red_coords = _ravel_non_reduced_axes(other.coords, other.shape,
                                                       axes_other)
        other_reduced_coords = np.ravel_multi_index(
            [other.coords[a] for a in axes_other], [other.shape[a] for a in axes_other]
        )
        # Get the shape of the non-reduced axes
        self_nonreduced_shape = tuple(self.shape[ax] for ax in range(ndim_self)
                              if ax not in axes_self)
        other_nonreduced_shape = tuple(other.shape[ax] for ax in range(ndim_other)
                               if ax not in axes_other)

        # Create 2D coords arrays
        ravel_coords_shape_self = (math.prod(self_nonreduced_shape),
                                math.prod([self.shape[ax] for ax in axes_self]))
        ravel_coords_shape_other = (math.prod([other.shape[ax] for ax in axes_other]),
                                    math.prod(other_nonreduced_shape))

        self_2d_coords = (self_non_red_coords, self_reduced_coords)
        other_2d_coords = (other_reduced_coords, other_non_red_coords)

        self_2d = coo_array((self.data, self_2d_coords), ravel_coords_shape_self)
        other_2d = coo_array((other.data, other_2d_coords), ravel_coords_shape_other)

        # Perform matrix multiplication (routed via 2-D CSR)
        prod = (self_2d @ other_2d).tocoo()

        # Combine the shapes of the non-contracted axes
        combined_shape = self_nonreduced_shape + other_nonreduced_shape

        # Unravel the 2D coordinates to get multi-dimensional coordinates
        coords = []
        for c, s in zip(prod.coords, (self_nonreduced_shape, other_nonreduced_shape)):
            if s:
                coords.extend(np.unravel_index(c, s))

        if coords == []:  # if result is scalar
            return sum(prod.data)

        # Construct the resulting COO array with combined coordinates and shape
        return coo_array((prod.data, coords), shape=combined_shape)


    def _dense_tensordot(self, other, axes_self, axes_other):
        ndim_self = len(self.shape)
        ndim_other = len(other.shape)

        non_reduced_axes_self = [ax for ax in range(ndim_self) if ax not in axes_self]
        reduced_shape_self = [self.shape[s] for s in axes_self]
        non_reduced_shape_self = [self.shape[s] for s in non_reduced_axes_self]

        non_reduced_axes_other = [ax for ax in range(ndim_other)
                                  if ax not in axes_other]
        reduced_shape_other = [other.shape[s] for s in axes_other]
        non_reduced_shape_other = [other.shape[s] for s in non_reduced_axes_other]

        permute_self = non_reduced_axes_self + axes_self
        permute_other = (
            non_reduced_axes_other[:-1] + axes_other + non_reduced_axes_other[-1:]
        )
        self = self.transpose(permute_self)
        other = np.transpose(other, permute_other)

        reshape_self = (*non_reduced_shape_self, math.prod(reduced_shape_self))
        reshape_other = (*non_reduced_shape_other[:-1], math.prod(reduced_shape_other),
                        *non_reduced_shape_other[-1:])

        return self.reshape(reshape_self).dot(other.reshape(reshape_other))


    def _matmul_sparse(self, other):
        """
        Perform sparse-sparse matrix multiplication for two n-D COO arrays.
        The method converts input n-D arrays to 2-D block array format,
        uses csr_matmat to multiply them, and then converts the
        result back to n-D COO array.

        Parameters:
        self (COO): The first n-D sparse array in COO format.
        other (COO): The second n-D sparse array in COO format.

        Returns:
        prod (COO): The resulting n-D sparse array after multiplication.
        """
        if self.ndim < 3 and other.ndim < 3:
            return _spbase._matmul_sparse(self, other)

        # Get the shapes of self and other
        self_shape = self.shape
        other_shape = other.shape

        # Determine the new shape to broadcast self and other
        broadcast_shape = np.broadcast_shapes(self_shape[:-2], other_shape[:-2])
        self_new_shape = tuple(broadcast_shape) + self_shape[-2:]
        other_new_shape = tuple(broadcast_shape) + other_shape[-2:]

        self_broadcasted = self._broadcast_to(self_new_shape)
        other_broadcasted = other._broadcast_to(other_new_shape)

        # Convert n-D COO arrays to 2-D block diagonal arrays
        self_block_diag = _block_diag(self_broadcasted)
        other_block_diag = _block_diag(other_broadcasted)

        # Use csr_matmat to perform sparse matrix multiplication
        prod_block_diag = (self_block_diag @ other_block_diag).tocoo()

        # Convert the 2-D block diagonal array back to n-D
        return _extract_block_diag(
            prod_block_diag,
            shape=(*broadcast_shape, self.shape[-2], other.shape[-1]),
        )


    def _broadcast_to(self, new_shape, copy=False):
        if self.shape == new_shape:
            return self.copy() if copy else self

        old_shape = self.shape

        # Check if the new shape is compatible for broadcasting
        if len(new_shape) < len(old_shape):
            raise ValueError("New shape must have at least as many dimensions"
                             " as the current shape")

        # Add leading ones to shape to ensure same length as `new_shape`
        shape = (1,) * (len(new_shape) - len(old_shape)) + tuple(old_shape)

        # Ensure the old shape can be broadcast to the new shape
        if any((o != 1 and o != n) for o, n in zip(shape, new_shape)):
            raise ValueError(f"current shape {old_shape} cannot be "
                             "broadcast to new shape {new_shape}")

        # Reshape the COO array to match the new dimensions
        self = self.reshape(shape)

        idx_dtype = get_index_dtype(self.coords, maxval=max(new_shape))
        coords = self.coords
        new_data = self.data
        new_coords = coords[-1:]  # Copy last coordinate to start
        cum_repeat = 1 # Cumulative repeat factor for broadcasting

        if shape[-1] != new_shape[-1]: # broadcasting the n-th (col) dimension
            repeat_count = new_shape[-1]
            cum_repeat *= repeat_count
            new_data = np.tile(new_data, repeat_count)
            new_dim = np.repeat(np.arange(0, repeat_count, dtype=idx_dtype), self.nnz)
            new_coords = (new_dim,)

        for i in range(-2, -(len(shape)+1), -1):
            if shape[i] != new_shape[i]:
                repeat_count = new_shape[i] # number of times to repeat data, coords
                cum_repeat *= repeat_count # update cumulative repeat factor
                nnz = len(new_data) # Number of non-zero elements so far

                # Tile data and coordinates to match the new repeat count
                new_data = np.tile(new_data, repeat_count)
                new_coords = tuple(np.tile(new_coords[i+1:], repeat_count))

                # Create new dimensions and stack them
                new_dim = np.repeat(np.arange(0, repeat_count, dtype=idx_dtype), nnz)
                new_coords = (new_dim,) + new_coords
            else:
                # If no broadcasting needed, tile the coordinates
                new_dim = np.tile(coords[i], cum_repeat)
                new_coords = (new_dim,) + new_coords

        return coo_array((new_data, new_coords), new_shape)


def _block_diag(self):
    """
    Converts an N-D COO array into a 2-D COO array in block diagonal form.

    Parameters:
    self (coo_array): An N-Dimensional COO sparse array.

    Returns:
    coo_array: A 2-Dimensional COO sparse array in block diagonal form.
    """
    if self.ndim<2:
        raise ValueError("array must have atleast dim=2")
    num_blocks = math.prod(self.shape[:-2])
    n_col = self.shape[-1]
    n_row = self.shape[-2]
    res_arr = self.reshape((num_blocks, n_row, n_col))
    new_coords = (
        res_arr.coords[1] + res_arr.coords[0] * res_arr.shape[1],
        res_arr.coords[2] + res_arr.coords[0] * res_arr.shape[2],
    )

    new_shape = (num_blocks * n_row, num_blocks * n_col)
    return coo_array((self.data, tuple(new_coords)), shape=new_shape)


def _extract_block_diag(self, shape):
    n_row, n_col = shape[-2], shape[-1]

    # Extract data and coordinates from the block diagonal COO array
    data = self.data
    row, col = self.row, self.col

    # Initialize new coordinates array
    new_coords = np.empty((len(shape), self.nnz), dtype=int)

    # Calculate within-block indices
    new_coords[-2] = row % n_row
    new_coords[-1] = col % n_col

    # Calculate coordinates for higher dimensions
    temp_block_idx = row // n_row
    for i in range(len(shape) - 3, -1, -1):
        size = shape[i]
        new_coords[i] = temp_block_idx % size
        temp_block_idx = temp_block_idx // size

    # Create the new COO array with the original n-D shape
    return coo_array((data, tuple(new_coords)), shape=shape)


def _process_axes(ndim_a, ndim_b, axes):
    if isinstance(axes, int):
        if axes < 1 or axes > min(ndim_a, ndim_b):
            raise ValueError("axes integer is out of bounds for input arrays")
        axes_a = list(range(ndim_a - axes, ndim_a))
        axes_b = list(range(axes))
    elif isinstance(axes, (tuple, list)):
        if len(axes) != 2:
            raise ValueError("axes must be a tuple/list of length 2")
        axes_a, axes_b = axes
        if len(axes_a) != len(axes_b):
            raise ValueError("axes lists/tuples must be of the same length")
        if any(ax >= ndim_a or ax < -ndim_a for ax in axes_a) or \
           any(bx >= ndim_b or bx < -ndim_b for bx in axes_b):
            raise ValueError("axes indices are out of bounds for input arrays")
    else:
        raise TypeError("axes must be an integer or a tuple/list of integers")

    axes_a = [axis + ndim_a if axis < 0 else axis for axis in axes_a]
    axes_b = [axis + ndim_b if axis < 0 else axis for axis in axes_b]
    return axes_a, axes_b


def _ravel_non_reduced_axes(coords, shape, axes):
    ndim = len(shape)
    non_reduced_axes = [ax for ax in range(ndim) if ax not in axes]

    if not non_reduced_axes:
        # Return an array with one row
        return np.zeros_like(coords[0])

    # Extract the shape of the non-reduced axes
    non_reduced_shape = [shape[ax] for ax in non_reduced_axes]

    # Extract the coordinates of the non-reduced axes
    non_reduced_coords = tuple(coords[idx] for idx in non_reduced_axes)

    # Ravel the coordinates into 1D
    return np.ravel_multi_index(non_reduced_coords, non_reduced_shape)


def _ravel_coords(coords, shape, order='C'):
    """Like np.ravel_multi_index, but avoids some overflow issues."""
    if len(coords) == 1:
        return coords[0]
    # Handle overflow as in https://github.com/scipy/scipy/pull/9132
    if len(coords) == 2:
        nrows, ncols = shape
        row, col = coords
        if order == 'C':
            maxval = (ncols * max(0, nrows - 1) + max(0, ncols - 1))
            idx_dtype = get_index_dtype(maxval=maxval)
            return np.multiply(ncols, row, dtype=idx_dtype) + col
        elif order == 'F':
            maxval = (nrows * max(0, ncols - 1) + max(0, nrows - 1))
            idx_dtype = get_index_dtype(maxval=maxval)
            return np.multiply(nrows, col, dtype=idx_dtype) + row
        else:
            raise ValueError("'order' must be 'C' or 'F'")
    return np.ravel_multi_index(coords, shape, order=order)


def isspmatrix_coo(x):
    """Is `x` of coo_matrix type?

    Parameters
    ----------
    x
        object to check for being a coo matrix

    Returns
    -------
    bool
        True if `x` is a coo matrix, False otherwise

    Examples
    --------
    >>> from scipy.sparse import coo_array, coo_matrix, csr_matrix, isspmatrix_coo
    >>> isspmatrix_coo(coo_matrix([[5]]))
    True
    >>> isspmatrix_coo(coo_array([[5]]))
    False
    >>> isspmatrix_coo(csr_matrix([[5]]))
    False
    """
    return isinstance(x, coo_matrix)


# This namespace class separates array from matrix with isinstance
class coo_array(_coo_base, sparray):
    """
    A sparse array in COOrdinate format.

    Also known as the 'ijv' or 'triplet' format.

    This can be instantiated in several ways:
        coo_array(D)
            where D is an ndarray

        coo_array(S)
            with another sparse array or matrix S (equivalent to S.tocoo())

        coo_array(shape, [dtype])
            to construct an empty sparse array with shape `shape`
            dtype is optional, defaulting to dtype='d'.

        coo_array((data, coords), [shape])
            to construct from existing data and index arrays:
                1. data[:]       the entries of the sparse array, in any order
                2. coords[i][:]  the axis-i coordinates of the data entries

            Where ``A[coords] = data``, and coords is a tuple of index arrays.
            When shape is not specified, it is inferred from the index arrays.

    Attributes
    ----------
    dtype : dtype
        Data type of the sparse array
    shape : tuple of integers
        Shape of the sparse array
    ndim : int
        Number of dimensions of the sparse array
    nnz
    size
    data
        COO format data array of the sparse array
    coords
        COO format tuple of index arrays
    has_canonical_format : bool
        Whether the matrix has sorted coordinates and no duplicates
    format
    T

    Notes
    -----

    Sparse arrays can be used in arithmetic operations: they support
    addition, subtraction, multiplication, division, and matrix power.

    Advantages of the COO format
        - facilitates fast conversion among sparse formats
        - permits duplicate entries (see example)
        - very fast conversion to and from CSR/CSC formats

    Disadvantages of the COO format
        - does not directly support:
            + arithmetic operations
            + slicing

    Intended Usage
        - COO is a fast format for constructing sparse arrays
        - Once a COO array has been constructed, convert to CSR or
          CSC format for fast arithmetic and matrix vector operations
        - By default when converting to CSR or CSC format, duplicate (i,j)
          entries will be summed together.  This facilitates efficient
          construction of finite element matrices and the like. (see example)

    Canonical format
        - Entries and coordinates sorted by row, then column.
        - There are no duplicate entries (i.e. duplicate (i,j) locations)
        - Data arrays MAY have explicit zeros.

    Examples
    --------

    >>> # Constructing an empty sparse array
    >>> import numpy as np
    >>> from scipy.sparse import coo_array
    >>> coo_array((3, 4), dtype=np.int8).toarray()
    array([[0, 0, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 0]], dtype=int8)

    >>> # Constructing a sparse array using ijv format
    >>> row  = np.array([0, 3, 1, 0])
    >>> col  = np.array([0, 3, 1, 2])
    >>> data = np.array([4, 5, 7, 9])
    >>> coo_array((data, (row, col)), shape=(4, 4)).toarray()
    array([[4, 0, 9, 0],
           [0, 7, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 5]])

    >>> # Constructing a sparse array with duplicate coordinates
    >>> row  = np.array([0, 0, 1, 3, 1, 0, 0])
    >>> col  = np.array([0, 2, 1, 3, 1, 0, 0])
    >>> data = np.array([1, 1, 1, 1, 1, 1, 1])
    >>> coo = coo_array((data, (row, col)), shape=(4, 4))
    >>> # Duplicate coordinates are maintained until implicitly or explicitly summed
    >>> np.max(coo.data)
    1
    >>> coo.toarray()
    array([[3, 0, 1, 0],
           [0, 2, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 1]])

    """


class coo_matrix(spmatrix, _coo_base):
    """
    A sparse matrix in COOrdinate format.

    Also known as the 'ijv' or 'triplet' format.

    This can be instantiated in several ways:
        coo_matrix(D)
            where D is a 2-D ndarray

        coo_matrix(S)
            with another sparse array or matrix S (equivalent to S.tocoo())

        coo_matrix((M, N), [dtype])
            to construct an empty matrix with shape (M, N)
            dtype is optional, defaulting to dtype='d'.

        coo_matrix((data, (i, j)), [shape=(M, N)])
            to construct from three arrays:
                1. data[:]   the entries of the matrix, in any order
                2. i[:]      the row indices of the matrix entries
                3. j[:]      the column indices of the matrix entries

            Where ``A[i[k], j[k]] = data[k]``.  When shape is not
            specified, it is inferred from the index arrays

    Attributes
    ----------
    dtype : dtype
        Data type of the matrix
    shape : 2-tuple
        Shape of the matrix
    ndim : int
        Number of dimensions (this is always 2)
    nnz
    size
    data
        COO format data array of the matrix
    row
        COO format row index array of the matrix
    col
        COO format column index array of the matrix
    has_canonical_format : bool
        Whether the matrix has sorted indices and no duplicates
    format
    T

    Notes
    -----

    Sparse matrices can be used in arithmetic operations: they support
    addition, subtraction, multiplication, division, and matrix power.

    Advantages of the COO format
        - facilitates fast conversion among sparse formats
        - permits duplicate entries (see example)
        - very fast conversion to and from CSR/CSC formats

    Disadvantages of the COO format
        - does not directly support:
            + arithmetic operations
            + slicing

    Intended Usage
        - COO is a fast format for constructing sparse matrices
        - Once a COO matrix has been constructed, convert to CSR or
          CSC format for fast arithmetic and matrix vector operations
        - By default when converting to CSR or CSC format, duplicate (i,j)
          entries will be summed together.  This facilitates efficient
          construction of finite element matrices and the like. (see example)

    Canonical format
        - Entries and coordinates sorted by row, then column.
        - There are no duplicate entries (i.e. duplicate (i,j) locations)
        - Data arrays MAY have explicit zeros.

    Examples
    --------

    >>> # Constructing an empty matrix
    >>> import numpy as np
    >>> from scipy.sparse import coo_matrix
    >>> coo_matrix((3, 4), dtype=np.int8).toarray()
    array([[0, 0, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 0]], dtype=int8)

    >>> # Constructing a matrix using ijv format
    >>> row  = np.array([0, 3, 1, 0])
    >>> col  = np.array([0, 3, 1, 2])
    >>> data = np.array([4, 5, 7, 9])
    >>> coo_matrix((data, (row, col)), shape=(4, 4)).toarray()
    array([[4, 0, 9, 0],
           [0, 7, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 5]])

    >>> # Constructing a matrix with duplicate coordinates
    >>> row  = np.array([0, 0, 1, 3, 1, 0, 0])
    >>> col  = np.array([0, 2, 1, 3, 1, 0, 0])
    >>> data = np.array([1, 1, 1, 1, 1, 1, 1])
    >>> coo = coo_matrix((data, (row, col)), shape=(4, 4))
    >>> # Duplicate coordinates are maintained until implicitly or explicitly summed
    >>> np.max(coo.data)
    1
    >>> coo.toarray()
    array([[3, 0, 1, 0],
           [0, 2, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 1]])

    """

    def __setstate__(self, state):
        if 'coords' not in state:
            # For retro-compatibility with the previous attributes
            # storing nnz coordinates for 2D COO matrix.
            state['coords'] = (state.pop('row'), state.pop('col'))
        self.__dict__.update(state)