File size: 23,089 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
# Author: Travis Oliphant
# 2003
#
# Feb. 2010: Updated by Warren Weckesser:
#   Rewrote much of chirp()
#   Added sweep_poly()
import numpy as np
from numpy import asarray, zeros, place, nan, mod, pi, extract, log, sqrt, \
    exp, cos, sin, polyval, polyint


__all__ = ['sawtooth', 'square', 'gausspulse', 'chirp', 'sweep_poly',
           'unit_impulse']


def sawtooth(t, width=1):
    """
    Return a periodic sawtooth or triangle waveform.

    The sawtooth waveform has a period ``2*pi``, rises from -1 to 1 on the
    interval 0 to ``width*2*pi``, then drops from 1 to -1 on the interval
    ``width*2*pi`` to ``2*pi``. `width` must be in the interval [0, 1].

    Note that this is not band-limited.  It produces an infinite number
    of harmonics, which are aliased back and forth across the frequency
    spectrum.

    Parameters
    ----------
    t : array_like
        Time.
    width : array_like, optional
        Width of the rising ramp as a proportion of the total cycle.
        Default is 1, producing a rising ramp, while 0 produces a falling
        ramp.  `width` = 0.5 produces a triangle wave.
        If an array, causes wave shape to change over time, and must be the
        same length as t.

    Returns
    -------
    y : ndarray
        Output array containing the sawtooth waveform.

    Examples
    --------
    A 5 Hz waveform sampled at 500 Hz for 1 second:

    >>> import numpy as np
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> t = np.linspace(0, 1, 500)
    >>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t))

    """
    t, w = asarray(t), asarray(width)
    w = asarray(w + (t - t))
    t = asarray(t + (w - w))
    if t.dtype.char in ['fFdD']:
        ytype = t.dtype.char
    else:
        ytype = 'd'
    y = zeros(t.shape, ytype)

    # width must be between 0 and 1 inclusive
    mask1 = (w > 1) | (w < 0)
    place(y, mask1, nan)

    # take t modulo 2*pi
    tmod = mod(t, 2 * pi)

    # on the interval 0 to width*2*pi function is
    #  tmod / (pi*w) - 1
    mask2 = (1 - mask1) & (tmod < w * 2 * pi)
    tsub = extract(mask2, tmod)
    wsub = extract(mask2, w)
    place(y, mask2, tsub / (pi * wsub) - 1)

    # on the interval width*2*pi to 2*pi function is
    #  (pi*(w+1)-tmod) / (pi*(1-w))

    mask3 = (1 - mask1) & (1 - mask2)
    tsub = extract(mask3, tmod)
    wsub = extract(mask3, w)
    place(y, mask3, (pi * (wsub + 1) - tsub) / (pi * (1 - wsub)))
    return y


def square(t, duty=0.5):
    """
    Return a periodic square-wave waveform.

    The square wave has a period ``2*pi``, has value +1 from 0 to
    ``2*pi*duty`` and -1 from ``2*pi*duty`` to ``2*pi``. `duty` must be in
    the interval [0,1].

    Note that this is not band-limited.  It produces an infinite number
    of harmonics, which are aliased back and forth across the frequency
    spectrum.

    Parameters
    ----------
    t : array_like
        The input time array.
    duty : array_like, optional
        Duty cycle.  Default is 0.5 (50% duty cycle).
        If an array, causes wave shape to change over time, and must be the
        same length as t.

    Returns
    -------
    y : ndarray
        Output array containing the square waveform.

    Examples
    --------
    A 5 Hz waveform sampled at 500 Hz for 1 second:

    >>> import numpy as np
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> t = np.linspace(0, 1, 500, endpoint=False)
    >>> plt.plot(t, signal.square(2 * np.pi * 5 * t))
    >>> plt.ylim(-2, 2)

    A pulse-width modulated sine wave:

    >>> plt.figure()
    >>> sig = np.sin(2 * np.pi * t)
    >>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2)
    >>> plt.subplot(2, 1, 1)
    >>> plt.plot(t, sig)
    >>> plt.subplot(2, 1, 2)
    >>> plt.plot(t, pwm)
    >>> plt.ylim(-1.5, 1.5)

    """
    t, w = asarray(t), asarray(duty)
    w = asarray(w + (t - t))
    t = asarray(t + (w - w))
    if t.dtype.char in ['fFdD']:
        ytype = t.dtype.char
    else:
        ytype = 'd'

    y = zeros(t.shape, ytype)

    # width must be between 0 and 1 inclusive
    mask1 = (w > 1) | (w < 0)
    place(y, mask1, nan)

    # on the interval 0 to duty*2*pi function is 1
    tmod = mod(t, 2 * pi)
    mask2 = (1 - mask1) & (tmod < w * 2 * pi)
    place(y, mask2, 1)

    # on the interval duty*2*pi to 2*pi function is
    #  (pi*(w+1)-tmod) / (pi*(1-w))
    mask3 = (1 - mask1) & (1 - mask2)
    place(y, mask3, -1)
    return y


def gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False,
               retenv=False):
    """
    Return a Gaussian modulated sinusoid:

        ``exp(-a t^2) exp(1j*2*pi*fc*t).``

    If `retquad` is True, then return the real and imaginary parts
    (in-phase and quadrature).
    If `retenv` is True, then return the envelope (unmodulated signal).
    Otherwise, return the real part of the modulated sinusoid.

    Parameters
    ----------
    t : ndarray or the string 'cutoff'
        Input array.
    fc : float, optional
        Center frequency (e.g. Hz).  Default is 1000.
    bw : float, optional
        Fractional bandwidth in frequency domain of pulse (e.g. Hz).
        Default is 0.5.
    bwr : float, optional
        Reference level at which fractional bandwidth is calculated (dB).
        Default is -6.
    tpr : float, optional
        If `t` is 'cutoff', then the function returns the cutoff
        time for when the pulse amplitude falls below `tpr` (in dB).
        Default is -60.
    retquad : bool, optional
        If True, return the quadrature (imaginary) as well as the real part
        of the signal.  Default is False.
    retenv : bool, optional
        If True, return the envelope of the signal.  Default is False.

    Returns
    -------
    yI : ndarray
        Real part of signal.  Always returned.
    yQ : ndarray
        Imaginary part of signal.  Only returned if `retquad` is True.
    yenv : ndarray
        Envelope of signal.  Only returned if `retenv` is True.

    Examples
    --------
    Plot real component, imaginary component, and envelope for a 5 Hz pulse,
    sampled at 100 Hz for 2 seconds:

    >>> import numpy as np
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> t = np.linspace(-1, 1, 2 * 100, endpoint=False)
    >>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True)
    >>> plt.plot(t, i, t, q, t, e, '--')

    """
    if fc < 0:
        raise ValueError(f"Center frequency (fc={fc:.2f}) must be >=0.")
    if bw <= 0:
        raise ValueError(f"Fractional bandwidth (bw={bw:.2f}) must be > 0.")
    if bwr >= 0:
        raise ValueError(f"Reference level for bandwidth (bwr={bwr:.2f}) "
                         "must be < 0 dB")

    # exp(-a t^2) <->  sqrt(pi/a) exp(-pi^2/a * f^2)  = g(f)

    ref = pow(10.0, bwr / 20.0)
    # fdel = fc*bw/2:  g(fdel) = ref --- solve this for a
    #
    # pi^2/a * fc^2 * bw^2 /4=-log(ref)
    a = -(pi * fc * bw) ** 2 / (4.0 * log(ref))

    if isinstance(t, str):
        if t == 'cutoff':  # compute cut_off point
            #  Solve exp(-a tc**2) = tref  for tc
            #   tc = sqrt(-log(tref) / a) where tref = 10^(tpr/20)
            if tpr >= 0:
                raise ValueError("Reference level for time cutoff must "
                                 "be < 0 dB")
            tref = pow(10.0, tpr / 20.0)
            return sqrt(-log(tref) / a)
        else:
            raise ValueError("If `t` is a string, it must be 'cutoff'")

    yenv = exp(-a * t * t)
    yI = yenv * cos(2 * pi * fc * t)
    yQ = yenv * sin(2 * pi * fc * t)
    if not retquad and not retenv:
        return yI
    if not retquad and retenv:
        return yI, yenv
    if retquad and not retenv:
        return yI, yQ
    if retquad and retenv:
        return yI, yQ, yenv


def chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True, *,
          complex=False):
    r"""Frequency-swept cosine generator.

    In the following, 'Hz' should be interpreted as 'cycles per unit';
    there is no requirement here that the unit is one second.  The
    important distinction is that the units of rotation are cycles, not
    radians. Likewise, `t` could be a measurement of space instead of time.

    Parameters
    ----------
    t : array_like
        Times at which to evaluate the waveform.
    f0 : float
        Frequency (e.g. Hz) at time t=0.
    t1 : float
        Time at which `f1` is specified.
    f1 : float
        Frequency (e.g. Hz) of the waveform at time `t1`.
    method : {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional
        Kind of frequency sweep.  If not given, `linear` is assumed.  See
        Notes below for more details.
    phi : float, optional
        Phase offset, in degrees. Default is 0.
    vertex_zero : bool, optional
        This parameter is only used when `method` is 'quadratic'.
        It determines whether the vertex of the parabola that is the graph
        of the frequency is at t=0 or t=t1.
    complex : bool, optional
        This parameter creates a complex-valued analytic signal instead of a
        real-valued signal. It allows the use of complex baseband (in communications
        domain). Default is False.

        .. versionadded:: 1.15.0

    Returns
    -------
    y : ndarray
        A numpy array containing the signal evaluated at `t` with the requested
        time-varying frequency.  More precisely, the function returns
        ``exp(1j*phase + 1j*(pi/180)*phi) if complex else cos(phase + (pi/180)*phi)``
        where `phase` is the integral (from 0 to `t`) of ``2*pi*f(t)``.
        The instantaneous frequency ``f(t)`` is defined below.

    See Also
    --------
    sweep_poly

    Notes
    -----
    There are four possible options for the parameter `method`, which have a (long)
    standard form and some allowed abbreviations. The formulas for the instantaneous
    frequency :math:`f(t)` of the generated signal are as follows:

    1. Parameter `method` in ``('linear', 'lin', 'li')``:

       .. math::
           f(t) = f_0 + \beta\, t           \quad\text{with}\quad
           \beta = \frac{f_1 - f_0}{t_1}

       Frequency :math:`f(t)` varies linearly over time with a constant rate
       :math:`\beta`.

    2. Parameter `method` in ``('quadratic', 'quad', 'q')``:

       .. math::
            f(t) =
            \begin{cases}
              f_0 + \beta\, t^2          & \text{if vertex_zero is True,}\\
              f_1 + \beta\, (t_1 - t)^2  & \text{otherwise,}
            \end{cases}
            \quad\text{with}\quad
            \beta = \frac{f_1 - f_0}{t_1^2}

       The graph of the frequency f(t) is a parabola through :math:`(0, f_0)` and
       :math:`(t_1, f_1)`.  By default, the vertex of the parabola is at
       :math:`(0, f_0)`. If `vertex_zero` is ``False``, then the vertex is at
       :math:`(t_1, f_1)`.
       To use a more general quadratic function, or an arbitrary
       polynomial, use the function `scipy.signal.sweep_poly`.

    3. Parameter `method` in ``('logarithmic', 'log', 'lo')``:

       .. math::
            f(t) = f_0  \left(\frac{f_1}{f_0}\right)^{t/t_1}

       :math:`f_0` and :math:`f_1` must be nonzero and have the same sign.
       This signal is also known as a geometric or exponential chirp.

    4. Parameter `method` in ``('hyperbolic', 'hyp')``:

       .. math::
              f(t) = \frac{\alpha}{\beta\, t + \gamma} \quad\text{with}\quad
              \alpha = f_0 f_1 t_1, \ \beta = f_0 - f_1, \ \gamma = f_1 t_1

       :math:`f_0` and :math:`f_1` must be nonzero.


    Examples
    --------
    For the first example, a linear chirp ranging from 6 Hz to 1 Hz over 10 seconds is
    plotted:

    >>> import numpy as np
    >>> from matplotlib.pyplot import tight_layout
    >>> from scipy.signal import chirp, square, ShortTimeFFT
    >>> from scipy.signal.windows import gaussian
    >>> import matplotlib.pyplot as plt
    ...
    >>> N, T = 1000, 0.01  # number of samples and sampling interval for 10 s signal
    >>> t = np.arange(N) * T  # timestamps
    ...
    >>> x_lin = chirp(t, f0=6, f1=1, t1=10, method='linear')
    ...
    >>> fg0, ax0 = plt.subplots()
    >>> ax0.set_title(r"Linear Chirp from $f(0)=6\,$Hz to $f(10)=1\,$Hz")
    >>> ax0.set(xlabel="Time $t$ in Seconds", ylabel=r"Amplitude $x_\text{lin}(t)$")
    >>> ax0.plot(t, x_lin)
    >>> plt.show()

    The following four plots each show the short-time Fourier transform of a chirp
    ranging from 45 Hz to 5 Hz with different values for the parameter `method`
    (and `vertex_zero`):

    >>> x_qu0 = chirp(t, f0=45, f1=5, t1=N*T, method='quadratic', vertex_zero=True)
    >>> x_qu1 = chirp(t, f0=45, f1=5, t1=N*T, method='quadratic', vertex_zero=False)
    >>> x_log = chirp(t, f0=45, f1=5, t1=N*T, method='logarithmic')
    >>> x_hyp = chirp(t, f0=45, f1=5, t1=N*T, method='hyperbolic')
    ...
    >>> win = gaussian(50, std=12, sym=True)
    >>> SFT = ShortTimeFFT(win, hop=2, fs=1/T, mfft=800, scale_to='magnitude')
    >>> ts = ("'quadratic', vertex_zero=True", "'quadratic', vertex_zero=False",
    ...       "'logarithmic'", "'hyperbolic'")
    >>> fg1, ax1s = plt.subplots(2, 2, sharex='all', sharey='all',
    ...                          figsize=(6, 5),  layout="constrained")
    >>> for x_, ax_, t_ in zip([x_qu0, x_qu1, x_log, x_hyp], ax1s.ravel(), ts):
    ...     aSx = abs(SFT.stft(x_))
    ...     im_ = ax_.imshow(aSx, origin='lower', aspect='auto', extent=SFT.extent(N),
    ...                      cmap='plasma')
    ...     ax_.set_title(t_)
    ...     if t_ == "'hyperbolic'":
    ...         fg1.colorbar(im_, ax=ax1s, label='Magnitude $|S_z(t,f)|$')
    >>> _ = fg1.supxlabel("Time $t$ in Seconds")  # `_ =` is needed to pass doctests
    >>> _ = fg1.supylabel("Frequency $f$ in Hertz")
    >>> plt.show()

    Finally, the short-time Fourier transform of a complex-valued linear chirp
    ranging from -30 Hz to 30 Hz is depicted:

    >>> z_lin = chirp(t, f0=-30, f1=30, t1=N*T, method="linear", complex=True)
    >>> SFT.fft_mode = 'centered'  # needed to work with complex signals
    >>> aSz = abs(SFT.stft(z_lin))
    ...
    >>> fg2, ax2 = plt.subplots()
    >>> ax2.set_title(r"Linear Chirp from $-30\,$Hz to $30\,$Hz")
    >>> ax2.set(xlabel="Time $t$ in Seconds", ylabel="Frequency $f$ in Hertz")
    >>> im2 = ax2.imshow(aSz, origin='lower', aspect='auto',
    ...                  extent=SFT.extent(N), cmap='viridis')
    >>> fg2.colorbar(im2, label='Magnitude $|S_z(t,f)|$')
    >>> plt.show()

    Note that using negative frequencies makes only sense with complex-valued signals.
    Furthermore, the magnitude of the complex exponential function is one whereas the
    magnitude of the real-valued cosine function is only 1/2.
    """
    # 'phase' is computed in _chirp_phase, to make testing easier.
    phase = _chirp_phase(t, f0, t1, f1, method, vertex_zero) + np.deg2rad(phi)
    return np.exp(1j*phase) if complex else np.cos(phase)


def _chirp_phase(t, f0, t1, f1, method='linear', vertex_zero=True):
    """
    Calculate the phase used by `chirp` to generate its output.

    See `chirp` for a description of the arguments.

    """
    t = asarray(t)
    f0 = float(f0)
    t1 = float(t1)
    f1 = float(f1)
    if method in ['linear', 'lin', 'li']:
        beta = (f1 - f0) / t1
        phase = 2 * pi * (f0 * t + 0.5 * beta * t * t)

    elif method in ['quadratic', 'quad', 'q']:
        beta = (f1 - f0) / (t1 ** 2)
        if vertex_zero:
            phase = 2 * pi * (f0 * t + beta * t ** 3 / 3)
        else:
            phase = 2 * pi * (f1 * t + beta * ((t1 - t) ** 3 - t1 ** 3) / 3)

    elif method in ['logarithmic', 'log', 'lo']:
        if f0 * f1 <= 0.0:
            raise ValueError("For a logarithmic chirp, f0 and f1 must be "
                             "nonzero and have the same sign.")
        if f0 == f1:
            phase = 2 * pi * f0 * t
        else:
            beta = t1 / log(f1 / f0)
            phase = 2 * pi * beta * f0 * (pow(f1 / f0, t / t1) - 1.0)

    elif method in ['hyperbolic', 'hyp']:
        if f0 == 0 or f1 == 0:
            raise ValueError("For a hyperbolic chirp, f0 and f1 must be "
                             "nonzero.")
        if f0 == f1:
            # Degenerate case: constant frequency.
            phase = 2 * pi * f0 * t
        else:
            # Singular point: the instantaneous frequency blows up
            # when t == sing.
            sing = -f1 * t1 / (f0 - f1)
            phase = 2 * pi * (-sing * f0) * log(np.abs(1 - t/sing))

    else:
        raise ValueError("method must be 'linear', 'quadratic', 'logarithmic', "
                         f"or 'hyperbolic', but a value of {method!r} was given.")

    return phase


def sweep_poly(t, poly, phi=0):
    """
    Frequency-swept cosine generator, with a time-dependent frequency.

    This function generates a sinusoidal function whose instantaneous
    frequency varies with time.  The frequency at time `t` is given by
    the polynomial `poly`.

    Parameters
    ----------
    t : ndarray
        Times at which to evaluate the waveform.
    poly : 1-D array_like or instance of numpy.poly1d
        The desired frequency expressed as a polynomial.  If `poly` is
        a list or ndarray of length n, then the elements of `poly` are
        the coefficients of the polynomial, and the instantaneous
        frequency is

          ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]``

        If `poly` is an instance of numpy.poly1d, then the
        instantaneous frequency is

          ``f(t) = poly(t)``

    phi : float, optional
        Phase offset, in degrees, Default: 0.

    Returns
    -------
    sweep_poly : ndarray
        A numpy array containing the signal evaluated at `t` with the
        requested time-varying frequency.  More precisely, the function
        returns ``cos(phase + (pi/180)*phi)``, where `phase` is the integral
        (from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above.

    See Also
    --------
    chirp

    Notes
    -----
    .. versionadded:: 0.8.0

    If `poly` is a list or ndarray of length `n`, then the elements of
    `poly` are the coefficients of the polynomial, and the instantaneous
    frequency is:

        ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]``

    If `poly` is an instance of `numpy.poly1d`, then the instantaneous
    frequency is:

          ``f(t) = poly(t)``

    Finally, the output `s` is:

        ``cos(phase + (pi/180)*phi)``

    where `phase` is the integral from 0 to `t` of ``2 * pi * f(t)``,
    ``f(t)`` as defined above.

    Examples
    --------
    Compute the waveform with instantaneous frequency::

        f(t) = 0.025*t**3 - 0.36*t**2 + 1.25*t + 2

    over the interval 0 <= t <= 10.

    >>> import numpy as np
    >>> from scipy.signal import sweep_poly
    >>> p = np.poly1d([0.025, -0.36, 1.25, 2.0])
    >>> t = np.linspace(0, 10, 5001)
    >>> w = sweep_poly(t, p)

    Plot it:

    >>> import matplotlib.pyplot as plt
    >>> plt.subplot(2, 1, 1)
    >>> plt.plot(t, w)
    >>> plt.title("Sweep Poly\\nwith frequency " +
    ...           "$f(t) = 0.025t^3 - 0.36t^2 + 1.25t + 2$")
    >>> plt.subplot(2, 1, 2)
    >>> plt.plot(t, p(t), 'r', label='f(t)')
    >>> plt.legend()
    >>> plt.xlabel('t')
    >>> plt.tight_layout()
    >>> plt.show()

    """
    # 'phase' is computed in _sweep_poly_phase, to make testing easier.
    phase = _sweep_poly_phase(t, poly)
    # Convert to radians.
    phi *= pi / 180
    return cos(phase + phi)


def _sweep_poly_phase(t, poly):
    """
    Calculate the phase used by sweep_poly to generate its output.

    See `sweep_poly` for a description of the arguments.

    """
    # polyint handles lists, ndarrays and instances of poly1d automatically.
    intpoly = polyint(poly)
    phase = 2 * pi * polyval(intpoly, t)
    return phase


def unit_impulse(shape, idx=None, dtype=float):
    r"""
    Unit impulse signal (discrete delta function) or unit basis vector.

    Parameters
    ----------
    shape : int or tuple of int
        Number of samples in the output (1-D), or a tuple that represents the
        shape of the output (N-D).
    idx : None or int or tuple of int or 'mid', optional
        Index at which the value is 1.  If None, defaults to the 0th element.
        If ``idx='mid'``, the impulse will be centered at ``shape // 2`` in
        all dimensions.  If an int, the impulse will be at `idx` in all
        dimensions.
    dtype : data-type, optional
        The desired data-type for the array, e.g., ``numpy.int8``.  Default is
        ``numpy.float64``.

    Returns
    -------
    y : ndarray
        Output array containing an impulse signal.

    Notes
    -----
    In digital signal processing literature the unit impulse signal is often
    represented by the Kronecker delta. [1]_ I.e., a signal :math:`u_k[n]`,
    which is zero everywhere except being one at the :math:`k`-th sample,
    can be expressed as

    .. math::

        u_k[n] = \delta[n-k] \equiv \delta_{n,k}\ .

    Furthermore, the unit impulse is frequently interpreted as the discrete-time
    version of the continuous-time Dirac distribution. [2]_

    References
    ----------
    .. [1] "Kronecker delta", *Wikipedia*,
           https://en.wikipedia.org/wiki/Kronecker_delta#Digital_signal_processing
    .. [2] "Dirac delta function" *Wikipedia*,
           https://en.wikipedia.org/wiki/Dirac_delta_function#Relationship_to_the_Kronecker_delta

    .. versionadded:: 0.19.0

    Examples
    --------
    An impulse at the 0th element (:math:`\\delta[n]`):

    >>> from scipy import signal
    >>> signal.unit_impulse(8)
    array([ 1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])

    Impulse offset by 2 samples (:math:`\\delta[n-2]`):

    >>> signal.unit_impulse(7, 2)
    array([ 0.,  0.,  1.,  0.,  0.,  0.,  0.])

    2-dimensional impulse, centered:

    >>> signal.unit_impulse((3, 3), 'mid')
    array([[ 0.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  0.]])

    Impulse at (2, 2), using broadcasting:

    >>> signal.unit_impulse((4, 4), 2)
    array([[ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  1.,  0.],
           [ 0.,  0.,  0.,  0.]])

    Plot the impulse response of a 4th-order Butterworth lowpass filter:

    >>> imp = signal.unit_impulse(100, 'mid')
    >>> b, a = signal.butter(4, 0.2)
    >>> response = signal.lfilter(b, a, imp)

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(np.arange(-50, 50), imp)
    >>> plt.plot(np.arange(-50, 50), response)
    >>> plt.margins(0.1, 0.1)
    >>> plt.xlabel('Time [samples]')
    >>> plt.ylabel('Amplitude')
    >>> plt.grid(True)
    >>> plt.show()

    """
    out = zeros(shape, dtype)

    shape = np.atleast_1d(shape)

    if idx is None:
        idx = (0,) * len(shape)
    elif idx == 'mid':
        idx = tuple(shape // 2)
    elif not hasattr(idx, "__iter__"):
        idx = (idx,) * len(shape)

    out[idx] = 1
    return out