File size: 86,897 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
"""Tools for spectral analysis.
"""
import numpy as np
import numpy.typing as npt
from scipy import fft as sp_fft
from . import _signaltools
from .windows import get_window
from ._arraytools import const_ext, even_ext, odd_ext, zero_ext
import warnings
from typing import Literal


__all__ = ['periodogram', 'welch', 'lombscargle', 'csd', 'coherence',
           'spectrogram', 'stft', 'istft', 'check_COLA', 'check_NOLA']


def lombscargle(
    x: npt.ArrayLike,
    y: npt.ArrayLike,
    freqs: npt.ArrayLike,
    precenter: bool = False,
    normalize: bool | Literal["power", "normalize", "amplitude"] = False,
    *,
    weights: npt.NDArray | None = None,
    floating_mean: bool = False,
) -> npt.NDArray:
    """
    Compute the generalized Lomb-Scargle periodogram.

    The Lomb-Scargle periodogram was developed by Lomb [1]_ and further
    extended by Scargle [2]_ to find, and test the significance of weak
    periodic signals with uneven temporal sampling. The algorithm used
    here is based on a weighted least-squares fit of the form
    ``y(ω) = a*cos(ω*x) + b*sin(ω*x) + c``, where the fit is calculated for
    each frequency independently. This algorithm was developed by Zechmeister
    and Kürster which improves the Lomb-Scargle periodogram by enabling
    the weighting of individual samples and calculating an unknown y offset
    (also called a "floating-mean" model) [3]_. For more details, and practical
    considerations, see the excellent reference on the Lomb-Scargle periodogram [4]_.

    When *normalize* is False (or "power") (default) the computed periodogram
    is unnormalized, it takes the value ``(A**2) * N/4`` for a harmonic
    signal with amplitude A for sufficiently large N. Where N is the length of x or y.

    When *normalize* is True (or "normalize") the computed periodogram is normalized
    by the residuals of the data around a constant reference model (at zero).

    When *normalize* is "amplitude" the computed periodogram is the complex
    representation of the amplitude and phase.

    Input arrays should be 1-D of a real floating data type, which are converted into
    float64 arrays before processing.

    Parameters
    ----------
    x : array_like
        Sample times.
    y : array_like
        Measurement values. Values are assumed to have a baseline of ``y = 0``. If
        there is a possibility of a y offset, it is recommended to set `floating_mean`
        to True.
    freqs : array_like
        Angular frequencies (e.g., having unit rad/s=2π/s for `x` having unit s) for
        output periodogram. Frequencies are normally >= 0, as any peak at ``-freq`` will
        also exist at ``+freq``.
    precenter : bool, optional
        Pre-center measurement values by subtracting the mean, if True. This is
        a legacy parameter and unnecessary if `floating_mean` is True.
    normalize : bool | str, optional
        Compute normalized or complex (amplitude + phase) periodogram.
        Valid options are: ``False``/``"power"``, ``True``/``"normalize"``, or
        ``"amplitude"``.
    weights : array_like, optional
        Weights for each sample. Weights must be nonnegative.
    floating_mean : bool, optional
        Determines a y offset for each frequency independently, if True.
        Else the y offset is assumed to be `0`.

    Returns
    -------
    pgram : array_like
        Lomb-Scargle periodogram.

    Raises
    ------
    ValueError
        If any of the input arrays x, y, freqs, or weights are not 1D, or if any are
        zero length. Or, if the input arrays x, y, and weights do not have the same
        shape as each other.
    ValueError
        If any weight is < 0, or the sum of the weights is <= 0.
    ValueError
        If the normalize parameter is not one of the allowed options.

    See Also
    --------
    periodogram: Power spectral density using a periodogram
    welch: Power spectral density by Welch's method
    csd: Cross spectral density by Welch's method

    Notes
    -----
    The algorithm used will not automatically account for any unknown y offset, unless
    floating_mean is True. Therefore, for most use cases, if there is a possibility of
    a y offset, it is recommended to set floating_mean to True. If precenter is True,
    it performs the operation ``y -= y.mean()``. However, precenter is a legacy
    parameter, and unnecessary when floating_mean is True. Furthermore, the mean
    removed by precenter does not account for sample weights, nor will it correct for
    any bias due to consistently missing observations at peaks and/or troughs. When the
    normalize parameter is "amplitude", for any frequency in freqs that is below
    ``(2*pi)/(x.max() - x.min())``, the predicted amplitude will tend towards infinity.
    The concept of a "Nyquist frequency" limit (see Nyquist-Shannon sampling theorem)
    is not generally applicable to unevenly sampled data. Therefore, with unevenly
    sampled data, valid frequencies in freqs can often be much higher than expected.

    References
    ----------
    .. [1] N.R. Lomb "Least-squares frequency analysis of unequally spaced
           data", Astrophysics and Space Science, vol 39, pp. 447-462, 1976
           :doi:`10.1007/bf00648343`

    .. [2] J.D. Scargle "Studies in astronomical time series analysis. II -
           Statistical aspects of spectral analysis of unevenly spaced data",
           The Astrophysical Journal, vol 263, pp. 835-853, 1982
           :doi:`10.1086/160554`

    .. [3] M. Zechmeister and M. Kürster, "The generalised Lomb-Scargle periodogram.
           A new formalism for the floating-mean and Keplerian periodograms,"
           Astronomy and Astrophysics, vol. 496, pp. 577-584, 2009
           :doi:`10.1051/0004-6361:200811296`

    .. [4] J.T. VanderPlas, "Understanding the Lomb-Scargle Periodogram,"
           The Astrophysical Journal Supplement Series, vol. 236, no. 1, p. 16,
           May 2018
           :doi:`10.3847/1538-4365/aab766`


    Examples
    --------
    >>> import numpy as np
    >>> rng = np.random.default_rng()

    First define some input parameters for the signal:

    >>> A = 2.  # amplitude
    >>> c = 2.  # offset
    >>> w0 = 1.  # rad/sec
    >>> nin = 150
    >>> nout = 1002

    Randomly generate sample times:

    >>> x = rng.uniform(0, 10*np.pi, nin)

    Plot a sine wave for the selected times:

    >>> y = A * np.cos(w0*x) + c

    Define the array of frequencies for which to compute the periodogram:

    >>> w = np.linspace(0.25, 10, nout)

    Calculate Lomb-Scargle periodogram for each of the normalize options:

    >>> from scipy.signal import lombscargle
    >>> pgram_power = lombscargle(x, y, w, normalize=False)
    >>> pgram_norm = lombscargle(x, y, w, normalize=True)
    >>> pgram_amp = lombscargle(x, y, w, normalize='amplitude')
    ...
    >>> pgram_power_f = lombscargle(x, y, w, normalize=False, floating_mean=True)
    >>> pgram_norm_f = lombscargle(x, y, w, normalize=True, floating_mean=True)
    >>> pgram_amp_f = lombscargle(x, y, w, normalize='amplitude', floating_mean=True)

    Now make a plot of the input data:

    >>> import matplotlib.pyplot as plt
    >>> fig, (ax_t, ax_p, ax_n, ax_a) = plt.subplots(4, 1, figsize=(5, 6))
    >>> ax_t.plot(x, y, 'b+')
    >>> ax_t.set_xlabel('Time [s]')
    >>> ax_t.set_ylabel('Amplitude')

    Then plot the periodogram for each of the normalize options, as well as with and
    without floating_mean=True:

    >>> ax_p.plot(w, pgram_power, label='default')
    >>> ax_p.plot(w, pgram_power_f, label='floating_mean=True')
    >>> ax_p.set_xlabel('Angular frequency [rad/s]')
    >>> ax_p.set_ylabel('Power')
    >>> ax_p.legend(prop={'size': 7})
    ...
    >>> ax_n.plot(w, pgram_norm, label='default')
    >>> ax_n.plot(w, pgram_norm_f, label='floating_mean=True')
    >>> ax_n.set_xlabel('Angular frequency [rad/s]')
    >>> ax_n.set_ylabel('Normalized')
    >>> ax_n.legend(prop={'size': 7})
    ...
    >>> ax_a.plot(w, np.abs(pgram_amp), label='default')
    >>> ax_a.plot(w, np.abs(pgram_amp_f), label='floating_mean=True')
    >>> ax_a.set_xlabel('Angular frequency [rad/s]')
    >>> ax_a.set_ylabel('Amplitude')
    >>> ax_a.legend(prop={'size': 7})
    ...
    >>> plt.tight_layout()
    >>> plt.show()

    """

    # if no weights are provided, assume all data points are equally important
    if weights is None:
        weights = np.ones_like(y, dtype=np.float64)
    else:
        # if provided, make sure weights is an array and cast to float64
        weights = np.asarray(weights, dtype=np.float64)

    # make sure other inputs are arrays and cast to float64
    # done before validation, in case they were not arrays
    x = np.asarray(x, dtype=np.float64)
    y = np.asarray(y, dtype=np.float64)
    freqs = np.asarray(freqs, dtype=np.float64)

    # validate input shapes
    if not (x.ndim == 1 and x.size > 0 and x.shape == y.shape == weights.shape):
        raise ValueError("Parameters x, y, weights must be 1-D arrays of "
                         "equal non-zero length!")
    if not (freqs.ndim == 1 and freqs.size > 0):
        raise ValueError("Parameter freqs must be a 1-D array of non-zero length!")

    # validate weights
    if not (np.all(weights >= 0) and np.sum(weights) > 0):
        raise ValueError("Parameter weights must have only non-negative entries "
                         "which sum to a positive value!")

    # validate normalize parameter
    if isinstance(normalize, bool):
        # if bool, convert to str literal
        normalize = "normalize" if normalize else "power"

    if normalize not in ["power", "normalize", "amplitude"]:
        raise ValueError(
            "Normalize must be: False (or 'power'), True (or 'normalize'), "
            "or 'amplitude'."
        )

    # weight vector must sum to 1
    weights *= 1.0 / weights.sum()

    # if requested, perform precenter
    if precenter:
        y -= y.mean()

    # transform arrays
    # row vector
    freqs = freqs.reshape(1, -1)
    # column vectors
    x = x.reshape(-1, 1)
    y = y.reshape(-1, 1)
    weights = weights.reshape(-1, 1)

    # store frequent intermediates
    weights_y = weights * y
    freqst = freqs * x
    coswt = np.cos(freqst)
    sinwt = np.sin(freqst)

    Y = np.dot(weights.T, y)  # Eq. 7
    CC = np.dot(weights.T, coswt * coswt)  # Eq. 13
    SS = 1.0 - CC  # trig identity: S^2 = 1 - C^2  Eq.14
    CS = np.dot(weights.T, coswt * sinwt)  # Eq. 15

    if floating_mean:
        C = np.dot(weights.T, coswt)  # Eq. 8
        S = np.dot(weights.T, sinwt)  # Eq. 9
        CC -= C * C  # Eq. 13
        SS -= S * S  # Eq. 14
        CS -= C * S  # Eq. 15

    # calculate tau (phase offset to eliminate CS variable)
    tau = 0.5 * np.arctan2(2.0 * CS, CC - SS)  # Eq. 19
    freqst_tau = freqst - tau

    # coswt and sinwt are now offset by tau, which eliminates CS
    coswt_tau = np.cos(freqst_tau)
    sinwt_tau = np.sin(freqst_tau)

    YC = np.dot(weights_y.T, coswt_tau)  # Eq. 11
    YS = np.dot(weights_y.T, sinwt_tau)  # Eq. 12
    CC = np.dot(weights.T, coswt_tau * coswt_tau)  # Eq. 13, CC range is [0.5, 1.0]
    SS = 1.0 - CC  # trig identity: S^2 = 1 - C^2    Eq. 14, SS range is [0.0, 0.5]

    if floating_mean:
        C = np.dot(weights.T, coswt_tau)  # Eq. 8
        S = np.dot(weights.T, sinwt_tau)  # Eq. 9
        YC -= Y * C  # Eq. 11
        YS -= Y * S  # Eq. 12
        CC -= C * C  # Eq. 13, CC range is now [0.0, 1.0]
        SS -= S * S  # Eq. 14, SS range is now [0.0, 0.5]

    # to prevent division by zero errors with a and b, as well as correcting for
    # numerical precision errors that lead to CC or SS being approximately -0.0,
    # make sure CC and SS are both > 0
    epsneg = np.finfo(dtype=y.dtype).epsneg
    CC[CC < epsneg] = epsneg
    SS[SS < epsneg] = epsneg

    # calculate a and b
    # where: y(w) = a*cos(w) + b*sin(w) + c
    a = YC / CC  # Eq. A.4 and 6, eliminating CS
    b = YS / SS  # Eq. A.4 and 6, eliminating CS
    # c = Y - a * C - b * S

    # store final value as power in A^2 (i.e., (y units)^2)
    pgram = 2.0 * (a * YC + b * YS)

    # squeeze back to a vector
    pgram = np.squeeze(pgram)

    if normalize == "power":  # (default)
        # return the legacy power units ((A**2) * N/4)

        pgram *= float(x.shape[0]) / 4.0

    elif normalize == "normalize":
        # return the normalized power (power at current frequency wrt the entire signal)
        # range will be [0, 1]

        YY = np.dot(weights_y.T, y)  # Eq. 10
        if floating_mean:
            YY -= Y * Y  # Eq. 10

        pgram *= 0.5 / np.squeeze(YY)  # Eq. 20

    else:  # normalize == "amplitude":
        # return the complex representation of the best-fit amplitude and phase

        # squeeze back to vectors
        a = np.squeeze(a)
        b = np.squeeze(b)
        tau = np.squeeze(tau)

        # calculate the complex representation, and correct for tau rotation
        pgram = (a + 1j * b) * np.exp(1j * tau)

    return pgram


def periodogram(x, fs=1.0, window='boxcar', nfft=None, detrend='constant',
                return_onesided=True, scaling='density', axis=-1):
    """
    Estimate power spectral density using a periodogram.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be equal to the length
        of the axis over which the periodogram is computed. Defaults
        to 'boxcar'.
    nfft : int, optional
        Length of the FFT used. If `None` the length of `x` will be
        used.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to 'constant'.
    return_onesided : bool, optional
        If `True`, return a one-sided spectrum for real data. If
        `False` return a two-sided spectrum. Defaults to `True`, but for
        complex data, a two-sided spectrum is always returned.
    scaling : { 'density', 'spectrum' }, optional
        Selects between computing the power spectral density ('density')
        where `Pxx` has units of V**2/Hz and computing the squared magnitude
        spectrum ('spectrum') where `Pxx` has units of V**2, if `x`
        is measured in V and `fs` is measured in Hz. Defaults to
        'density'
    axis : int, optional
        Axis along which the periodogram is computed; the default is
        over the last axis (i.e. ``axis=-1``).

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    Pxx : ndarray
        Power spectral density or power spectrum of `x`.

    See Also
    --------
    welch: Estimate power spectral density using Welch's method
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data

    Notes
    -----
    Consult the :ref:`tutorial_SpectralAnalysis` section of the :ref:`user_guide`
    for a discussion of the scalings of the power spectral density and
    the magnitude (squared) spectrum.

    .. versionadded:: 0.12.0

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> rng = np.random.default_rng()

    Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by
    0.001 V**2/Hz of white noise sampled at 10 kHz.

    >>> fs = 10e3
    >>> N = 1e5
    >>> amp = 2*np.sqrt(2)
    >>> freq = 1234.0
    >>> noise_power = 0.001 * fs / 2
    >>> time = np.arange(N) / fs
    >>> x = amp*np.sin(2*np.pi*freq*time)
    >>> x += rng.normal(scale=np.sqrt(noise_power), size=time.shape)

    Compute and plot the power spectral density.

    >>> f, Pxx_den = signal.periodogram(x, fs)
    >>> plt.semilogy(f, Pxx_den)
    >>> plt.ylim([1e-7, 1e2])
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('PSD [V**2/Hz]')
    >>> plt.show()

    If we average the last half of the spectral density, to exclude the
    peak, we can recover the noise power on the signal.

    >>> np.mean(Pxx_den[25000:])
    0.000985320699252543

    Now compute and plot the power spectrum.

    >>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')
    >>> plt.figure()
    >>> plt.semilogy(f, np.sqrt(Pxx_spec))
    >>> plt.ylim([1e-4, 1e1])
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('Linear spectrum [V RMS]')
    >>> plt.show()

    The peak height in the power spectrum is an estimate of the RMS
    amplitude.

    >>> np.sqrt(Pxx_spec.max())
    2.0077340678640727

    """
    x = np.asarray(x)

    if x.size == 0:
        return np.empty(x.shape), np.empty(x.shape)

    if window is None:
        window = 'boxcar'

    if nfft is None:
        nperseg = x.shape[axis]
    elif nfft == x.shape[axis]:
        nperseg = nfft
    elif nfft > x.shape[axis]:
        nperseg = x.shape[axis]
    elif nfft < x.shape[axis]:
        s = [np.s_[:]]*len(x.shape)
        s[axis] = np.s_[:nfft]
        x = x[tuple(s)]
        nperseg = nfft
        nfft = None

    if hasattr(window, 'size'):
        if window.size != nperseg:
            raise ValueError('the size of the window must be the same size '
                             'of the input on the specified axis')

    return welch(x, fs=fs, window=window, nperseg=nperseg, noverlap=0,
                 nfft=nfft, detrend=detrend, return_onesided=return_onesided,
                 scaling=scaling, axis=axis)


def welch(x, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
          detrend='constant', return_onesided=True, scaling='density',
          axis=-1, average='mean'):
    r"""
    Estimate power spectral density using Welch's method.

    Welch's method [1]_ computes an estimate of the power spectral
    density by dividing the data into overlapping segments, computing a
    modified periodogram for each segment and averaging the
    periodograms.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to a Hann window.
    nperseg : int, optional
        Length of each segment. Defaults to None, but if window is str or
        tuple, is set to 256, and if window is array_like, is set to the
        length of the window.
    noverlap : int, optional
        Number of points to overlap between segments. If `None`,
        ``noverlap = nperseg // 2``. Defaults to `None`.
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired. If
        `None`, the FFT length is `nperseg`. Defaults to `None`.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to 'constant'.
    return_onesided : bool, optional
        If `True`, return a one-sided spectrum for real data. If
        `False` return a two-sided spectrum. Defaults to `True`, but for
        complex data, a two-sided spectrum is always returned.
    scaling : { 'density', 'spectrum' }, optional
        Selects between computing the power spectral density ('density')
        where `Pxx` has units of V**2/Hz and computing the squared magnitude
        spectrum ('spectrum') where `Pxx` has units of V**2, if `x`
        is measured in V and `fs` is measured in Hz. Defaults to
        'density'
    axis : int, optional
        Axis along which the periodogram is computed; the default is
        over the last axis (i.e. ``axis=-1``).
    average : { 'mean', 'median' }, optional
        Method to use when averaging periodograms. Defaults to 'mean'.

        .. versionadded:: 1.2.0

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    Pxx : ndarray
        Power spectral density or power spectrum of x.

    See Also
    --------
    periodogram: Simple, optionally modified periodogram
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data

    Notes
    -----
    An appropriate amount of overlap will depend on the choice of window
    and on your requirements. For the default Hann window an overlap of
    50% is a reasonable trade off between accurately estimating the
    signal power, while not over counting any of the data. Narrower
    windows may require a larger overlap.

    If `noverlap` is 0, this method is equivalent to Bartlett's method
    [2]_.

    Consult the :ref:`tutorial_SpectralAnalysis` section of the :ref:`user_guide`
    for a discussion of the scalings of the power spectral density and
    the (squared) magnitude spectrum.

    .. versionadded:: 0.12.0

    References
    ----------
    .. [1] P. Welch, "The use of the fast Fourier transform for the
           estimation of power spectra: A method based on time averaging
           over short, modified periodograms", IEEE Trans. Audio
           Electroacoust. vol. 15, pp. 70-73, 1967.
    .. [2] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra",
           Biometrika, vol. 37, pp. 1-16, 1950.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> rng = np.random.default_rng()

    Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by
    0.001 V**2/Hz of white noise sampled at 10 kHz.

    >>> fs = 10e3
    >>> N = 1e5
    >>> amp = 2*np.sqrt(2)
    >>> freq = 1234.0
    >>> noise_power = 0.001 * fs / 2
    >>> time = np.arange(N) / fs
    >>> x = amp*np.sin(2*np.pi*freq*time)
    >>> x += rng.normal(scale=np.sqrt(noise_power), size=time.shape)

    Compute and plot the power spectral density.

    >>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
    >>> plt.semilogy(f, Pxx_den)
    >>> plt.ylim([0.5e-3, 1])
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('PSD [V**2/Hz]')
    >>> plt.show()

    If we average the last half of the spectral density, to exclude the
    peak, we can recover the noise power on the signal.

    >>> np.mean(Pxx_den[256:])
    0.0009924865443739191

    Now compute and plot the power spectrum.

    >>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum')
    >>> plt.figure()
    >>> plt.semilogy(f, np.sqrt(Pxx_spec))
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('Linear spectrum [V RMS]')
    >>> plt.show()

    The peak height in the power spectrum is an estimate of the RMS
    amplitude.

    >>> np.sqrt(Pxx_spec.max())
    2.0077340678640727

    If we now introduce a discontinuity in the signal, by increasing the
    amplitude of a small portion of the signal by 50, we can see the
    corruption of the mean average power spectral density, but using a
    median average better estimates the normal behaviour.

    >>> x[int(N//2):int(N//2)+10] *= 50.
    >>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
    >>> f_med, Pxx_den_med = signal.welch(x, fs, nperseg=1024, average='median')
    >>> plt.semilogy(f, Pxx_den, label='mean')
    >>> plt.semilogy(f_med, Pxx_den_med, label='median')
    >>> plt.ylim([0.5e-3, 1])
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('PSD [V**2/Hz]')
    >>> plt.legend()
    >>> plt.show()

    """
    freqs, Pxx = csd(x, x, fs=fs, window=window, nperseg=nperseg,
                     noverlap=noverlap, nfft=nfft, detrend=detrend,
                     return_onesided=return_onesided, scaling=scaling,
                     axis=axis, average=average)

    return freqs, Pxx.real


def csd(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
        detrend='constant', return_onesided=True, scaling='density',
        axis=-1, average='mean'):
    r"""
    Estimate the cross power spectral density, Pxy, using Welch's method.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    y : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` and `y` time series. Defaults
        to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to a Hann window.
    nperseg : int, optional
        Length of each segment. Defaults to None, but if window is str or
        tuple, is set to 256, and if window is array_like, is set to the
        length of the window.
    noverlap: int, optional
        Number of points to overlap between segments. If `None`,
        ``noverlap = nperseg // 2``. Defaults to `None`.
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired. If
        `None`, the FFT length is `nperseg`. Defaults to `None`.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to 'constant'.
    return_onesided : bool, optional
        If `True`, return a one-sided spectrum for real data. If
        `False` return a two-sided spectrum. Defaults to `True`, but for
        complex data, a two-sided spectrum is always returned.
    scaling : { 'density', 'spectrum' }, optional
        Selects between computing the cross spectral density ('density')
        where `Pxy` has units of V**2/Hz and computing the cross spectrum
        ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are
        measured in V and `fs` is measured in Hz. Defaults to 'density'
    axis : int, optional
        Axis along which the CSD is computed for both inputs; the
        default is over the last axis (i.e. ``axis=-1``).
    average : { 'mean', 'median' }, optional
        Method to use when averaging periodograms. If the spectrum is
        complex, the average is computed separately for the real and
        imaginary parts. Defaults to 'mean'.

        .. versionadded:: 1.2.0

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    Pxy : ndarray
        Cross spectral density or cross power spectrum of x,y.

    See Also
    --------
    periodogram: Simple, optionally modified periodogram
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data
    welch: Power spectral density by Welch's method. [Equivalent to
           csd(x,x)]
    coherence: Magnitude squared coherence by Welch's method.

    Notes
    -----
    By convention, Pxy is computed with the conjugate FFT of X
    multiplied by the FFT of Y.

    If the input series differ in length, the shorter series will be
    zero-padded to match.

    An appropriate amount of overlap will depend on the choice of window
    and on your requirements. For the default Hann window an overlap of
    50% is a reasonable trade off between accurately estimating the
    signal power, while not over counting any of the data. Narrower
    windows may require a larger overlap.

    Consult the :ref:`tutorial_SpectralAnalysis` section of the :ref:`user_guide`
    for a discussion of the scalings of a spectral density and an (amplitude) spectrum.

    .. versionadded:: 0.16.0

    References
    ----------
    .. [1] P. Welch, "The use of the fast Fourier transform for the
           estimation of power spectra: A method based on time averaging
           over short, modified periodograms", IEEE Trans. Audio
           Electroacoust. vol. 15, pp. 70-73, 1967.
    .. [2] Rabiner, Lawrence R., and B. Gold. "Theory and Application of
           Digital Signal Processing" Prentice-Hall, pp. 414-419, 1975

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> rng = np.random.default_rng()

    Generate two test signals with some common features.

    >>> fs = 10e3
    >>> N = 1e5
    >>> amp = 20
    >>> freq = 1234.0
    >>> noise_power = 0.001 * fs / 2
    >>> time = np.arange(N) / fs
    >>> b, a = signal.butter(2, 0.25, 'low')
    >>> x = rng.normal(scale=np.sqrt(noise_power), size=time.shape)
    >>> y = signal.lfilter(b, a, x)
    >>> x += amp*np.sin(2*np.pi*freq*time)
    >>> y += rng.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)

    Compute and plot the magnitude of the cross spectral density.

    >>> f, Pxy = signal.csd(x, y, fs, nperseg=1024)
    >>> plt.semilogy(f, np.abs(Pxy))
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('CSD [V**2/Hz]')
    >>> plt.show()

    """
    freqs, _, Pxy = _spectral_helper(x, y, fs, window, nperseg, noverlap,
                                     nfft, detrend, return_onesided, scaling,
                                     axis, mode='psd')

    # Average over windows.
    if len(Pxy.shape) >= 2 and Pxy.size > 0:
        if Pxy.shape[-1] > 1:
            if average == 'median':
                # np.median must be passed real arrays for the desired result
                bias = _median_bias(Pxy.shape[-1])
                if np.iscomplexobj(Pxy):
                    Pxy = (np.median(np.real(Pxy), axis=-1)
                           + 1j * np.median(np.imag(Pxy), axis=-1))
                else:
                    Pxy = np.median(Pxy, axis=-1)
                Pxy /= bias
            elif average == 'mean':
                Pxy = Pxy.mean(axis=-1)
            else:
                raise ValueError(f'average must be "median" or "mean", got {average}')
        else:
            Pxy = np.reshape(Pxy, Pxy.shape[:-1])

    return freqs, Pxy


def spectrogram(x, fs=1.0, window=('tukey', .25), nperseg=None, noverlap=None,
                nfft=None, detrend='constant', return_onesided=True,
                scaling='density', axis=-1, mode='psd'):
    """Compute a spectrogram with consecutive Fourier transforms (legacy function).

    Spectrograms can be used as a way of visualizing the change of a
    nonstationary signal's frequency content over time.

    .. legacy:: function

        :class:`ShortTimeFFT` is a newer STFT / ISTFT implementation with more
        features also including a :meth:`~ShortTimeFFT.spectrogram` method.
        A :ref:`comparison <tutorial_stft_legacy_stft>` between the
        implementations can be found in the :ref:`tutorial_stft` section of
        the :ref:`user_guide`.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg.
        Defaults to a Tukey window with shape parameter of 0.25.
    nperseg : int, optional
        Length of each segment. Defaults to None, but if window is str or
        tuple, is set to 256, and if window is array_like, is set to the
        length of the window.
    noverlap : int, optional
        Number of points to overlap between segments. If `None`,
        ``noverlap = nperseg // 8``. Defaults to `None`.
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired. If
        `None`, the FFT length is `nperseg`. Defaults to `None`.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to 'constant'.
    return_onesided : bool, optional
        If `True`, return a one-sided spectrum for real data. If
        `False` return a two-sided spectrum. Defaults to `True`, but for
        complex data, a two-sided spectrum is always returned.
    scaling : { 'density', 'spectrum' }, optional
        Selects between computing the power spectral density ('density')
        where `Sxx` has units of V**2/Hz and computing the power
        spectrum ('spectrum') where `Sxx` has units of V**2, if `x`
        is measured in V and `fs` is measured in Hz. Defaults to
        'density'.
    axis : int, optional
        Axis along which the spectrogram is computed; the default is over
        the last axis (i.e. ``axis=-1``).
    mode : str, optional
        Defines what kind of return values are expected. Options are
        ['psd', 'complex', 'magnitude', 'angle', 'phase']. 'complex' is
        equivalent to the output of `stft` with no padding or boundary
        extension. 'magnitude' returns the absolute magnitude of the
        STFT. 'angle' and 'phase' return the complex angle of the STFT,
        with and without unwrapping, respectively.

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    t : ndarray
        Array of segment times.
    Sxx : ndarray
        Spectrogram of x. By default, the last axis of Sxx corresponds
        to the segment times.

    See Also
    --------
    periodogram: Simple, optionally modified periodogram
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data
    welch: Power spectral density by Welch's method.
    csd: Cross spectral density by Welch's method.
    ShortTimeFFT: Newer STFT/ISTFT implementation providing more features,
                  which also includes a :meth:`~ShortTimeFFT.spectrogram`
                  method.

    Notes
    -----
    An appropriate amount of overlap will depend on the choice of window
    and on your requirements. In contrast to welch's method, where the
    entire data stream is averaged over, one may wish to use a smaller
    overlap (or perhaps none at all) when computing a spectrogram, to
    maintain some statistical independence between individual segments.
    It is for this reason that the default window is a Tukey window with
    1/8th of a window's length overlap at each end.


    .. versionadded:: 0.16.0

    References
    ----------
    .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
           "Discrete-Time Signal Processing", Prentice Hall, 1999.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import signal
    >>> from scipy.fft import fftshift
    >>> import matplotlib.pyplot as plt
    >>> rng = np.random.default_rng()

    Generate a test signal, a 2 Vrms sine wave whose frequency is slowly
    modulated around 3kHz, corrupted by white noise of exponentially
    decreasing magnitude sampled at 10 kHz.

    >>> fs = 10e3
    >>> N = 1e5
    >>> amp = 2 * np.sqrt(2)
    >>> noise_power = 0.01 * fs / 2
    >>> time = np.arange(N) / float(fs)
    >>> mod = 500*np.cos(2*np.pi*0.25*time)
    >>> carrier = amp * np.sin(2*np.pi*3e3*time + mod)
    >>> noise = rng.normal(scale=np.sqrt(noise_power), size=time.shape)
    >>> noise *= np.exp(-time/5)
    >>> x = carrier + noise

    Compute and plot the spectrogram.

    >>> f, t, Sxx = signal.spectrogram(x, fs)
    >>> plt.pcolormesh(t, f, Sxx, shading='gouraud')
    >>> plt.ylabel('Frequency [Hz]')
    >>> plt.xlabel('Time [sec]')
    >>> plt.show()

    Note, if using output that is not one sided, then use the following:

    >>> f, t, Sxx = signal.spectrogram(x, fs, return_onesided=False)
    >>> plt.pcolormesh(t, fftshift(f), fftshift(Sxx, axes=0), shading='gouraud')
    >>> plt.ylabel('Frequency [Hz]')
    >>> plt.xlabel('Time [sec]')
    >>> plt.show()

    """
    modelist = ['psd', 'complex', 'magnitude', 'angle', 'phase']
    if mode not in modelist:
        raise ValueError(f'unknown value for mode {mode}, must be one of {modelist}')

    # need to set default for nperseg before setting default for noverlap below
    window, nperseg = _triage_segments(window, nperseg,
                                       input_length=x.shape[axis])

    # Less overlap than welch, so samples are more statistically independent
    if noverlap is None:
        noverlap = nperseg // 8

    if mode == 'psd':
        freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg,
                                            noverlap, nfft, detrend,
                                            return_onesided, scaling, axis,
                                            mode='psd')

    else:
        freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg,
                                            noverlap, nfft, detrend,
                                            return_onesided, scaling, axis,
                                            mode='stft')

        if mode == 'magnitude':
            Sxx = np.abs(Sxx)
        elif mode in ['angle', 'phase']:
            Sxx = np.angle(Sxx)
            if mode == 'phase':
                # Sxx has one additional dimension for time strides
                if axis < 0:
                    axis -= 1
                Sxx = np.unwrap(Sxx, axis=axis)

        # mode =='complex' is same as `stft`, doesn't need modification

    return freqs, time, Sxx


def check_COLA(window, nperseg, noverlap, tol=1e-10):
    r"""Check whether the Constant OverLap Add (COLA) constraint is met.

    Parameters
    ----------
    window : str or tuple or array_like
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg.
    nperseg : int
        Length of each segment.
    noverlap : int
        Number of points to overlap between segments.
    tol : float, optional
        The allowed variance of a bin's weighted sum from the median bin
        sum.

    Returns
    -------
    verdict : bool
        `True` if chosen combination satisfies COLA within `tol`,
        `False` otherwise

    See Also
    --------
    check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met
    stft: Short Time Fourier Transform
    istft: Inverse Short Time Fourier Transform

    Notes
    -----
    In order to enable inversion of an STFT via the inverse STFT in
    `istft`, it is sufficient that the signal windowing obeys the constraint of
    "Constant OverLap Add" (COLA). This ensures that every point in the input
    data is equally weighted, thereby avoiding aliasing and allowing full
    reconstruction.

    Some examples of windows that satisfy COLA:
        - Rectangular window at overlap of 0, 1/2, 2/3, 3/4, ...
        - Bartlett window at overlap of 1/2, 3/4, 5/6, ...
        - Hann window at 1/2, 2/3, 3/4, ...
        - Any Blackman family window at 2/3 overlap
        - Any window with ``noverlap = nperseg-1``

    A very comprehensive list of other windows may be found in [2]_,
    wherein the COLA condition is satisfied when the "Amplitude
    Flatness" is unity.

    .. versionadded:: 0.19.0

    References
    ----------
    .. [1] Julius O. Smith III, "Spectral Audio Signal Processing", W3K
           Publishing, 2011,ISBN 978-0-9745607-3-1.
    .. [2] G. Heinzel, A. Ruediger and R. Schilling, "Spectrum and
           spectral density estimation by the Discrete Fourier transform
           (DFT), including a comprehensive list of window functions and
           some new at-top windows", 2002,
           http://hdl.handle.net/11858/00-001M-0000-0013-557A-5

    Examples
    --------
    >>> from scipy import signal

    Confirm COLA condition for rectangular window of 75% (3/4) overlap:

    >>> signal.check_COLA(signal.windows.boxcar(100), 100, 75)
    True

    COLA is not true for 25% (1/4) overlap, though:

    >>> signal.check_COLA(signal.windows.boxcar(100), 100, 25)
    False

    "Symmetrical" Hann window (for filter design) is not COLA:

    >>> signal.check_COLA(signal.windows.hann(120, sym=True), 120, 60)
    False

    "Periodic" or "DFT-even" Hann window (for FFT analysis) is COLA for
    overlap of 1/2, 2/3, 3/4, etc.:

    >>> signal.check_COLA(signal.windows.hann(120, sym=False), 120, 60)
    True

    >>> signal.check_COLA(signal.windows.hann(120, sym=False), 120, 80)
    True

    >>> signal.check_COLA(signal.windows.hann(120, sym=False), 120, 90)
    True

    """
    nperseg = int(nperseg)

    if nperseg < 1:
        raise ValueError('nperseg must be a positive integer')

    if noverlap >= nperseg:
        raise ValueError('noverlap must be less than nperseg.')
    noverlap = int(noverlap)

    if isinstance(window, str) or type(window) is tuple:
        win = get_window(window, nperseg)
    else:
        win = np.asarray(window)
        if len(win.shape) != 1:
            raise ValueError('window must be 1-D')
        if win.shape[0] != nperseg:
            raise ValueError('window must have length of nperseg')

    step = nperseg - noverlap
    binsums = sum(win[ii*step:(ii+1)*step] for ii in range(nperseg//step))

    if nperseg % step != 0:
        binsums[:nperseg % step] += win[-(nperseg % step):]

    deviation = binsums - np.median(binsums)
    return np.max(np.abs(deviation)) < tol


def check_NOLA(window, nperseg, noverlap, tol=1e-10):
    r"""Check whether the Nonzero Overlap Add (NOLA) constraint is met.

    Parameters
    ----------
    window : str or tuple or array_like
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg.
    nperseg : int
        Length of each segment.
    noverlap : int
        Number of points to overlap between segments.
    tol : float, optional
        The allowed variance of a bin's weighted sum from the median bin
        sum.

    Returns
    -------
    verdict : bool
        `True` if chosen combination satisfies the NOLA constraint within
        `tol`, `False` otherwise

    See Also
    --------
    check_COLA: Check whether the Constant OverLap Add (COLA) constraint is met
    stft: Short Time Fourier Transform
    istft: Inverse Short Time Fourier Transform

    Notes
    -----
    In order to enable inversion of an STFT via the inverse STFT in
    `istft`, the signal windowing must obey the constraint of "nonzero
    overlap add" (NOLA):

    .. math:: \sum_{t}w^{2}[n-tH] \ne 0

    for all :math:`n`, where :math:`w` is the window function, :math:`t` is the
    frame index, and :math:`H` is the hop size (:math:`H` = `nperseg` -
    `noverlap`).

    This ensures that the normalization factors in the denominator of the
    overlap-add inversion equation are not zero. Only very pathological windows
    will fail the NOLA constraint.

    .. versionadded:: 1.2.0

    References
    ----------
    .. [1] Julius O. Smith III, "Spectral Audio Signal Processing", W3K
           Publishing, 2011,ISBN 978-0-9745607-3-1.
    .. [2] G. Heinzel, A. Ruediger and R. Schilling, "Spectrum and
           spectral density estimation by the Discrete Fourier transform
           (DFT), including a comprehensive list of window functions and
           some new at-top windows", 2002,
           http://hdl.handle.net/11858/00-001M-0000-0013-557A-5

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import signal

    Confirm NOLA condition for rectangular window of 75% (3/4) overlap:

    >>> signal.check_NOLA(signal.windows.boxcar(100), 100, 75)
    True

    NOLA is also true for 25% (1/4) overlap:

    >>> signal.check_NOLA(signal.windows.boxcar(100), 100, 25)
    True

    "Symmetrical" Hann window (for filter design) is also NOLA:

    >>> signal.check_NOLA(signal.windows.hann(120, sym=True), 120, 60)
    True

    As long as there is overlap, it takes quite a pathological window to fail
    NOLA:

    >>> w = np.ones(64, dtype="float")
    >>> w[::2] = 0
    >>> signal.check_NOLA(w, 64, 32)
    False

    If there is not enough overlap, a window with zeros at the ends will not
    work:

    >>> signal.check_NOLA(signal.windows.hann(64), 64, 0)
    False
    >>> signal.check_NOLA(signal.windows.hann(64), 64, 1)
    False
    >>> signal.check_NOLA(signal.windows.hann(64), 64, 2)
    True

    """
    nperseg = int(nperseg)

    if nperseg < 1:
        raise ValueError('nperseg must be a positive integer')

    if noverlap >= nperseg:
        raise ValueError('noverlap must be less than nperseg')
    if noverlap < 0:
        raise ValueError('noverlap must be a nonnegative integer')
    noverlap = int(noverlap)

    if isinstance(window, str) or type(window) is tuple:
        win = get_window(window, nperseg)
    else:
        win = np.asarray(window)
        if len(win.shape) != 1:
            raise ValueError('window must be 1-D')
        if win.shape[0] != nperseg:
            raise ValueError('window must have length of nperseg')

    step = nperseg - noverlap
    binsums = sum(win[ii*step:(ii+1)*step]**2 for ii in range(nperseg//step))

    if nperseg % step != 0:
        binsums[:nperseg % step] += win[-(nperseg % step):]**2

    return np.min(binsums) > tol


def stft(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None,
         detrend=False, return_onesided=True, boundary='zeros', padded=True,
         axis=-1, scaling='spectrum'):
    r"""Compute the Short Time Fourier Transform (legacy function).

    STFTs can be used as a way of quantifying the change of a
    nonstationary signal's frequency and phase content over time.

    .. legacy:: function

        `ShortTimeFFT` is a newer STFT / ISTFT implementation with more
        features. A :ref:`comparison <tutorial_stft_legacy_stft>` between the
        implementations can be found in the :ref:`tutorial_stft` section of the
        :ref:`user_guide`.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to a Hann window.
    nperseg : int, optional
        Length of each segment. Defaults to 256.
    noverlap : int, optional
        Number of points to overlap between segments. If `None`,
        ``noverlap = nperseg // 2``. Defaults to `None`. When
        specified, the COLA constraint must be met (see Notes below).
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired. If
        `None`, the FFT length is `nperseg`. Defaults to `None`.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to `False`.
    return_onesided : bool, optional
        If `True`, return a one-sided spectrum for real data. If
        `False` return a two-sided spectrum. Defaults to `True`, but for
        complex data, a two-sided spectrum is always returned.
    boundary : str or None, optional
        Specifies whether the input signal is extended at both ends, and
        how to generate the new values, in order to center the first
        windowed segment on the first input point. This has the benefit
        of enabling reconstruction of the first input point when the
        employed window function starts at zero. Valid options are
        ``['even', 'odd', 'constant', 'zeros', None]``. Defaults to
        'zeros', for zero padding extension. I.e. ``[1, 2, 3, 4]`` is
        extended to ``[0, 1, 2, 3, 4, 0]`` for ``nperseg=3``.
    padded : bool, optional
        Specifies whether the input signal is zero-padded at the end to
        make the signal fit exactly into an integer number of window
        segments, so that all of the signal is included in the output.
        Defaults to `True`. Padding occurs after boundary extension, if
        `boundary` is not `None`, and `padded` is `True`, as is the
        default.
    axis : int, optional
        Axis along which the STFT is computed; the default is over the
        last axis (i.e. ``axis=-1``).
    scaling: {'spectrum', 'psd'}
        The default 'spectrum' scaling allows each frequency line of `Zxx` to
        be interpreted as a magnitude spectrum. The 'psd' option scales each
        line to a power spectral density - it allows to calculate the signal's
        energy by numerically integrating over ``abs(Zxx)**2``.

        .. versionadded:: 1.9.0

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    t : ndarray
        Array of segment times.
    Zxx : ndarray
        STFT of `x`. By default, the last axis of `Zxx` corresponds
        to the segment times.

    See Also
    --------
    istft: Inverse Short Time Fourier Transform
    ShortTimeFFT: Newer STFT/ISTFT implementation providing more features.
    check_COLA: Check whether the Constant OverLap Add (COLA) constraint
                is met
    check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met
    welch: Power spectral density by Welch's method.
    spectrogram: Spectrogram by Welch's method.
    csd: Cross spectral density by Welch's method.
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data

    Notes
    -----
    In order to enable inversion of an STFT via the inverse STFT in
    `istft`, the signal windowing must obey the constraint of "Nonzero
    OverLap Add" (NOLA), and the input signal must have complete
    windowing coverage (i.e. ``(x.shape[axis] - nperseg) %
    (nperseg-noverlap) == 0``). The `padded` argument may be used to
    accomplish this.

    Given a time-domain signal :math:`x[n]`, a window :math:`w[n]`, and a hop
    size :math:`H` = `nperseg - noverlap`, the windowed frame at time index
    :math:`t` is given by

    .. math:: x_{t}[n]=x[n]w[n-tH]

    The overlap-add (OLA) reconstruction equation is given by

    .. math:: x[n]=\frac{\sum_{t}x_{t}[n]w[n-tH]}{\sum_{t}w^{2}[n-tH]}

    The NOLA constraint ensures that every normalization term that appears
    in the denominator of the OLA reconstruction equation is nonzero. Whether a
    choice of `window`, `nperseg`, and `noverlap` satisfy this constraint can
    be tested with `check_NOLA`.


    .. versionadded:: 0.19.0

    References
    ----------
    .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
           "Discrete-Time Signal Processing", Prentice Hall, 1999.
    .. [2] Daniel W. Griffin, Jae S. Lim "Signal Estimation from
           Modified Short-Time Fourier Transform", IEEE 1984,
           10.1109/TASSP.1984.1164317

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> rng = np.random.default_rng()

    Generate a test signal, a 2 Vrms sine wave whose frequency is slowly
    modulated around 3kHz, corrupted by white noise of exponentially
    decreasing magnitude sampled at 10 kHz.

    >>> fs = 10e3
    >>> N = 1e5
    >>> amp = 2 * np.sqrt(2)
    >>> noise_power = 0.01 * fs / 2
    >>> time = np.arange(N) / float(fs)
    >>> mod = 500*np.cos(2*np.pi*0.25*time)
    >>> carrier = amp * np.sin(2*np.pi*3e3*time + mod)
    >>> noise = rng.normal(scale=np.sqrt(noise_power),
    ...                    size=time.shape)
    >>> noise *= np.exp(-time/5)
    >>> x = carrier + noise

    Compute and plot the STFT's magnitude.

    >>> f, t, Zxx = signal.stft(x, fs, nperseg=1000)
    >>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp, shading='gouraud')
    >>> plt.title('STFT Magnitude')
    >>> plt.ylabel('Frequency [Hz]')
    >>> plt.xlabel('Time [sec]')
    >>> plt.show()

    Compare the energy of the signal `x` with the energy of its STFT:

    >>> E_x = sum(x**2) / fs  # Energy of x
    >>> # Calculate a two-sided STFT with PSD scaling:
    >>> f, t, Zxx = signal.stft(x, fs, nperseg=1000, return_onesided=False,
    ...                         scaling='psd')
    >>> # Integrate numerically over abs(Zxx)**2:
    >>> df, dt = f[1] - f[0], t[1] - t[0]
    >>> E_Zxx = sum(np.sum(Zxx.real**2 + Zxx.imag**2, axis=0) * df) * dt
    >>> # The energy is the same, but the numerical errors are quite large:
    >>> np.isclose(E_x, E_Zxx, rtol=1e-2)
    True

    """
    if scaling == 'psd':
        scaling = 'density'
    elif scaling != 'spectrum':
        raise ValueError(f"Parameter {scaling=} not in ['spectrum', 'psd']!")

    freqs, time, Zxx = _spectral_helper(x, x, fs, window, nperseg, noverlap,
                                        nfft, detrend, return_onesided,
                                        scaling=scaling, axis=axis,
                                        mode='stft', boundary=boundary,
                                        padded=padded)

    return freqs, time, Zxx


def istft(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
          input_onesided=True, boundary=True, time_axis=-1, freq_axis=-2,
          scaling='spectrum'):
    r"""Perform the inverse Short Time Fourier transform (legacy function).

    .. legacy:: function

        `ShortTimeFFT` is a newer STFT / ISTFT implementation with more
        features. A :ref:`comparison <tutorial_stft_legacy_stft>` between the
        implementations can be found in the :ref:`tutorial_stft` section of the
        :ref:`user_guide`.

    Parameters
    ----------
    Zxx : array_like
        STFT of the signal to be reconstructed. If a purely real array
        is passed, it will be cast to a complex data type.
    fs : float, optional
        Sampling frequency of the time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to a Hann window. Must match the window used to generate the
        STFT for faithful inversion.
    nperseg : int, optional
        Number of data points corresponding to each STFT segment. This
        parameter must be specified if the number of data points per
        segment is odd, or if the STFT was padded via ``nfft >
        nperseg``. If `None`, the value depends on the shape of
        `Zxx` and `input_onesided`. If `input_onesided` is `True`,
        ``nperseg=2*(Zxx.shape[freq_axis] - 1)``. Otherwise,
        ``nperseg=Zxx.shape[freq_axis]``. Defaults to `None`.
    noverlap : int, optional
        Number of points to overlap between segments. If `None`, half
        of the segment length. Defaults to `None`. When specified, the
        COLA constraint must be met (see Notes below), and should match
        the parameter used to generate the STFT. Defaults to `None`.
    nfft : int, optional
        Number of FFT points corresponding to each STFT segment. This
        parameter must be specified if the STFT was padded via ``nfft >
        nperseg``. If `None`, the default values are the same as for
        `nperseg`, detailed above, with one exception: if
        `input_onesided` is True and
        ``nperseg==2*Zxx.shape[freq_axis] - 1``, `nfft` also takes on
        that value. This case allows the proper inversion of an
        odd-length unpadded STFT using ``nfft=None``. Defaults to
        `None`.
    input_onesided : bool, optional
        If `True`, interpret the input array as one-sided FFTs, such
        as is returned by `stft` with ``return_onesided=True`` and
        `numpy.fft.rfft`. If `False`, interpret the input as a a
        two-sided FFT. Defaults to `True`.
    boundary : bool, optional
        Specifies whether the input signal was extended at its
        boundaries by supplying a non-`None` ``boundary`` argument to
        `stft`. Defaults to `True`.
    time_axis : int, optional
        Where the time segments of the STFT is located; the default is
        the last axis (i.e. ``axis=-1``).
    freq_axis : int, optional
        Where the frequency axis of the STFT is located; the default is
        the penultimate axis (i.e. ``axis=-2``).
    scaling: {'spectrum', 'psd'}
        The default 'spectrum' scaling allows each frequency line of `Zxx` to
        be interpreted as a magnitude spectrum. The 'psd' option scales each
        line to a power spectral density - it allows to calculate the signal's
        energy by numerically integrating over ``abs(Zxx)**2``.

    Returns
    -------
    t : ndarray
        Array of output data times.
    x : ndarray
        iSTFT of `Zxx`.

    See Also
    --------
    stft: Short Time Fourier Transform
    ShortTimeFFT: Newer STFT/ISTFT implementation providing more features.
    check_COLA: Check whether the Constant OverLap Add (COLA) constraint
                is met
    check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met

    Notes
    -----
    In order to enable inversion of an STFT via the inverse STFT with
    `istft`, the signal windowing must obey the constraint of "nonzero
    overlap add" (NOLA):

    .. math:: \sum_{t}w^{2}[n-tH] \ne 0

    This ensures that the normalization factors that appear in the denominator
    of the overlap-add reconstruction equation

    .. math:: x[n]=\frac{\sum_{t}x_{t}[n]w[n-tH]}{\sum_{t}w^{2}[n-tH]}

    are not zero. The NOLA constraint can be checked with the `check_NOLA`
    function.

    An STFT which has been modified (via masking or otherwise) is not
    guaranteed to correspond to a exactly realizible signal. This
    function implements the iSTFT via the least-squares estimation
    algorithm detailed in [2]_, which produces a signal that minimizes
    the mean squared error between the STFT of the returned signal and
    the modified STFT.


    .. versionadded:: 0.19.0

    References
    ----------
    .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
           "Discrete-Time Signal Processing", Prentice Hall, 1999.
    .. [2] Daniel W. Griffin, Jae S. Lim "Signal Estimation from
           Modified Short-Time Fourier Transform", IEEE 1984,
           10.1109/TASSP.1984.1164317

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> rng = np.random.default_rng()

    Generate a test signal, a 2 Vrms sine wave at 50Hz corrupted by
    0.001 V**2/Hz of white noise sampled at 1024 Hz.

    >>> fs = 1024
    >>> N = 10*fs
    >>> nperseg = 512
    >>> amp = 2 * np.sqrt(2)
    >>> noise_power = 0.001 * fs / 2
    >>> time = np.arange(N) / float(fs)
    >>> carrier = amp * np.sin(2*np.pi*50*time)
    >>> noise = rng.normal(scale=np.sqrt(noise_power),
    ...                    size=time.shape)
    >>> x = carrier + noise

    Compute the STFT, and plot its magnitude

    >>> f, t, Zxx = signal.stft(x, fs=fs, nperseg=nperseg)
    >>> plt.figure()
    >>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp, shading='gouraud')
    >>> plt.ylim([f[1], f[-1]])
    >>> plt.title('STFT Magnitude')
    >>> plt.ylabel('Frequency [Hz]')
    >>> plt.xlabel('Time [sec]')
    >>> plt.yscale('log')
    >>> plt.show()

    Zero the components that are 10% or less of the carrier magnitude,
    then convert back to a time series via inverse STFT

    >>> Zxx = np.where(np.abs(Zxx) >= amp/10, Zxx, 0)
    >>> _, xrec = signal.istft(Zxx, fs)

    Compare the cleaned signal with the original and true carrier signals.

    >>> plt.figure()
    >>> plt.plot(time, x, time, xrec, time, carrier)
    >>> plt.xlim([2, 2.1])
    >>> plt.xlabel('Time [sec]')
    >>> plt.ylabel('Signal')
    >>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
    >>> plt.show()

    Note that the cleaned signal does not start as abruptly as the original,
    since some of the coefficients of the transient were also removed:

    >>> plt.figure()
    >>> plt.plot(time, x, time, xrec, time, carrier)
    >>> plt.xlim([0, 0.1])
    >>> plt.xlabel('Time [sec]')
    >>> plt.ylabel('Signal')
    >>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
    >>> plt.show()

    """
    # Make sure input is an ndarray of appropriate complex dtype
    Zxx = np.asarray(Zxx) + 0j
    freq_axis = int(freq_axis)
    time_axis = int(time_axis)

    if Zxx.ndim < 2:
        raise ValueError('Input stft must be at least 2d!')

    if freq_axis == time_axis:
        raise ValueError('Must specify differing time and frequency axes!')

    nseg = Zxx.shape[time_axis]

    if input_onesided:
        # Assume even segment length
        n_default = 2*(Zxx.shape[freq_axis] - 1)
    else:
        n_default = Zxx.shape[freq_axis]

    # Check windowing parameters
    if nperseg is None:
        nperseg = n_default
    else:
        nperseg = int(nperseg)
        if nperseg < 1:
            raise ValueError('nperseg must be a positive integer')

    if nfft is None:
        if (input_onesided) and (nperseg == n_default + 1):
            # Odd nperseg, no FFT padding
            nfft = nperseg
        else:
            nfft = n_default
    elif nfft < nperseg:
        raise ValueError('nfft must be greater than or equal to nperseg.')
    else:
        nfft = int(nfft)

    if noverlap is None:
        noverlap = nperseg//2
    else:
        noverlap = int(noverlap)
    if noverlap >= nperseg:
        raise ValueError('noverlap must be less than nperseg.')
    nstep = nperseg - noverlap

    # Rearrange axes if necessary
    if time_axis != Zxx.ndim-1 or freq_axis != Zxx.ndim-2:
        # Turn negative indices to positive for the call to transpose
        if freq_axis < 0:
            freq_axis = Zxx.ndim + freq_axis
        if time_axis < 0:
            time_axis = Zxx.ndim + time_axis
        zouter = list(range(Zxx.ndim))
        for ax in sorted([time_axis, freq_axis], reverse=True):
            zouter.pop(ax)
        Zxx = np.transpose(Zxx, zouter+[freq_axis, time_axis])

    # Get window as array
    if isinstance(window, str) or type(window) is tuple:
        win = get_window(window, nperseg)
    else:
        win = np.asarray(window)
        if len(win.shape) != 1:
            raise ValueError('window must be 1-D')
        if win.shape[0] != nperseg:
            raise ValueError(f'window must have length of {nperseg}')

    ifunc = sp_fft.irfft if input_onesided else sp_fft.ifft
    xsubs = ifunc(Zxx, axis=-2, n=nfft)[..., :nperseg, :]

    # Initialize output and normalization arrays
    outputlength = nperseg + (nseg-1)*nstep
    x = np.zeros(list(Zxx.shape[:-2])+[outputlength], dtype=xsubs.dtype)
    norm = np.zeros(outputlength, dtype=xsubs.dtype)

    if np.result_type(win, xsubs) != xsubs.dtype:
        win = win.astype(xsubs.dtype)

    if scaling == 'spectrum':
        xsubs *= win.sum()
    elif scaling == 'psd':
        xsubs *= np.sqrt(fs * sum(win**2))
    else:
        raise ValueError(f"Parameter {scaling=} not in ['spectrum', 'psd']!")

    # Construct the output from the ifft segments
    # This loop could perhaps be vectorized/strided somehow...
    for ii in range(nseg):
        # Window the ifft
        x[..., ii*nstep:ii*nstep+nperseg] += xsubs[..., ii] * win
        norm[..., ii*nstep:ii*nstep+nperseg] += win**2

    # Remove extension points
    if boundary:
        x = x[..., nperseg//2:-(nperseg//2)]
        norm = norm[..., nperseg//2:-(nperseg//2)]

    # Divide out normalization where non-tiny
    if np.sum(norm > 1e-10) != len(norm):
        warnings.warn(
            "NOLA condition failed, STFT may not be invertible."
            + (" Possibly due to missing boundary" if not boundary else ""),
            stacklevel=2
        )
    x /= np.where(norm > 1e-10, norm, 1.0)

    if input_onesided:
        x = x.real

    # Put axes back
    if x.ndim > 1:
        if time_axis != Zxx.ndim-1:
            if freq_axis < time_axis:
                time_axis -= 1
            x = np.moveaxis(x, -1, time_axis)

    time = np.arange(x.shape[0])/float(fs)
    return time, x


def coherence(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None,
              nfft=None, detrend='constant', axis=-1):
    r"""
    Estimate the magnitude squared coherence estimate, Cxy, of
    discrete-time signals X and Y using Welch's method.

    ``Cxy = abs(Pxy)**2/(Pxx*Pyy)``, where `Pxx` and `Pyy` are power
    spectral density estimates of X and Y, and `Pxy` is the cross
    spectral density estimate of X and Y.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    y : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` and `y` time series. Defaults
        to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to a Hann window.
    nperseg : int, optional
        Length of each segment. Defaults to None, but if window is str or
        tuple, is set to 256, and if window is array_like, is set to the
        length of the window.
    noverlap: int, optional
        Number of points to overlap between segments. If `None`,
        ``noverlap = nperseg // 2``. Defaults to `None`.
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired. If
        `None`, the FFT length is `nperseg`. Defaults to `None`.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to 'constant'.
    axis : int, optional
        Axis along which the coherence is computed for both inputs; the
        default is over the last axis (i.e. ``axis=-1``).

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    Cxy : ndarray
        Magnitude squared coherence of x and y.

    See Also
    --------
    periodogram: Simple, optionally modified periodogram
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data
    welch: Power spectral density by Welch's method.
    csd: Cross spectral density by Welch's method.

    Notes
    -----
    An appropriate amount of overlap will depend on the choice of window
    and on your requirements. For the default Hann window an overlap of
    50% is a reasonable trade off between accurately estimating the
    signal power, while not over counting any of the data. Narrower
    windows may require a larger overlap.

    .. versionadded:: 0.16.0

    References
    ----------
    .. [1] P. Welch, "The use of the fast Fourier transform for the
           estimation of power spectra: A method based on time averaging
           over short, modified periodograms", IEEE Trans. Audio
           Electroacoust. vol. 15, pp. 70-73, 1967.
    .. [2] Stoica, Petre, and Randolph Moses, "Spectral Analysis of
           Signals" Prentice Hall, 2005

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> rng = np.random.default_rng()

    Generate two test signals with some common features.

    >>> fs = 10e3
    >>> N = 1e5
    >>> amp = 20
    >>> freq = 1234.0
    >>> noise_power = 0.001 * fs / 2
    >>> time = np.arange(N) / fs
    >>> b, a = signal.butter(2, 0.25, 'low')
    >>> x = rng.normal(scale=np.sqrt(noise_power), size=time.shape)
    >>> y = signal.lfilter(b, a, x)
    >>> x += amp*np.sin(2*np.pi*freq*time)
    >>> y += rng.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)

    Compute and plot the coherence.

    >>> f, Cxy = signal.coherence(x, y, fs, nperseg=1024)
    >>> plt.semilogy(f, Cxy)
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('Coherence')
    >>> plt.show()

    """
    freqs, Pxx = welch(x, fs=fs, window=window, nperseg=nperseg,
                       noverlap=noverlap, nfft=nfft, detrend=detrend,
                       axis=axis)
    _, Pyy = welch(y, fs=fs, window=window, nperseg=nperseg, noverlap=noverlap,
                   nfft=nfft, detrend=detrend, axis=axis)
    _, Pxy = csd(x, y, fs=fs, window=window, nperseg=nperseg,
                 noverlap=noverlap, nfft=nfft, detrend=detrend, axis=axis)

    Cxy = np.abs(Pxy)**2 / Pxx / Pyy

    return freqs, Cxy


def _spectral_helper(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None,
                     nfft=None, detrend='constant', return_onesided=True,
                     scaling='density', axis=-1, mode='psd', boundary=None,
                     padded=False):
    """Calculate various forms of windowed FFTs for PSD, CSD, etc.

    This is a helper function that implements the commonality between
    the stft, psd, csd, and spectrogram functions. It is not designed to
    be called externally. The windows are not averaged over; the result
    from each window is returned.

    Parameters
    ----------
    x : array_like
        Array or sequence containing the data to be analyzed.
    y : array_like
        Array or sequence containing the data to be analyzed. If this is
        the same object in memory as `x` (i.e. ``_spectral_helper(x,
        x, ...)``), the extra computations are spared.
    fs : float, optional
        Sampling frequency of the time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to a Hann window.
    nperseg : int, optional
        Length of each segment. Defaults to None, but if window is str or
        tuple, is set to 256, and if window is array_like, is set to the
        length of the window.
    noverlap : int, optional
        Number of points to overlap between segments. If `None`,
        ``noverlap = nperseg // 2``. Defaults to `None`.
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired. If
        `None`, the FFT length is `nperseg`. Defaults to `None`.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to 'constant'.
    return_onesided : bool, optional
        If `True`, return a one-sided spectrum for real data. If
        `False` return a two-sided spectrum. Defaults to `True`, but for
        complex data, a two-sided spectrum is always returned.
    scaling : { 'density', 'spectrum' }, optional
        Selects between computing the cross spectral density ('density')
        where `Pxy` has units of V**2/Hz and computing the cross
        spectrum ('spectrum') where `Pxy` has units of V**2, if `x`
        and `y` are measured in V and `fs` is measured in Hz.
        Defaults to 'density'
    axis : int, optional
        Axis along which the FFTs are computed; the default is over the
        last axis (i.e. ``axis=-1``).
    mode: str {'psd', 'stft'}, optional
        Defines what kind of return values are expected. Defaults to
        'psd'.
    boundary : str or None, optional
        Specifies whether the input signal is extended at both ends, and
        how to generate the new values, in order to center the first
        windowed segment on the first input point. This has the benefit
        of enabling reconstruction of the first input point when the
        employed window function starts at zero. Valid options are
        ``['even', 'odd', 'constant', 'zeros', None]``. Defaults to
        `None`.
    padded : bool, optional
        Specifies whether the input signal is zero-padded at the end to
        make the signal fit exactly into an integer number of window
        segments, so that all of the signal is included in the output.
        Defaults to `False`. Padding occurs after boundary extension, if
        `boundary` is not `None`, and `padded` is `True`.

    Returns
    -------
    freqs : ndarray
        Array of sample frequencies.
    t : ndarray
        Array of times corresponding to each data segment
    result : ndarray
        Array of output data, contents dependent on *mode* kwarg.

    Notes
    -----
    Adapted from matplotlib.mlab

    .. versionadded:: 0.16.0
    """
    if mode not in ['psd', 'stft']:
        raise ValueError(f"Unknown value for mode {mode}, must be one of: "
                         "{'psd', 'stft'}")

    boundary_funcs = {'even': even_ext,
                      'odd': odd_ext,
                      'constant': const_ext,
                      'zeros': zero_ext,
                      None: None}

    if boundary not in boundary_funcs:
        raise ValueError(f"Unknown boundary option '{boundary}', "
                         f"must be one of: {list(boundary_funcs.keys())}")

    # If x and y are the same object we can save ourselves some computation.
    same_data = y is x

    if not same_data and mode != 'psd':
        raise ValueError("x and y must be equal if mode is 'stft'")

    axis = int(axis)

    # Ensure we have np.arrays, get outdtype
    x = np.asarray(x)
    if not same_data:
        y = np.asarray(y)
        outdtype = np.result_type(x, y, np.complex64)
    else:
        outdtype = np.result_type(x, np.complex64)

    if not same_data:
        # Check if we can broadcast the outer axes together
        xouter = list(x.shape)
        youter = list(y.shape)
        xouter.pop(axis)
        youter.pop(axis)
        try:
            outershape = np.broadcast(np.empty(xouter), np.empty(youter)).shape
        except ValueError as e:
            raise ValueError('x and y cannot be broadcast together.') from e

    if same_data:
        if x.size == 0:
            return np.empty(x.shape), np.empty(x.shape), np.empty(x.shape)
    else:
        if x.size == 0 or y.size == 0:
            outshape = outershape + (min([x.shape[axis], y.shape[axis]]),)
            emptyout = np.moveaxis(np.empty(outshape), -1, axis)
            return emptyout, emptyout, emptyout

    if x.ndim > 1:
        if axis != -1:
            x = np.moveaxis(x, axis, -1)
            if not same_data and y.ndim > 1:
                y = np.moveaxis(y, axis, -1)

    # Check if x and y are the same length, zero-pad if necessary
    if not same_data:
        if x.shape[-1] != y.shape[-1]:
            if x.shape[-1] < y.shape[-1]:
                pad_shape = list(x.shape)
                pad_shape[-1] = y.shape[-1] - x.shape[-1]
                x = np.concatenate((x, np.zeros(pad_shape)), -1)
            else:
                pad_shape = list(y.shape)
                pad_shape[-1] = x.shape[-1] - y.shape[-1]
                y = np.concatenate((y, np.zeros(pad_shape)), -1)

    if nperseg is not None:  # if specified by user
        nperseg = int(nperseg)
        if nperseg < 1:
            raise ValueError('nperseg must be a positive integer')

    # parse window; if array like, then set nperseg = win.shape
    win, nperseg = _triage_segments(window, nperseg, input_length=x.shape[-1])

    if nfft is None:
        nfft = nperseg
    elif nfft < nperseg:
        raise ValueError('nfft must be greater than or equal to nperseg.')
    else:
        nfft = int(nfft)

    if noverlap is None:
        noverlap = nperseg//2
    else:
        noverlap = int(noverlap)
    if noverlap >= nperseg:
        raise ValueError('noverlap must be less than nperseg.')
    nstep = nperseg - noverlap

    # Padding occurs after boundary extension, so that the extended signal ends
    # in zeros, instead of introducing an impulse at the end.
    # I.e. if x = [..., 3, 2]
    # extend then pad -> [..., 3, 2, 2, 3, 0, 0, 0]
    # pad then extend -> [..., 3, 2, 0, 0, 0, 2, 3]

    if boundary is not None:
        ext_func = boundary_funcs[boundary]
        x = ext_func(x, nperseg//2, axis=-1)
        if not same_data:
            y = ext_func(y, nperseg//2, axis=-1)

    if padded:
        # Pad to integer number of windowed segments
        # I.e. make x.shape[-1] = nperseg + (nseg-1)*nstep, with integer nseg
        nadd = (-(x.shape[-1]-nperseg) % nstep) % nperseg
        zeros_shape = list(x.shape[:-1]) + [nadd]
        x = np.concatenate((x, np.zeros(zeros_shape)), axis=-1)
        if not same_data:
            zeros_shape = list(y.shape[:-1]) + [nadd]
            y = np.concatenate((y, np.zeros(zeros_shape)), axis=-1)

    # Handle detrending and window functions
    if not detrend:
        def detrend_func(d):
            return d
    elif not hasattr(detrend, '__call__'):
        def detrend_func(d):
            return _signaltools.detrend(d, type=detrend, axis=-1)
    elif axis != -1:
        # Wrap this function so that it receives a shape that it could
        # reasonably expect to receive.
        def detrend_func(d):
            d = np.moveaxis(d, -1, axis)
            d = detrend(d)
            return np.moveaxis(d, axis, -1)
    else:
        detrend_func = detrend

    if np.result_type(win, np.complex64) != outdtype:
        win = win.astype(outdtype)

    if scaling == 'density':
        scale = 1.0 / (fs * (win*win).sum())
    elif scaling == 'spectrum':
        scale = 1.0 / win.sum()**2
    else:
        raise ValueError(f'Unknown scaling: {scaling!r}')

    if mode == 'stft':
        scale = np.sqrt(scale)

    if return_onesided:
        if np.iscomplexobj(x):
            sides = 'twosided'
            warnings.warn('Input data is complex, switching to return_onesided=False',
                          stacklevel=3)
        else:
            sides = 'onesided'
            if not same_data:
                if np.iscomplexobj(y):
                    sides = 'twosided'
                    warnings.warn('Input data is complex, switching to '
                                  'return_onesided=False',
                                  stacklevel=3)
    else:
        sides = 'twosided'

    if sides == 'twosided':
        freqs = sp_fft.fftfreq(nfft, 1/fs)
    elif sides == 'onesided':
        freqs = sp_fft.rfftfreq(nfft, 1/fs)

    # Perform the windowed FFTs
    result = _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides)

    if not same_data:
        # All the same operations on the y data
        result_y = _fft_helper(y, win, detrend_func, nperseg, noverlap, nfft,
                               sides)
        result = np.conjugate(result) * result_y
    elif mode == 'psd':
        result = np.conjugate(result) * result

    result *= scale
    if sides == 'onesided' and mode == 'psd':
        if nfft % 2:
            result[..., 1:] *= 2
        else:
            # Last point is unpaired Nyquist freq point, don't double
            result[..., 1:-1] *= 2

    time = np.arange(nperseg/2, x.shape[-1] - nperseg/2 + 1,
                     nperseg - noverlap)/float(fs)
    if boundary is not None:
        time -= (nperseg/2) / fs

    result = result.astype(outdtype)

    # All imaginary parts are zero anyways
    if same_data and mode != 'stft':
        result = result.real

    # Output is going to have new last axis for time/window index, so a
    # negative axis index shifts down one
    if axis < 0:
        axis -= 1

    # Roll frequency axis back to axis where the data came from
    result = np.moveaxis(result, -1, axis)

    return freqs, time, result


def _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides):
    """
    Calculate windowed FFT, for internal use by
    `scipy.signal._spectral_helper`.

    This is a helper function that does the main FFT calculation for
    `_spectral helper`. All input validation is performed there, and the
    data axis is assumed to be the last axis of x. It is not designed to
    be called externally. The windows are not averaged over; the result
    from each window is returned.

    Returns
    -------
    result : ndarray
        Array of FFT data

    Notes
    -----
    Adapted from matplotlib.mlab

    .. versionadded:: 0.16.0
    """
    # Created sliding window view of array
    if nperseg == 1 and noverlap == 0:
        result = x[..., np.newaxis]
    else:
        step = nperseg - noverlap
        result = np.lib.stride_tricks.sliding_window_view(
            x, window_shape=nperseg, axis=-1, writeable=True
        )
        result = result[..., 0::step, :]

    # Detrend each data segment individually
    result = detrend_func(result)

    # Apply window by multiplication
    result = win * result

    # Perform the fft. Acts on last axis by default. Zero-pads automatically
    if sides == 'twosided':
        func = sp_fft.fft
    else:
        result = result.real
        func = sp_fft.rfft
    result = func(result, n=nfft)

    return result


def _triage_segments(window, nperseg, input_length):
    """
    Parses window and nperseg arguments for spectrogram and _spectral_helper.
    This is a helper function, not meant to be called externally.

    Parameters
    ----------
    window : string, tuple, or ndarray
        If window is specified by a string or tuple and nperseg is not
        specified, nperseg is set to the default of 256 and returns a window of
        that length.
        If instead the window is array_like and nperseg is not specified, then
        nperseg is set to the length of the window. A ValueError is raised if
        the user supplies both an array_like window and a value for nperseg but
        nperseg does not equal the length of the window.

    nperseg : int
        Length of each segment

    input_length: int
        Length of input signal, i.e. x.shape[-1]. Used to test for errors.

    Returns
    -------
    win : ndarray
        window. If function was called with string or tuple than this will hold
        the actual array used as a window.

    nperseg : int
        Length of each segment. If window is str or tuple, nperseg is set to
        256. If window is array_like, nperseg is set to the length of the
        window.
    """
    # parse window; if array like, then set nperseg = win.shape
    if isinstance(window, str) or isinstance(window, tuple):
        # if nperseg not specified
        if nperseg is None:
            nperseg = 256  # then change to default
        if nperseg > input_length:
            warnings.warn(f'nperseg = {nperseg:d} is greater than input length '
                          f' = {input_length:d}, using nperseg = {input_length:d}',
                          stacklevel=3)
            nperseg = input_length
        win = get_window(window, nperseg)
    else:
        win = np.asarray(window)
        if len(win.shape) != 1:
            raise ValueError('window must be 1-D')
        if input_length < win.shape[-1]:
            raise ValueError('window is longer than input signal')
        if nperseg is None:
            nperseg = win.shape[0]
        elif nperseg is not None:
            if nperseg != win.shape[0]:
                raise ValueError("value specified for nperseg is different"
                                 " from length of window")
    return win, nperseg


def _median_bias(n):
    """
    Returns the bias of the median of a set of periodograms relative to
    the mean.

    See Appendix B from [1]_ for details.

    Parameters
    ----------
    n : int
        Numbers of periodograms being averaged.

    Returns
    -------
    bias : float
        Calculated bias.

    References
    ----------
    .. [1] B. Allen, W.G. Anderson, P.R. Brady, D.A. Brown, J.D.E. Creighton.
           "FINDCHIRP: an algorithm for detection of gravitational waves from
           inspiraling compact binaries", Physical Review D 85, 2012,
           :arxiv:`gr-qc/0509116`
    """
    ii_2 = 2 * np.arange(1., (n-1) // 2 + 1)
    return 1 + np.sum(1. / (ii_2 + 1) - 1. / ii_2)