File size: 19,445 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
# This program is public domain
# Authors: Paul Kienzle, Nadav Horesh
"""
Chirp z-transform.
We provide two interfaces to the chirp z-transform: an object interface
which precalculates part of the transform and can be applied efficiently
to many different data sets, and a functional interface which is applied
only to the given data set.
Transforms
----------
CZT : callable (x, axis=-1) -> array
Define a chirp z-transform that can be applied to different signals.
ZoomFFT : callable (x, axis=-1) -> array
Define a Fourier transform on a range of frequencies.
Functions
---------
czt : array
Compute the chirp z-transform for a signal.
zoom_fft : array
Compute the Fourier transform on a range of frequencies.
"""
import cmath
import numbers
import numpy as np
from numpy import pi, arange
from scipy.fft import fft, ifft, next_fast_len
__all__ = ['czt', 'zoom_fft', 'CZT', 'ZoomFFT', 'czt_points']
def _validate_sizes(n, m):
if n < 1 or not isinstance(n, numbers.Integral):
raise ValueError('Invalid number of CZT data '
f'points ({n}) specified. '
'n must be positive and integer type.')
if m is None:
m = n
elif m < 1 or not isinstance(m, numbers.Integral):
raise ValueError('Invalid number of CZT output '
f'points ({m}) specified. '
'm must be positive and integer type.')
return m
def czt_points(m, w=None, a=1+0j):
"""
Return the points at which the chirp z-transform is computed.
Parameters
----------
m : int
The number of points desired.
w : complex, optional
The ratio between points in each step.
Defaults to equally spaced points around the entire unit circle.
a : complex, optional
The starting point in the complex plane. Default is 1+0j.
Returns
-------
out : ndarray
The points in the Z plane at which `CZT` samples the z-transform,
when called with arguments `m`, `w`, and `a`, as complex numbers.
See Also
--------
CZT : Class that creates a callable chirp z-transform function.
czt : Convenience function for quickly calculating CZT.
Examples
--------
Plot the points of a 16-point FFT:
>>> import numpy as np
>>> from scipy.signal import czt_points
>>> points = czt_points(16)
>>> import matplotlib.pyplot as plt
>>> plt.plot(points.real, points.imag, 'o')
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
>>> plt.axis('equal')
>>> plt.show()
and a 91-point logarithmic spiral that crosses the unit circle:
>>> m, w, a = 91, 0.995*np.exp(-1j*np.pi*.05), 0.8*np.exp(1j*np.pi/6)
>>> points = czt_points(m, w, a)
>>> plt.plot(points.real, points.imag, 'o')
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
>>> plt.axis('equal')
>>> plt.show()
"""
m = _validate_sizes(1, m)
k = arange(m)
a = 1.0 * a # at least float
if w is None:
# Nothing specified, default to FFT
return a * np.exp(2j * pi * k / m)
else:
# w specified
w = 1.0 * w # at least float
return a * w**-k
class CZT:
"""
Create a callable chirp z-transform function.
Transform to compute the frequency response around a spiral.
Objects of this class are callables which can compute the
chirp z-transform on their inputs. This object precalculates the constant
chirps used in the given transform.
Parameters
----------
n : int
The size of the signal.
m : int, optional
The number of output points desired. Default is `n`.
w : complex, optional
The ratio between points in each step. This must be precise or the
accumulated error will degrade the tail of the output sequence.
Defaults to equally spaced points around the entire unit circle.
a : complex, optional
The starting point in the complex plane. Default is 1+0j.
Returns
-------
f : CZT
Callable object ``f(x, axis=-1)`` for computing the chirp z-transform
on `x`.
See Also
--------
czt : Convenience function for quickly calculating CZT.
ZoomFFT : Class that creates a callable partial FFT function.
Notes
-----
The defaults are chosen such that ``f(x)`` is equivalent to
``fft.fft(x)`` and, if ``m > len(x)``, that ``f(x, m)`` is equivalent to
``fft.fft(x, m)``.
If `w` does not lie on the unit circle, then the transform will be
around a spiral with exponentially-increasing radius. Regardless,
angle will increase linearly.
For transforms that do lie on the unit circle, accuracy is better when
using `ZoomFFT`, since any numerical error in `w` is
accumulated for long data lengths, drifting away from the unit circle.
The chirp z-transform can be faster than an equivalent FFT with
zero padding. Try it with your own array sizes to see.
However, the chirp z-transform is considerably less precise than the
equivalent zero-padded FFT.
As this CZT is implemented using the Bluestein algorithm, it can compute
large prime-length Fourier transforms in O(N log N) time, rather than the
O(N**2) time required by the direct DFT calculation. (`scipy.fft` also
uses Bluestein's algorithm'.)
(The name "chirp z-transform" comes from the use of a chirp in the
Bluestein algorithm. It does not decompose signals into chirps, like
other transforms with "chirp" in the name.)
References
----------
.. [1] Leo I. Bluestein, "A linear filtering approach to the computation
of the discrete Fourier transform," Northeast Electronics Research
and Engineering Meeting Record 10, 218-219 (1968).
.. [2] Rabiner, Schafer, and Rader, "The chirp z-transform algorithm and
its application," Bell Syst. Tech. J. 48, 1249-1292 (1969).
Examples
--------
Compute multiple prime-length FFTs:
>>> from scipy.signal import CZT
>>> import numpy as np
>>> a = np.random.rand(7)
>>> b = np.random.rand(7)
>>> c = np.random.rand(7)
>>> czt_7 = CZT(n=7)
>>> A = czt_7(a)
>>> B = czt_7(b)
>>> C = czt_7(c)
Display the points at which the FFT is calculated:
>>> czt_7.points()
array([ 1.00000000+0.j , 0.62348980+0.78183148j,
-0.22252093+0.97492791j, -0.90096887+0.43388374j,
-0.90096887-0.43388374j, -0.22252093-0.97492791j,
0.62348980-0.78183148j])
>>> import matplotlib.pyplot as plt
>>> plt.plot(czt_7.points().real, czt_7.points().imag, 'o')
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
>>> plt.axis('equal')
>>> plt.show()
"""
def __init__(self, n, m=None, w=None, a=1+0j):
m = _validate_sizes(n, m)
k = arange(max(m, n), dtype=np.min_scalar_type(-max(m, n)**2))
if w is None:
# Nothing specified, default to FFT-like
w = cmath.exp(-2j*pi/m)
wk2 = np.exp(-(1j * pi * ((k**2) % (2*m))) / m)
else:
# w specified
wk2 = w**(k**2/2.)
a = 1.0 * a # at least float
self.w, self.a = w, a
self.m, self.n = m, n
nfft = next_fast_len(n + m - 1)
self._Awk2 = a**-k[:n] * wk2[:n]
self._nfft = nfft
self._Fwk2 = fft(1/np.hstack((wk2[n-1:0:-1], wk2[:m])), nfft)
self._wk2 = wk2[:m]
self._yidx = slice(n-1, n+m-1)
def __call__(self, x, *, axis=-1):
"""
Calculate the chirp z-transform of a signal.
Parameters
----------
x : array
The signal to transform.
axis : int, optional
Axis over which to compute the FFT. If not given, the last axis is
used.
Returns
-------
out : ndarray
An array of the same dimensions as `x`, but with the length of the
transformed axis set to `m`.
"""
x = np.asarray(x)
if x.shape[axis] != self.n:
raise ValueError(f"CZT defined for length {self.n}, not "
f"{x.shape[axis]}")
# Calculate transpose coordinates, to allow operation on any given axis
trnsp = np.arange(x.ndim)
trnsp[[axis, -1]] = [-1, axis]
x = x.transpose(*trnsp)
y = ifft(self._Fwk2 * fft(x*self._Awk2, self._nfft))
y = y[..., self._yidx] * self._wk2
return y.transpose(*trnsp)
def points(self):
"""
Return the points at which the chirp z-transform is computed.
"""
return czt_points(self.m, self.w, self.a)
class ZoomFFT(CZT):
"""
Create a callable zoom FFT transform function.
This is a specialization of the chirp z-transform (`CZT`) for a set of
equally-spaced frequencies around the unit circle, used to calculate a
section of the FFT more efficiently than calculating the entire FFT and
truncating.
Parameters
----------
n : int
The size of the signal.
fn : array_like
A length-2 sequence [`f1`, `f2`] giving the frequency range, or a
scalar, for which the range [0, `fn`] is assumed.
m : int, optional
The number of points to evaluate. Default is `n`.
fs : float, optional
The sampling frequency. If ``fs=10`` represented 10 kHz, for example,
then `f1` and `f2` would also be given in kHz.
The default sampling frequency is 2, so `f1` and `f2` should be
in the range [0, 1] to keep the transform below the Nyquist
frequency.
endpoint : bool, optional
If True, `f2` is the last sample. Otherwise, it is not included.
Default is False.
Returns
-------
f : ZoomFFT
Callable object ``f(x, axis=-1)`` for computing the zoom FFT on `x`.
See Also
--------
zoom_fft : Convenience function for calculating a zoom FFT.
Notes
-----
The defaults are chosen such that ``f(x, 2)`` is equivalent to
``fft.fft(x)`` and, if ``m > len(x)``, that ``f(x, 2, m)`` is equivalent to
``fft.fft(x, m)``.
Sampling frequency is 1/dt, the time step between samples in the
signal `x`. The unit circle corresponds to frequencies from 0 up
to the sampling frequency. The default sampling frequency of 2
means that `f1`, `f2` values up to the Nyquist frequency are in the
range [0, 1). For `f1`, `f2` values expressed in radians, a sampling
frequency of 2*pi should be used.
Remember that a zoom FFT can only interpolate the points of the existing
FFT. It cannot help to resolve two separate nearby frequencies.
Frequency resolution can only be increased by increasing acquisition
time.
These functions are implemented using Bluestein's algorithm (as is
`scipy.fft`). [2]_
References
----------
.. [1] Steve Alan Shilling, "A study of the chirp z-transform and its
applications", pg 29 (1970)
https://krex.k-state.edu/dspace/bitstream/handle/2097/7844/LD2668R41972S43.pdf
.. [2] Leo I. Bluestein, "A linear filtering approach to the computation
of the discrete Fourier transform," Northeast Electronics Research
and Engineering Meeting Record 10, 218-219 (1968).
Examples
--------
To plot the transform results use something like the following:
>>> import numpy as np
>>> from scipy.signal import ZoomFFT
>>> t = np.linspace(0, 1, 1021)
>>> x = np.cos(2*np.pi*15*t) + np.sin(2*np.pi*17*t)
>>> f1, f2 = 5, 27
>>> transform = ZoomFFT(len(x), [f1, f2], len(x), fs=1021)
>>> X = transform(x)
>>> f = np.linspace(f1, f2, len(x))
>>> import matplotlib.pyplot as plt
>>> plt.plot(f, 20*np.log10(np.abs(X)))
>>> plt.show()
"""
def __init__(self, n, fn, m=None, *, fs=2, endpoint=False):
m = _validate_sizes(n, m)
k = arange(max(m, n), dtype=np.min_scalar_type(-max(m, n)**2))
if np.size(fn) == 2:
f1, f2 = fn
elif np.size(fn) == 1:
f1, f2 = 0.0, fn
else:
raise ValueError('fn must be a scalar or 2-length sequence')
self.f1, self.f2, self.fs = f1, f2, fs
if endpoint:
scale = ((f2 - f1) * m) / (fs * (m - 1))
else:
scale = (f2 - f1) / fs
a = cmath.exp(2j * pi * f1/fs)
wk2 = np.exp(-(1j * pi * scale * k**2) / m)
self.w = cmath.exp(-2j*pi/m * scale)
self.a = a
self.m, self.n = m, n
ak = np.exp(-2j * pi * f1/fs * k[:n])
self._Awk2 = ak * wk2[:n]
nfft = next_fast_len(n + m - 1)
self._nfft = nfft
self._Fwk2 = fft(1/np.hstack((wk2[n-1:0:-1], wk2[:m])), nfft)
self._wk2 = wk2[:m]
self._yidx = slice(n-1, n+m-1)
def czt(x, m=None, w=None, a=1+0j, *, axis=-1):
"""
Compute the frequency response around a spiral in the Z plane.
Parameters
----------
x : array
The signal to transform.
m : int, optional
The number of output points desired. Default is the length of the
input data.
w : complex, optional
The ratio between points in each step. This must be precise or the
accumulated error will degrade the tail of the output sequence.
Defaults to equally spaced points around the entire unit circle.
a : complex, optional
The starting point in the complex plane. Default is 1+0j.
axis : int, optional
Axis over which to compute the FFT. If not given, the last axis is
used.
Returns
-------
out : ndarray
An array of the same dimensions as `x`, but with the length of the
transformed axis set to `m`.
See Also
--------
CZT : Class that creates a callable chirp z-transform function.
zoom_fft : Convenience function for partial FFT calculations.
Notes
-----
The defaults are chosen such that ``signal.czt(x)`` is equivalent to
``fft.fft(x)`` and, if ``m > len(x)``, that ``signal.czt(x, m)`` is
equivalent to ``fft.fft(x, m)``.
If the transform needs to be repeated, use `CZT` to construct a
specialized transform function which can be reused without
recomputing constants.
An example application is in system identification, repeatedly evaluating
small slices of the z-transform of a system, around where a pole is
expected to exist, to refine the estimate of the pole's true location. [1]_
References
----------
.. [1] Steve Alan Shilling, "A study of the chirp z-transform and its
applications", pg 20 (1970)
https://krex.k-state.edu/dspace/bitstream/handle/2097/7844/LD2668R41972S43.pdf
Examples
--------
Generate a sinusoid:
>>> import numpy as np
>>> f1, f2, fs = 8, 10, 200 # Hz
>>> t = np.linspace(0, 1, fs, endpoint=False)
>>> x = np.sin(2*np.pi*t*f2)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, x)
>>> plt.axis([0, 1, -1.1, 1.1])
>>> plt.show()
Its discrete Fourier transform has all of its energy in a single frequency
bin:
>>> from scipy.fft import rfft, rfftfreq
>>> from scipy.signal import czt, czt_points
>>> plt.plot(rfftfreq(fs, 1/fs), abs(rfft(x)))
>>> plt.margins(0, 0.1)
>>> plt.show()
However, if the sinusoid is logarithmically-decaying:
>>> x = np.exp(-t*f1) * np.sin(2*np.pi*t*f2)
>>> plt.plot(t, x)
>>> plt.axis([0, 1, -1.1, 1.1])
>>> plt.show()
the DFT will have spectral leakage:
>>> plt.plot(rfftfreq(fs, 1/fs), abs(rfft(x)))
>>> plt.margins(0, 0.1)
>>> plt.show()
While the DFT always samples the z-transform around the unit circle, the
chirp z-transform allows us to sample the Z-transform along any
logarithmic spiral, such as a circle with radius smaller than unity:
>>> M = fs // 2 # Just positive frequencies, like rfft
>>> a = np.exp(-f1/fs) # Starting point of the circle, radius < 1
>>> w = np.exp(-1j*np.pi/M) # "Step size" of circle
>>> points = czt_points(M + 1, w, a) # M + 1 to include Nyquist
>>> plt.plot(points.real, points.imag, '.')
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
>>> plt.axis('equal'); plt.axis([-1.05, 1.05, -0.05, 1.05])
>>> plt.show()
With the correct radius, this transforms the decaying sinusoid (and others
with the same decay rate) without spectral leakage:
>>> z_vals = czt(x, M + 1, w, a) # Include Nyquist for comparison to rfft
>>> freqs = np.angle(points)*fs/(2*np.pi) # angle = omega, radius = sigma
>>> plt.plot(freqs, abs(z_vals))
>>> plt.margins(0, 0.1)
>>> plt.show()
"""
x = np.asarray(x)
transform = CZT(x.shape[axis], m=m, w=w, a=a)
return transform(x, axis=axis)
def zoom_fft(x, fn, m=None, *, fs=2, endpoint=False, axis=-1):
"""
Compute the DFT of `x` only for frequencies in range `fn`.
Parameters
----------
x : array
The signal to transform.
fn : array_like
A length-2 sequence [`f1`, `f2`] giving the frequency range, or a
scalar, for which the range [0, `fn`] is assumed.
m : int, optional
The number of points to evaluate. The default is the length of `x`.
fs : float, optional
The sampling frequency. If ``fs=10`` represented 10 kHz, for example,
then `f1` and `f2` would also be given in kHz.
The default sampling frequency is 2, so `f1` and `f2` should be
in the range [0, 1] to keep the transform below the Nyquist
frequency.
endpoint : bool, optional
If True, `f2` is the last sample. Otherwise, it is not included.
Default is False.
axis : int, optional
Axis over which to compute the FFT. If not given, the last axis is
used.
Returns
-------
out : ndarray
The transformed signal. The Fourier transform will be calculated
at the points f1, f1+df, f1+2df, ..., f2, where df=(f2-f1)/m.
See Also
--------
ZoomFFT : Class that creates a callable partial FFT function.
Notes
-----
The defaults are chosen such that ``signal.zoom_fft(x, 2)`` is equivalent
to ``fft.fft(x)`` and, if ``m > len(x)``, that ``signal.zoom_fft(x, 2, m)``
is equivalent to ``fft.fft(x, m)``.
To graph the magnitude of the resulting transform, use::
plot(linspace(f1, f2, m, endpoint=False), abs(zoom_fft(x, [f1, f2], m)))
If the transform needs to be repeated, use `ZoomFFT` to construct
a specialized transform function which can be reused without
recomputing constants.
Examples
--------
To plot the transform results use something like the following:
>>> import numpy as np
>>> from scipy.signal import zoom_fft
>>> t = np.linspace(0, 1, 1021)
>>> x = np.cos(2*np.pi*15*t) + np.sin(2*np.pi*17*t)
>>> f1, f2 = 5, 27
>>> X = zoom_fft(x, [f1, f2], len(x), fs=1021)
>>> f = np.linspace(f1, f2, len(x))
>>> import matplotlib.pyplot as plt
>>> plt.plot(f, 20*np.log10(np.abs(X)))
>>> plt.show()
"""
x = np.asarray(x)
transform = ZoomFFT(x.shape[axis], fn, m=m, fs=fs, endpoint=endpoint)
return transform(x, axis=axis)
|