File size: 8,294 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""
Functions for acting on a axis of an array.
"""
import numpy as np


def axis_slice(a, start=None, stop=None, step=None, axis=-1):
    """Take a slice along axis 'axis' from 'a'.

    Parameters
    ----------
    a : numpy.ndarray
        The array to be sliced.
    start, stop, step : int or None
        The slice parameters.
    axis : int, optional
        The axis of `a` to be sliced.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal._arraytools import axis_slice
    >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    >>> axis_slice(a, start=0, stop=1, axis=1)
    array([[1],
           [4],
           [7]])
    >>> axis_slice(a, start=1, axis=0)
    array([[4, 5, 6],
           [7, 8, 9]])

    Notes
    -----
    The keyword arguments start, stop and step are used by calling
    slice(start, stop, step). This implies axis_slice() does not
    handle its arguments the exactly the same as indexing. To select
    a single index k, for example, use
        axis_slice(a, start=k, stop=k+1)
    In this case, the length of the axis 'axis' in the result will
    be 1; the trivial dimension is not removed. (Use numpy.squeeze()
    to remove trivial axes.)
    """
    a_slice = [slice(None)] * a.ndim
    a_slice[axis] = slice(start, stop, step)
    b = a[tuple(a_slice)]
    return b


def axis_reverse(a, axis=-1):
    """Reverse the 1-D slices of `a` along axis `axis`.

    Returns axis_slice(a, step=-1, axis=axis).
    """
    return axis_slice(a, step=-1, axis=axis)


def odd_ext(x, n, axis=-1):
    """
    Odd extension at the boundaries of an array

    Generate a new ndarray by making an odd extension of `x` along an axis.

    Parameters
    ----------
    x : ndarray
        The array to be extended.
    n : int
        The number of elements by which to extend `x` at each end of the axis.
    axis : int, optional
        The axis along which to extend `x`. Default is -1.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal._arraytools import odd_ext
    >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
    >>> odd_ext(a, 2)
    array([[-1,  0,  1,  2,  3,  4,  5,  6,  7],
           [-4, -1,  0,  1,  4,  9, 16, 23, 28]])

    Odd extension is a "180 degree rotation" at the endpoints of the original
    array:

    >>> t = np.linspace(0, 1.5, 100)
    >>> a = 0.9 * np.sin(2 * np.pi * t**2)
    >>> b = odd_ext(a, 40)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='odd extension')
    >>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
    >>> plt.legend(loc='best')
    >>> plt.show()
    """
    if n < 1:
        return x
    if n > x.shape[axis] - 1:
        raise ValueError(("The extension length n (%d) is too big. " +
                         "It must not exceed x.shape[axis]-1, which is %d.")
                         % (n, x.shape[axis] - 1))
    left_end = axis_slice(x, start=0, stop=1, axis=axis)
    left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
    right_end = axis_slice(x, start=-1, axis=axis)
    right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
    ext = np.concatenate((2 * left_end - left_ext,
                          x,
                          2 * right_end - right_ext),
                         axis=axis)
    return ext


def even_ext(x, n, axis=-1):
    """
    Even extension at the boundaries of an array

    Generate a new ndarray by making an even extension of `x` along an axis.

    Parameters
    ----------
    x : ndarray
        The array to be extended.
    n : int
        The number of elements by which to extend `x` at each end of the axis.
    axis : int, optional
        The axis along which to extend `x`. Default is -1.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal._arraytools import even_ext
    >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
    >>> even_ext(a, 2)
    array([[ 3,  2,  1,  2,  3,  4,  5,  4,  3],
           [ 4,  1,  0,  1,  4,  9, 16,  9,  4]])

    Even extension is a "mirror image" at the boundaries of the original array:

    >>> t = np.linspace(0, 1.5, 100)
    >>> a = 0.9 * np.sin(2 * np.pi * t**2)
    >>> b = even_ext(a, 40)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='even extension')
    >>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
    >>> plt.legend(loc='best')
    >>> plt.show()
    """
    if n < 1:
        return x
    if n > x.shape[axis] - 1:
        raise ValueError(("The extension length n (%d) is too big. " +
                         "It must not exceed x.shape[axis]-1, which is %d.")
                         % (n, x.shape[axis] - 1))
    left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
    right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
    ext = np.concatenate((left_ext,
                          x,
                          right_ext),
                         axis=axis)
    return ext


def const_ext(x, n, axis=-1):
    """
    Constant extension at the boundaries of an array

    Generate a new ndarray that is a constant extension of `x` along an axis.

    The extension repeats the values at the first and last element of
    the axis.

    Parameters
    ----------
    x : ndarray
        The array to be extended.
    n : int
        The number of elements by which to extend `x` at each end of the axis.
    axis : int, optional
        The axis along which to extend `x`. Default is -1.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal._arraytools import const_ext
    >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
    >>> const_ext(a, 2)
    array([[ 1,  1,  1,  2,  3,  4,  5,  5,  5],
           [ 0,  0,  0,  1,  4,  9, 16, 16, 16]])

    Constant extension continues with the same values as the endpoints of the
    array:

    >>> t = np.linspace(0, 1.5, 100)
    >>> a = 0.9 * np.sin(2 * np.pi * t**2)
    >>> b = const_ext(a, 40)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='constant extension')
    >>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
    >>> plt.legend(loc='best')
    >>> plt.show()
    """
    if n < 1:
        return x
    left_end = axis_slice(x, start=0, stop=1, axis=axis)
    ones_shape = [1] * x.ndim
    ones_shape[axis] = n
    ones = np.ones(ones_shape, dtype=x.dtype)
    left_ext = ones * left_end
    right_end = axis_slice(x, start=-1, axis=axis)
    right_ext = ones * right_end
    ext = np.concatenate((left_ext,
                          x,
                          right_ext),
                         axis=axis)
    return ext


def zero_ext(x, n, axis=-1):
    """
    Zero padding at the boundaries of an array

    Generate a new ndarray that is a zero-padded extension of `x` along
    an axis.

    Parameters
    ----------
    x : ndarray
        The array to be extended.
    n : int
        The number of elements by which to extend `x` at each end of the
        axis.
    axis : int, optional
        The axis along which to extend `x`. Default is -1.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal._arraytools import zero_ext
    >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
    >>> zero_ext(a, 2)
    array([[ 0,  0,  1,  2,  3,  4,  5,  0,  0],
           [ 0,  0,  0,  1,  4,  9, 16,  0,  0]])
    """
    if n < 1:
        return x
    zeros_shape = list(x.shape)
    zeros_shape[axis] = n
    zeros = np.zeros(zeros_shape, dtype=x.dtype)
    ext = np.concatenate((zeros, x, zeros), axis=axis)
    return ext


def _validate_fs(fs, allow_none=True):
    """
    Check if the given sampling frequency is a scalar and raises an exception
    otherwise. If allow_none is False, also raises an exception for none
    sampling rates. Returns the sampling frequency as float or none if the
    input is none.
    """
    if fs is None:
        if not allow_none:
            raise ValueError("Sampling frequency can not be none.")
    else:  # should be float
        if not np.isscalar(fs):
            raise ValueError("Sampling frequency fs must be a single scalar.")
        fs = float(fs)
    return fs